
IContents

I

Copyright © 1991-2010 by Boxer Software

Table of Contents
Part I Contents 18

Part II Introduction 19

Part III New Features in Boxer 14 19

Part IV Command Reference (in menu order) 24

... 241 File Menu

.. 24New

.. 25Picker

.. 26Open

.. 32Open Hex

.. 34FTP Open

.. 40Open Other -> Header File

.. 41Open Other -> Filename at Cursor

.. 41Open Other -> System Files

.. 42Open Other -> File in Browser

.. 42Open Other -> Email at Cursor

.. 43Open Other -> URL at Cursor

.. 44Open Other -> Program at Cursor

.. 44Close

.. 45Close All

.. 45Insert

.. 46Reload

.. 47Save

.. 47Save All

.. 48Save As

.. 49FTP Save As

.. 49Save a Copy As

.. 50File Properties

.. 53Toggle Read-Only

.. 54Page Setup

.. 58Print Setup

.. 58Print Preview

.. 59Print

.. 61Print All

.. 63Recent Files

.. 64Clear Recent Files List

.. 64Exit

... 642 Edit Menu

.. 64Undo

.. 65Undo All

.. 65Redo

.. 66Redo All

.. 66Clear Undo

.. 66Cut

.. 67Copy

.. 68Append

Boxer Text EditorII

Copyright © 1991-2010 by Boxer Software

.. 68Cut Append

.. 69Paste

.. 70Paste As

.. 71Delete

.. 72Select All Text

.. 72Copy Filename

.. 72Paste Clipboard

.. 73Set Clipboard

.. 74Set Clipboard -> Previous

.. 74Set Clipboard -> Next

.. 74Edit Clipboard

.. 75Clear Clipboard

.. 76Clear Clipboard -> All Clipboards

.. 76Insert -> Character(s)

.. 77Insert -> Formfeed

.. 77Insert -> Tab

.. 78Insert -> Filename

.. 78Insert -> HTML Image Tag

.. 79Insert -> Line Below

.. 79Insert -> Line Above

.. 80Insert -> Short Date

.. 80Insert -> Long Date

.. 81Insert -> Short Time

.. 81Insert -> Long Time

.. 81Delete -> Previous Word

.. 82Delete -> Next Word

.. 82Delete -> Current Line

.. 82Delete -> to End of Line

.. 82Delete -> to Start of Line

.. 83Delete -> Lines that Begin with

.. 83Delete -> Lines that End with

.. 83Delete -> Lines that Contain

.. 84Delete -> Lines that do not Begin with

.. 84Delete -> Lines that do not End with

.. 85Delete -> Lines that do not Contain

.. 85Delete -> Blank Lines

.. 85Delete -> Duplicate Lines

.. 86Delete -> Bookmarked Lines

.. 86Line -> Duplicate Line

.. 86Line -> Duplicate and Increment

.. 88Line -> Move Line Up

.. 88Line -> Move Line Down

.. 89Math -> Increment

.. 89Math -> Decrement

.. 89Math -> Multiply

.. 90Math -> Divide

.. 90Swap Words

.. 90Swap Lines

.. 91Flip Case

... 913 Block Menu

.. 91Select Stream

.. 93Select Columnar

.. 95Select without Shift

.. 95Indent One Space

IIIContents

III

Copyright © 1991-2010 by Boxer Software

.. 95Indent One Tabstop

.. 96Indent with String

.. 96Unindent

.. 96Convert Case -> Upper

.. 97Convert Case -> Lower

.. 97Convert Case -> Invert

.. 97Convert Case -> Words

.. 98Convert Case -> Sentences

.. 98Convert Case -> Title

.. 99Convert Other -> Tabs to Spaces

.. 100Convert Other -> Spaces to Tabs

.. 100Convert Other -> OEM to ANSI

.. 101Convert Other -> ANSI to OEM

.. 101Convert Other -> EBCDIC to ASCII

.. 102Convert Other -> ASCII to EBCDIC

.. 102Convert Other -> ROT5

.. 102Convert Other -> ROT13

.. 103Convert Other -> ROT18

.. 103Convert Other -> ROT47

.. 104Comment

.. 104Uncomment

.. 105Auto-Number

.. 107Fill with String

.. 108Invert Lines

.. 108Line Spacing

.. 109Save Selection As

.. 110Sort Lines

.. 114Strip HTML/XML Tags

.. 115Strip Leading Spaces

.. 115Strip Trailing Spaces

.. 116Total and Average

.. 117Word Count

... 1174 Search Menu

.. 117Find

.. 122Find (Hex)

.. 123Find Next

.. 124Find Previous

.. 124Find Fast

.. 124Unhighlight Matches

.. 125Replace

.. 129Replace (Hex)

.. 131Replace Again

.. 131Replace Line Enders

.. 135Find Mate

.. 136Find and Count

.. 137Find a Disk File

.. 139Find Text in Disk Files

.. 143Find Duplicate Lines

.. 144Find Unique Lines

.. 145Find Distinct Lines

.. 146Find Differing Lines

... 1465 Jump Menu

.. 146Go to Line

Boxer Text EditorIV

Copyright © 1991-2010 by Boxer Software

.. 147Go to Column

.. 148Go to Byte Offset

.. 149Next Bookmark

.. 149Previous Bookmark

.. 150Toggle Bookmark

.. 151Bookmark Manager

.. 153Next Paragraph

.. 153Previous Paragraph

.. 153Go to Paragraph

.. 154Next Function

.. 154Previous Function

.. 155Declaration

.. 155Reference

.. 156Ctags Function Index

.. 159Make Line Top

.. 159Make Line Center

.. 159Make Line Bottom

.. 160Left Window Edge

.. 160Right Window Edge

.. 160Backtab

... 1616 Paragraph Menu

.. 161Visual Wrap

.. 163Visual Wrap Options

.. 165Harden Line Enders

.. 166Soften Line Enders

.. 166Reformat

.. 168Unformat

.. 169Text Width

.. 169Justification Style

.. 170Typing Wrap

.. 171Quote and Reformat

.. 172Align Left

.. 172Align Center

.. 173Align Right

.. 173Align Smooth

... 1747 Tools Menu

.. 174Macros

.. 182Macro Language Reference

.. 197Macro Function Reference

.. 231Macro Examples

.. 255Record Keys

.. 256Pause Recording

.. 256Playback Keys

.. 257Save Key Recording

.. 257Load Key Recording

.. 258Auto-Complete

.. 261Auto-Complete List

.. 261Command Multiplier

.. 262Repeat Last Command

.. 262Format XML / XHTML

.. 265Unformat XML / XHTML

.. 266Spell Checker

.. 270Check Word

VContents

V

Copyright © 1991-2010 by Boxer Software

.. 271Calculator

.. 273Calendar

.. 274User Tools

.. 279User Lists

.. 281User Lists -> Bring User Lists to Top

.. 282Reference Charts -> ANSI Chart

.. 283Reference Charts -> OEM Chart

.. 285Reference Charts -> Value at Cursor

.. 285Reference Charts -> Error Chart

.. 286Reference Charts -> HTML Color Chart

.. 287Templates

.. 289Line Drawing

.. 290Fast Frame

... 2928 Project Menu

.. 292New

.. 294Open

.. 294Close

.. 295Delete

.. 295Add One

.. 295Add All

.. 296Remove

.. 296Update One

.. 296Update All

.. 297Auto-Update

.. 297Edit Active

.. 297Edit Other

.. 298Recent Projects

.. 298Clear Recent Projects List

... 2999 Configure Menu

.. 299Preferences - Display

.. 301Preferences - Cursor

.. 304Preferences - Editing 1

.. 308Preferences - Editing 2

.. 311Preferences -Tabs

.. 313Preferences - File I/O

.. 320Preferences - Backups

.. 322Preferences - Messages

.. 325Preferences - Other

.. 328Colors

.. 330Screen Font

.. 332Printer Font

.. 334Keyboard

.. 339Auto-Complete - Settings

.. 342Auto-Complete - Popup List

.. 343Auto-Complete - User-Defined

.. 346Auto-Complete - Harvested

.. 348Auto-Complete - Dictionary

.. 350Auto-Complete - Excluded

.. 351Toolbar

.. 354Syntax Highlighting

.. 361Text Highlighting

.. 362Ctags Function Indexing

.. 366Templates

Boxer Text EditorVI

Copyright © 1991-2010 by Boxer Software

.. 369User Tools

.. 374Explore Data Folder

.. 375Explore Program Folder

... 37610 View Menu

.. 376Toolbar -> View Toolbar

.. 377File Tabs -> View File Tabs

.. 378File Tabs -> Sort by Name

.. 378File Tabs -> Sort by Extension

.. 379File Tabs -> Sort by Use

.. 379File Tabs -> Top

.. 379File Tabs -> Bottom

.. 379File Tabs -> Skip File

.. 380File Tabs -> Skip All

.. 380File Tabs -> Unskip All

.. 381File Tabs -> Undo Close Tab

.. 381File Tabs -> Undo All Closed Tabs

.. 381Status Bar

.. 383Vertical Scroll Bar

.. 383Horizontal Scroll Bar

.. 384Bookmarks

.. 385Line Numbers

.. 386Text Ruler

.. 386Hex Ruler

.. 387Right Margin Rule

.. 388Visible Spaces

.. 388Active Spell Checking

.. 390Text Highlighting

.. 391Apply Highlighting

.. 391Syntax Highlighting

.. 391Syntax Highlight As

.. 392Hex Mode

.. 394Scroll Up

.. 394Scroll Down

.. 394Scroll Left

.. 394Scroll Right

.. 395Synchronized Scroll

.. 395Shaded Tab Zones

.. 396Tab Display Size

... 39911 Window Menu

.. 399Tile Across

.. 399Tile Down

.. 400Cascade

.. 400Cascade Vertical

.. 400Cascade Horizontal

.. 401Arrange Icons

.. 401Split Vertical

.. 402Split Horizontal

.. 402Next

.. 403Previous

.. 403Skip

.. 404Last Visited

.. 404Minimize All

.. 404Restore All

VIIContents

VII

Copyright © 1991-2010 by Boxer Software

.. 404Maximize All

.. 405Close All

.. 405Close All but Active

.. 406Window List

... 40712 Help Menu

.. 407Boxer Help

.. 407Help On

.. 407FAQs

.. 409Boxer Shorts

.. 409Technical Support

.. 410Order Boxer

.. 413Boxer Software Order Form

.. 414Check for Latest Version

.. 415Contact Information

.. 415Email Boxer Software

.. 416Boxer Software Website

.. 417About Boxer

Part V Command Reference (alphabetically) 419

... 4191 About Boxer

... 4192 Active Spell Checking

... 4213 Add All

... 4214 Add One

... 4225 Align Center

... 4226 Align Left

... 4237 Align Right

... 4238 Align Smooth

... 4239 ANSI Chart

... 42510 ANSI to OEM

... 42511 Append

... 42612 Apply Highlighting

... 42713 Arrange Icons

... 42714 ASCII to EBCDIC

... 42715 Auto-Complete

... 43016 Auto-Complete List

... 43017 Auto-Complete - Settings

... 43318 Auto-Complete - Popup List

... 43519 Auto-Complete - User-Defined

... 43820 Auto-Complete - Harvested

... 43921 Auto-Complete - Dictionary

... 44122 Auto-Complete - Excluded

... 44223 Auto-Number

... 44424 Auto-Update

Boxer Text EditorVIII

Copyright © 1991-2010 by Boxer Software

... 44425 Backtab

... 44526 Bookmark Manager

... 44627 Bookmarks

... 44728 Boxer Shorts

... 44829 Boxer Software Order Form

... 44930 Boxer Software Website

... 45031 Bring User Lists to Top

... 45032 Calculator

... 45333 Calendar

... 45434 Cascade

... 45435 Cascade Vertical

... 45536 Cascade Horizontal

... 45537 Check for Latest Version

... 45638 Check Word

... 45639 Clear All Clipboards

... 45740 Clear Clipboard

... 45741 Clear Closed Tabs List

... 45742 Clear Recent Files List

... 45843 Clear Recent Projects List

... 45844 Clear Undo

... 45845 Close (File)

... 45946 Close (Project)

... 45947 Close All

... 46048 Close All but Active

... 46049 Closed Tabs List

... 46150 Colors

... 46351 Command Multiplier

... 46352 Comment

... 46453 Contact Information

... 46454 Convert Case - Invert

... 46555 Convert Case - Lower

... 46556 Convert Case - Sentences

... 46657 Convert Case - Title

... 46658 Convert Case - Upper

... 46759 Convert Case - Words

... 46760 Copy

... 46861 Copy Filename

... 46862 Ctags Function Index

... 47163 Ctags Function Indexing

IXContents

IX

Copyright © 1991-2010 by Boxer Software

... 47564 Cut

... 47665 Cut Append

... 47666 Declaration

... 47767 Decrement

... 47768 Delete (Text)

... 47869 Delete (Project)

... 47870 Delete Blank Lines

... 47871 Delete Bookmarked Lines

... 47972 Delete Current Line

... 47973 Delete Duplicate Lines

... 47974 Delete Lines that Begin with

... 48075 Delete Lines that Contain

... 48076 Delete Lines that do not Begin with

... 48077 Delete Lines that do not Contain

... 48178 Delete Lines that do not End with

... 48179 Delete Lines that End with

... 48280 Delete Next Word

... 48281 Delete Previous Word

... 48282 Delete to End of Line

... 48283 Delete to Start of Line

... 48384 Divide

... 48385 Duplicate and Increment

... 48486 Duplicate Line

... 48587 EBCDIC to ASCII

... 48588 Edit Active

... 48689 Edit Clipboard

... 48690 Edit Other

... 48791 Email Boxer Software

... 48792 Error Chart

... 48893 Exit

... 48994 Explore Data Folder

... 49095 Explore Program Folder

... 49196 FAQs

... 49297 Fast Frame

... 49398 File Insert

... 49499 File Picker

... 496100 File Properties

... 499101 File Tabs

... 500102 File Tabs - Bottom

Boxer Text EditorX

Copyright © 1991-2010 by Boxer Software

... 501103 File Tabs - Top

... 501104 Fill with String

... 502105 Find

... 507106 Find a Disk File

... 509107 Find and Count

... 509108 Find Differing Lines

... 510109 Find Distinct Lines

... 511110 Find Duplicate lines

... 511111 Find Fast

... 512112 Find Mate

... 513113 Find Next

... 513114 Find Previous

... 514115 Find Text in Disk Files

... 518116 Find Unique Lines

... 519117 Flip Case

... 519118 Format XML / XHTML

... 522119 FTP Open

... 528120 FTP Save As

... 528121 Go to Byte Offset

... 529122 Go to Column

... 530123 Go to Line

... 531124 Go to Paragraph

... 532125 Harden Line Enders

... 532126 Help

... 533127 Help On

... 533128 Hex Mode

... 534129 Hex Ruler

... 535130 Horizontal Scroll Bar

... 535131 HTML Color Chart

... 536132 Increment

... 537133 Indent one Space

... 537134 Indent one Tabstop

... 537135 Indent with String

... 538136 Insert Character

... 539137 Insert Filename

... 539138 Insert Formfeed

... 539139 Insert HTML Image Tag

... 540140 Insert Line Above

... 541141 Insert Line Below

XIContents

XI

Copyright © 1991-2010 by Boxer Software

... 541142 Insert Long Date

... 541143 Insert Long Time

... 542144 Insert Short Date

... 542145 Insert Short Time

... 542146 Insert Tab

... 543147 Invert Lines

... 544148 Justification Style

... 545149 Keyboard

... 551150 Left Window Edge

... 551151 Line Drawing

... 552152 Line Numbers

... 553153 Line Spacing

... 554154 Load Key Recording

... 555155 Macros

... 563156 Macro Examples

... 588157 Macro Function Reference

... 621158 Macro Language Reference

... 636159 Make Line Bottom

... 636160 Make Line Center

... 637161 Make Line Top

... 637162 Maximize All

... 637163 Minimize All

... 638164 Move Line Down

... 638165 Move Line Up

... 638166 Multiply

... 639167 New (File)

... 639168 New (Project)

... 641169 Next Bookmark

... 642170 Next Function

... 642171 Next Paragraph

... 643172 OEM Chart

... 645173 OEM to ANSI

... 645174 Open (File)

... 651175 Open (Project)

... 652176 Open Email at Cursor

... 653177 Open File in Browser

... 653178 Open Filename at Cursor

... 654179 Open Header File

... 654180 Open Hex

Boxer Text EditorXII

Copyright © 1991-2010 by Boxer Software

... 656181 Open Program at Cursor

... 656182 Open System Files

... 657183 Open URL at Cursor

... 657184 Order Boxer

... 660185 Page Setup

... 664186 Paste

... 665187 Paste As

... 667188 Paste Clipboard

... 667189 Pause Recording

... 667190 Playback Keys

... 668191 Power Columns

... 669192 Preferences - Display

... 672193 Preferences - Cursor

... 675194 Preferences - Editing 1

... 679195 Preferences - Editing 2

... 682196 Preferences - Tabs

... 684197 Preferences - File I/O

... 691198 Preferences - Backups

... 693199 Preferences - Messages

... 696200 Preferences - Other

... 699201 Previous Bookmark

... 700202 Previous Function

... 700203 Previous Paragraph

... 701204 Print

... 703205 Print All

... 705206 Print Preview

... 706207 Print Setup

... 706208 Printer Font

... 708209 Quote and Reformat

... 709210 Recent Files

... 709211 Recent Projects

... 710212 Record Keys

... 711213 Redo

... 711214 Redo All

... 712215 Reference

... 712216 Reformat

... 713217 Regular Expressions

... 719218 Reload

... 720219 Remove

XIIIContents

XIII

Copyright © 1991-2010 by Boxer Software

... 720220 Repeat Last Command

... 721221 Replace

... 725222 Replace Again

... 725223 Replace Line Enders

... 729224 Restore All

... 729225 Right Margin Rule

... 730226 Right Window Edge

... 730227 ROT5

... 731228 ROT13

... 731229 ROT18

... 732230 ROT47

... 732231 Save

... 732232 Save a Copy As

... 733233 Save All

... 734234 Save As

... 735235 Save Key Recording

... 735236 Save Selection As

... 736237 Screen Font

... 738238 Scroll Down

... 738239 Scroll Left

... 739240 Scroll Right

... 739241 Scroll Up

... 739242 Select All Text

... 739243 Select Columnar

... 741244 Select Stream

... 743245 Select without Shift

... 743246 Set Clipboard

... 744247 Set Clipboard Previous

... 744248 Set Clipboard Next

... 745249 Shaded Tab Zones

... 745250 Skip

... 746251 Skip All

... 746252 Soften Line Enders

... 747253 Sort File Tabs by Extension

... 747254 Sort File Tabs by Name

... 748255 Sort File Tabs by Use

... 748256 Sort Lines

... 752257 Spaces to Tabs

... 753258 Spell Checker

Boxer Text EditorXIV

Copyright © 1991-2010 by Boxer Software

... 757259 Split Horizontal

... 758260 Split Vertical

... 758261 Status Bar

... 760262 Strip HTML/XML Tags

... 761263 Strip Leading Spaces

... 761264 Strip Trailing Spaces

... 761265 Swap Lines

... 762266 Swap Words

... 762267 Synchronized Scroll

... 763268 Syntax Highlight As

... 764269 Syntax Highlighting (Configure)

... 771270 Syntax Highlighting (View)

... 772271 Tab Display Size

... 774272 Tabs to Spaces

... 775273 Technical Support

... 776274 Templates (Configure)

... 779275 Templates (Insert)

... 781276 Text Highlighting (Configure)

... 782277 Text Highlighting (View)

... 782278 Text Ruler

... 783279 Text Width

... 784280 Tile Across

... 784281 Tile Down

... 785282 Toggle Bookmark

... 786283 Toggle Read-Only

... 786284 Toolbar (Configure)

... 789285 Toolbar (View)

... 790286 Total and Average

... 791287 Typing Wrap

... 792288 Uncomment

... 792289 Undo

... 793290 Undo All

... 793291 Undo All Closed Tabs

... 793292 Undo Closed Tab

... 794293 Unformat

... 794294 Unformat XML / XHTML

... 795295 Unhighlight Matches

... 795296 Unindent

... 795297 Unskip All

XVContents

XV

Copyright © 1991-2010 by Boxer Software

... 796298 Update All

... 796299 Update One

... 797300 User Lists

... 799301 User Tools (Configure)

... 804302 Value at Cursor

... 805303 Vertical Scroll Bar

... 806304 Visible Spaces

... 806305 Visual Wrap

... 809306 Visual Wrap Options

... 811307 Window Close All

... 811308 Window Last Visited

... 812309 Window List

... 813310 Window Next

... 813311 Window Previous

... 814312 Window Skip

... 814313 Word Count

Part VI Miscellaneous Topics 815

... 8151 Command Line Options

... 8192 Converting CSV Data to Fixed Width Format

... 8203 Context Menu

... 8214 Cursor Movement Commands

... 8235 Default Key Assignments (command order)

... 8396 Default Key Assignments (key order)

... 8547 Dropping Text Files onto Boxer

... 8548 Dropping Image Files onto Boxer

... 8559 File Associations

... 85710 HTML Color Code Popup Hints

... 85711 Insert Symbols

... 85812 Inserting Special Characters

... 85913 Installing or Reinstalling Boxer

... 86014 Intellimouse Support

... 86015 Macro Examples

... 88516 Macro Function Reference

... 91817 Macro Language Reference

... 93318 Main Menu

... 93419 Null Characters

... 93520 Portable Editing

... 93621 Power Columns

Boxer Text EditorXVI

Copyright © 1991-2010 by Boxer Software

... 93722 printf and sprintf Formatting

... 94123 Regular Expressions

... 94624 Restoring an Edit Session

... 94725 Send-To Menu

... 94726 Sizes and Limits

... 94927 Transferring Preferences

... 95128 Unicode Files

... 95329 Uninstalling Boxer

Part VII Glossary 953

... 9531 Glossary A-Z

... 9552 acronym

... 9553 binary

... 9554 binary file

... 9555 client area

... 9556 code page

... 9557 context menu

... 9568 data folder

... 9569 decimal

... 95610 file filter

... 95611 fixed width

... 95612 focus

... 95613 footer

... 95614 header

... 95615 header file

... 95616 hexadecimal

... 95717 hot letter

... 95718 landscape

... 95719 long filename

... 95720 maximal matching

... 95721 modal and non-modal

... 95722 octal

... 95723 portrait

... 95724 private clipboard format

... 95825 program folder

... 95826 proportionally spaced

... 95827 short filename

... 95828 shortcut key

... 95829 task bar

XVIIContents

XVII

Copyright © 1991-2010 by Boxer Software

... 95830 thumb and scroll box

... 95831 tool tip

... 95832 URL

... 95833 whitespace

... 95934 Windows Registry

... 95935 WYSIWYG

Part VIII Ordering Boxer 959

... 9591 Order Boxer

... 9622 Multi-User Licenses

... 9633 Upgrade Information

... 9644 Licensed User Benefits

... 9655 International Agents

Part IX Technical Support and Other Info 966

... 9661 Technical Support

... 9662 Software License - Evaluation Copies

... 9683 Software License - Licensed Copies

... 9704 Frequently Asked Questions

... 9715 Credits

Index 0

Boxer Text Editor18

Copyright © 1991-2010 by Boxer Software

1 Contents

For more information on Boxer please follow the links below:

Introduction
New Features in this Release

Ordering Boxer

Multi-User License Information
Upgrade Information
Licensed User Benefits

Technical Support
Frequently Asked Questions
Glossary
Credits

Copyright and Trademark
The Boxer Text Editor, Boxer Help text and all supporting utilities are Copyright ©
1991-2010 by Boxer Software, All Rights Reserved Worldwide. 'Boxer' is a trademark of
Boxer Software.

Introduction 19

Copyright © 1991-2010 by Boxer Software

2 Introduction

Thank you for selecting Boxer for your text editing needs. We've filled Boxer with
powerful text processing capabilities that will make your editing tasks go faster and
more smoothly. But we've also kept Boxer intuitive and easy-to-use so it can be used
by beginners and experts, writers and programmers, high school students and
scientists.

During the seventeen years we've been designing and selling our award-winning text
editors, we've come to understand intimately the needs of people who edit text. We
believe these are: speedy operation, a courteous and intuitive user interface, powerful
editing commands, extensive configurability, prompt technical support and impeccable
customer service. We've built Boxer--and our company--around all of these important
principles.

Thank you for your support!

3 New Features in Boxer 14

Version 14 adds some great new features to Boxer. The most important new features
are listed below. Visit our website for a more comprehensive list of the changes.

· Visual Wrap

http://www.boxersoftware.com/changes14.htm

Boxer Text Editor20

Copyright © 1991-2010 by Boxer Software

Visual Wrap is a passive display mode that allows text to be automatically wrapped to
the window width without introducing hard line enders into the file. This feature is
useful when editing files with very long lines which would otherwise extend off-screen
to the right, out of view. The Visual Wrap Options dialog provides access to options
related to the operation of Visual Wrap. Wrapping can be set to occur at the window
width, the Text Width, or at the Right Margin Rule. By default, Visual Wrap is
maintained when edits are made, although this can be optionally disabled. An option is
also provided for dealing with trailing spaces when Visual Wrap is first applied.

In Visual Wrap mode, the Line counter in the status bar switches to a Paragraph
counter, since a one-to-one relationship between screen lines and physical lines no
longer exists. Lines with a soft line ender are denoted by a trailing space character,
and a single left chevron (<) is displayed if Visible Spaces mode is active. Adding a
trailing space to a line converts a hard line ender to a soft line ender; removing the
trailing space converts a soft line ender to a hard line ender.

Additional commands have also been added in support of Visual Wrap. The Soften Line
Enders command can be applied to a text file which has unwanted line enders, thereby
making the text in the file "flowable" and eligible for Visual Wrap. The Harden Line
Enders command does the opposite: it converts soft line enders to hard line enders,
effectively "locking" the current on-screen formatting into the file. A new Go to
Paragraph command has been added to allow a jump to specified paragraph number.

New Features in Boxer 14 21

Copyright © 1991-2010 by Boxer Software

· XML Formatting

Two new commands have been added to the Tools menu: Format XML and Unformat
XML. These commands can be used to apply and remove formatting, respectively, from
XHTML and other XML-compliant text files. If you've ever opened an XML file and seen
one long, flowing line extend off the right edge of the screen, you'll appreciate this new
feature.

Format XML adds newlines and indentation intelligently to any XML-compliant file to
create a neatly formatted document. Options are provided to control the amount of
indent, whether to indent with spaces or tabs, when and whether text and tags should
be wrapped, when to suppress newlines, and other formatting nuances. If a range of
lines is selected, formatting or unformatting will be performed only on the selected
lines. Upon completion, a statistics dialog provides information to assist in locating
unmated or unclosed tags, or other data inconsistencies. A set of automation options
provides precise control over how/if/when XML files should be auto-formatted as they
are opened. The Unformat XML command can be used to convert a formatted
document to "flat" form, in case this is required for processing, to reduce file size, or for
other reasons.

Boxer Text Editor22

Copyright © 1991-2010 by Boxer Software

· User-defined Toolbar Icons

Using the Configure Toolbar dialog, it's now possible to assign new icons to any of the
toolbar buttons. New icons can be assigned to change the look of Boxer's toolbar, or to
provide distinct icon images for commands that would otherwise use the same icons
(Macros and User Lists are two such examples). User-defined image files can be either
icon (.ICO) or bitmap (.BMP) files. Two new icon sizes are also available: in addition to
the existing 16x16 and 32x32 options, 24x24 and 48x48 scaling options have been
added. A collection of 64 sample images is provided with the release, and users are
free to use icons from others sources as well, or to create their own.

· Windows 7 Compatibility

Boxer 14 has been tested and tuned to run under Windows 7, Microsoft's newest
operating system. Boxer runs under both the 32-bit and 64-bit versions of Windows 7.

· Efficient Line Number Display

Boxer will display its on-screen line numbers using the minimum number of columns
possible, expanding and contracting the line number margin automatically if the file's
line count grows or shrinks.

New Features in Boxer 14 23

Copyright © 1991-2010 by Boxer Software

· Move Line Up/Down

The Move Line Up and Move Line Down commands can be used to easily move items up
and down in an ordered list. These new commands appear near the bottom of the Edit
menu. Though simple in concept, you'll be surprised how much these commands can
speed common editing operations. (The Swap Lines command, which was nearly
identical in function to the new Move Line Down command, has been removed from the
menu, but remains available for use by shortcut key, or within macros.)

· Text Obfuscation

ROT5, ROT13, ROT18 and ROT47 conversion commands have been added to the Block|
Convert Other submenu. These commands provide a simple, reversible text obfuscation
scheme for use in non-critical encryption situations.

Line Spacing: this new command permits a selected range of lines, or the whole file,
to be converted to single-, double- or triple-spaced format.

Support for handling ANSI X12 files has been added. On the file open dialog, an
option has been added to instruct Boxer to recognize an end-of-record character, after
which a conventional line break will be added as the file is read. This function can also
be activated (for the next file named) by using the -E command line option flag. This
feature is useful for opening ANSI X12 files, and any other file format that uses a non-
standard record ender. By default, the inserted line breaks will be written to the file
when it is next saved. To override this behavior, use the File Properties dialog option to
remove line enders when saving.

The File Tab context menu has a new Open Containing Folder option that can be used
to open an Explorer window into the folder that contains the file being edited.

Boxer Text Editor24

Copyright © 1991-2010 by Boxer Software

A set of commands has been added that allow closed file tabs to be reopened more
easily. Right click on a file tab and choose "Undo Close Tab" to undo the most recent
file closure. Options are also provided to undo all closed tabs, to selectively reopen
closed tabs, or to clear the list of closed tabs. The last ten (10) closed file tabs are
recorded. Clicking the middle mouse button in an empty area of the file tab zone is
recognized as a shortcut gesture to undo the last closed file tab.

Boxer's file loading and saving has been enhanced so that it's now possible to create a
zero-length file, or a file with just a few characters and no trailing newline. In the
past, an empty line was assumed to always contain a line ender.

The Value at Cursor command now displays the Unicode code point for the character
at the cursor, as well as the numeric or named HTML entity for that character.

· Visit our website for a comprehensive list of changes.

4 Command Reference (in menu order)

4.1 File Menu

4.1.1 New

Menu: File > New

Default Shortcut Key: Ctrl+N

Macro function: New()

The New command is used to create a new file for editing. The first new file opened in
the edit session will be given the name untitled.001, and successive new files will

use correspondingly higher file extensions to ensure uniqueness of the filename.

When a new file is first saved with either the Save or Save As command, a dialog box
will appear so that a permanent name can be supplied for the file.

The size and position of the newly created window depends upon the nature of other
open windows within Boxer. If other editing windows are maximized, the new window
will also be created in maximized mode and will obscure the other windows below it.
Otherwise, the new window will be created in 'normal' mode, and its size and position
will be determined automatically by Windows.

Untitled files are not added to the Recent Files, and will not be reopened if an edit
session is later restored.

You can request that new windows always be created in maximized mode with an option
on the Configure | Preferences | Display options page. This option is titled
Auto-maximize new windows when created.

http://www.boxersoftware.com/changes14.htm

Command Reference (in menu order) 25

Copyright © 1991-2010 by Boxer Software

If the desktop area within Boxer's main window is double-clicked, an empty/new file
will be opened.

4.1.2 Picker

Menu: File > Picker

Default Shortcut Key: Alt+K

Macro function: FilePicker()

The File Picker command opens a dockable tool window alongside Boxer that can be
used to open files for editing. The File Picker can remain open while Boxer is in use,
making it easy to open new files for editing whenever the need arises. The treeview
interface can display files from either the local PC or from PCs on attached networks.
The File Picker also contains logical entries for "Desktop," "My Documents," and other
conceptual locations on the local PC.

To open a file, double click on its name, or select it and press Enter. To open multiple
files, select the files of interest and press Enter.

The right-click context menu contains options to open the selected file in its default
application, or with an application of your choice. Commands to Cut, Copy, Rename
and Delete files are also provided. Options are also provided to close the File Picker
automatically when a file is opened, and/or when Boxer itself is closed.

A list of recent directories from which files have been opened is maintained in the
Favorites list at the top of the File Picker window.

The Mask control permits the display of files to be filtered to show only a particular
class of files.

The column headers in the file display area permit the file listing to be sorted by
filename or file size.

By dragging the horizontal divider bar between the directory and file panes, you can
control how much space is allocated to each pane.

Boxer Text Editor26

Copyright © 1991-2010 by Boxer Software

4.1.3 Open

Menu: File > Open

Command Reference (in menu order) 27

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Ctrl+O

Macro function: Open()

The Open command is used to load one or more files for editing. By default, Boxer will
present a custom File Open dialog with extra features not found in the standard
Windows File Open dialog.

If you prefer to use the standard dialog, an option to do so can be found on the
Configure | Preferences File I/O dialog page.

Boxer Text Editor28

Copyright © 1991-2010 by Boxer Software

Standard Dialog or Custom Dialog

Opening a Single File
To select a single file for editing, click on the file's name within the display or type a
filename in the Filename edit box. Click Open or press Enter to complete the selection.

Opening Multiple Files
To select multiple files for editing, depress the Ctrl key while clicking on a filename to
add the new filename to the set of files to be opened. To select a series of adjacent files
for editing, click on the first file in the series, and then depress the Shift key while
clicking on the last file in the series.

Filtering Files
You can filter the files displayed by selecting a file filter from the drop-down list labeled
Files of type. The file types which appear in this dialog are user-definable via the
Configure | Preferences | File I/O options page. You can also filter the filenames
displayed by typing a wildcard file specification (such as m*.cpp or project.*) into

the Filename edit box.

Read-only Mode
To load a file for passive viewing, select the Open as read-only checkbox at the bottom
of the dialog. Boxer will then prevent changes from being made to the file(s) during
the edit session. This option can be used to protect against accidental changes to a file
whose content needs to be viewed, but must not be altered.

Renaming Files
To rename a file, single-click once to select the item. Single-click again on the filename
to place a text cursor into the filename. Type the new name for the file and press Enter
.

Command Reference (in menu order) 29

Copyright © 1991-2010 by Boxer Software

Deleting Files
To delete one or more files, first select the files to be deleted. Use Shift+Click to select
a range of files, and/or Ctrl+Click to select discontiguous files. When the files are
selected, press the Delete key to delete the files.

Important Note: the standard Windows dialog does not request confirmation
before deleting a file, but it does place the deleted file in the Windows Recycle Bin.
Boxer's custom dialog does require that file deletions be confirmed, but does not
place the deleted file(s) in the Recycle Bin.

Window Sizes
The size and position of the newly created window depends upon the nature of other
open windows within Boxer. If other editing windows are maximized, the new window
will also be created in maximized mode and will obscure the other windows below it.
Otherwise, the new window will be created in 'normal' mode, and its size and position
will be determined automatically by Windows.

You can request that new windows always be created in maximized mode with an option
on the Configure | Preferences | Display options page. This option is titled
Auto-maximize new windows when created.

If you would prefer that changes made to the current directory not be reflected in
future visits to the dialog, an option is available on the Configure | Preferences | File
I/O options page. The option is titled File I/O dialogs preserve current directory;
ignore prior travel.

Custom Dialog Features

The following features are available only with Boxer's custom File Open dialog

Resize Dialog
Boxer's File Open dialog is resizeable, and its size and position are remembered from
session to session.

Current Directory
Use this icon to make the selected directory the current working directory.

Jump to the directory of the current file
Use this icon to make the directory of the current file the current working directory.

List View or Details View
Use these icons to select whether files are displayed in list view (simple), or with full
details. Unlike the standard Windows dialog, the view mode is remembered from the
previous dialog session.

Details View with Grid Lines
Click the icon to the left of the Copy button to enable a display mode in which light grid
lines will by used to separate file data.

Copy Directory Listing
Use the Copy button to copy the entire directory listing to the current clipboard.

Boxer Text Editor30

Copyright © 1991-2010 by Boxer Software

Refresh Display
Click the Refresh button to refresh the file display. This option could be used if another
program or process has changed the file listing since the dialog was first opened.

Directory Count
A message at the top of the drive selection list shows the number of directories being
displayed in that list.

File Count
A message at the top of the filename display shows the number of files in the current
directory listing.

Selected File Count
A message at the top of the filename display shows the number of files currently
selected.

File Sorting

File information can be sorted by any field that appears at the top of the table:

Click twice on a given field to reverse the direction of the sort. The current sort mode
is displayed in a message at the top of the filename display. Unlike the standard
Windows dialog, the sort mode and direction are remembered from the previous dialog
session.

The Name heading also offers the ability to sort filenames by extension. Clicking
the Name heading in succession yields the following sort modes: down by name, up
by name, down by extension, up by extension.

You can change the width of any field by dragging the divider line between fields to
a new position.

When sorting by Type, the file entries will be sorted first by type and then by file
extension within the type.

Short Name Field
In addition to the standard Name, Size, Type, Modified and Attribute fields, Boxer's
custom dialog also provides a Short Name field that displays the equivalent short
filename for each file.

Favorite Directories
When files are opened for editing, the directory name is saved in the Favorites list. Use
the Favorites drop-down list to quickly select a directory from among those recently
used. Once a directory is selected its position in the list is elevated to position one.

Boxer will automatically add the directory of the current file to the Favorite
Directories list when the Open dialog is activated.

Command Reference (in menu order) 31

Copyright © 1991-2010 by Boxer Software

When an existing entry in the Favorites Directory is found not to exist it will be
automatically deleted from the list.

Filename Completion
Boxer's custom dialog supports filename completion. When typing a filepath or
filename in the Filename field, press the Tab key to begin cycling through those
directories or filenames that match your partial entry. When you see the directory
name you were typing appear, continue typing the next few letters of the next directory
name in the filepath. Press Tab to complete, as required. If you press accidentally
press Tab too many times, press Shift+Tab to cycle backwards to a previously displayed
name.

The function of the Tab key for Filename Completion can be disabled with the
checkbox entitled Allow Tab to expand partial filename or path. In this case, the
Tab key can again be used to move away from the Filename box.

List the files that match a wildcard specification
Use this option if you prefer that files matching a wildcard specification first be shown in
the file list, and not opened directly. With this option, typing *.XYZ and clicking Open

will cause the file list to be filtered to display only those files with a .XYZ extension.

Open the files that match a wildcard specification
Use this option if you prefer that files matching a wildcard specification be opened
directly. With this option, typing *.XYZ and clicking Open will cause all files with a

.XYZ extension to be opened for editing.

When entering a wildcard specification in the Filename box, the semi-colon (;) can

be used to separate multiple file patterns. For example, to display (or open,
depending on the above options) all files matching three different extensions, use
the following syntax: *.abc;*.def;*.ghi

Impose a fixed record length as the file is read
This option can be used to impose a fixed-length record format on the file selected for
opening. The record length is specified in the associated edit box. As the file is read,
line breaks will be inserted at column 'value'.

This option is useful for viewing or editing files that contain fixed-length records. When
the proper record size is entered, Boxer will display the file in a meaningful format, with
one record per line.

Note that if the file is saved, line enders will be added. The File | Properties dialog has
an option to request that line enders be removed when the file is saved.

The -F command line option flag can also be used to impose a fixed record length on
the file being opened.

Because this option is dangerous to use on files that do not contain fixed-length
records, the checkbox state and record length values are not recalled from the
previous dialog session. Rather, the checkbox always reverts to the safe, unchecked

Boxer Text Editor32

Copyright © 1991-2010 by Boxer Software

state when the dialog is opened.

Break at end-of-record character
his This option provides support for editing files that use an end-of-record character, such

as ANSI X12 files. When this option is active, Boxer will watch for the designated
end-of-record character as the file is read, after which a conventional line ender will be
added. By default, the inserted line enders will be written to the file when it is saved.
To override this behavior, use the File Properties dialog to request that line enders be
removed at File-Save time.

The -E command line option flag can also be used to activate this option for the
next-named file on the command line.

File Preview
The Preview button enables you to view the content of a file without actually opening
the file for editing. A pop-up window will appear that displays the opening content of
the file. From this view you can decide if the file in question is the one you would like
to open. The pop-up Preview window disappears automatically as soon as the mouse
cursor is moved significantly.

Binary files are not eligible for display with the Preview function.

Context Menu
Right-clicking on a selected file (or files) will present the File Open dialog's context
menu. The following commands are provided: Open, Preview, Select All, Copy, Rename
and Delete. The Rename and Delete commands provide an alternative method to
perform these functions, which are described in the section above. The Copy command
copies the selected file(s) to the Windows clipboard in a manner that allows them to be
pasted into Explorer, effecting a file copy. Other applications may also be able to
recognize the 'Explorer Copy' clipboard format and behave accordingly.

Notes

The directory list control used by the custom dialog (known to programmers as
TComboBox) does not show abstract entries such as the Desktop, Network
Neighborhood, Shared Drives, etc. TComboBox is limited to the display of physical
drives. All of the abstract entries have a corresponding location on the physical disk
drive, if you know where to look. If you would prefer to see the abstract entries,
you can revert to the standard File Open dialog using an option on the Configure |
Preferences File I/O dialog page.

4.1.4 Open Hex

Menu: File > Open Hex

Default Shortcut Key: Ctrl+Alt+O

Macro function: OpenHex()

The Open Hex command is used to open a file in hex mode for viewing or editing. After
selecting the file to be opened from the Open dialog, a new window is created and the

Command Reference (in menu order) 33

Copyright © 1991-2010 by Boxer Software

file is displayed within the window:

Files opened with Open Hex are displayed in a special format which has three sections.
At the left, in the line number zone, the byte offset into the file is shown in hexadecimal
format. In the center, sixteen data bytes are displayed as two-byte hexadecimal
values. At the far right the same sixteen bytes are displayed as ASCII characters,
except in cases where the character in question cannot be so represented.

The representation of the sixteen characters at the right depends upon whether an
ANSI or OEM screen font is in use. The screen font can be changed with the Screen
Font command.

To edit a value, position the text cursor over the two-digit hex value that is to be
changed and type a new hex value. Alternatively, the cursor can be placed in the ASCII
area at the right and characters can be keyed directly from the keyboard. The Tab key
can be used to jump between equivalent positions in the hex and ASCII display areas.

In most cases, binary files should not be shortened or lengthened. Doing so will often
invalidate the format of the file. If you are editing a file whose length can be safely
altered, and you wish to do so, the right-click hex mode context menu provides options
for inserting and deleting one or more bytes into/from the file.

When editing in hex mode, the Find and Replace commands will each present a special
dialog which is designed for use in hex mode. In hex mode, these commands will
permit strings to be entered as either a sequence two-digit hex codes, or as
conventional text strings.

Boxer will automatically use the Open Hex command when asked to open files with
the extension .COM, .EXE or .DLL. Files with these extensions are assumed to be

binary files, and cannot be edited by Boxer in conventional text mode.

Boxer Text Editor34

Copyright © 1991-2010 by Boxer Software

The View | Hex Ruler command displays a hex ruler across the top of the screen.

The Go to Byte Offset command is sensitive to Hex Mode, and can be used to jump
quickly to a specified offset within the file.

See the Open command for details on using Boxer's custom file open dialog and the
standard Windows file open dialog.

The maximum size for a file opened in hex mode is smaller than the usual file size
limit. The limit is approximately 478 MB. This limit derives from the fact that the
display of 16 characters in hex mode requires approximately 80 characters of
storage space.

4.1.5 FTP Open

Menu: File > FTP Open

Default Shortcut Key: Shift+Alt+O

Macro function: none

The FTP Open command provides the ability to open files on a remote computer system
for viewing and/or editing. A custom dialog is used to display the files on the remote
system and to provide access to the various FTP functions:

Command Reference (in menu order) 35

Copyright © 1991-2010 by Boxer Software

This help topic is not intended to be a primer on the subject of FTP (File Transfer
Protocol) communications. Some familiarity with FTP is assumed on the part of the
reader.

Edit Accounts Dialog

The first step to opening files on a remote system is to provide Boxer with the
information necessary to establish an FTP connection. The Edit Accounts button will
present the following dialog:

Boxer Text Editor36

Copyright © 1991-2010 by Boxer Software

Initially the dialog will not show any accounts in the Accounts listbox at the left. Click
New to create a new account. Use the Rename button to rename the new account as
desired.

The Copy button can be used to make a copy of the selected account. The Delete
button can be used to delete a selected account.

Host Domain / IP Address
This field holds the domain name or IP address of the site you wish to connect to.

User
This field holds the user name for the account you have at the remote site. Up to 40
characters are permitted.

Password
This field holds the password for the account you have at the remote site. For security
purposes, the field will be displayed with asterisks as it is typed. If the password field
is left blank, you will be prompted for the password at connect-time. Up to 40
characters are permitted

If the Save password option is selected, the password you enter will be stored in
the Windows registry along with Boxer's other settings. For security purposes, the
password entry will be encrypted in the registry.

Initial Directory
This field holds the name of the directory you would like to be positioned in on the

remote system.

Command Reference (in menu order) 37

Copyright © 1991-2010 by Boxer Software

If the system you connect to has several directories with different functions, you
might choose to create several accounts that differ only in the Initial Directory field.
This makes it easier to connect directly to the required directory location. The Copy
button makes it easy to create copies of existing accounts.

FTP port
This field holds the port number to be used for the FTP connection. Unless you have

reason to do otherwise, the value should remain at its default setting of 21.

Remark
This field can be used to add a comment about the FTP account being configured.

If you prefer that your password be visible, and security is not an issue, the Remark
field can be used to note the password.

Save Password
Use this option to dictate whether or not the Password field will be saved from session
to session. If this option is not selected, the value of the Password field will persist only
for the current session.

Anonymous Login
Use this option to configure for a system which permits Anonymous login. Selecting
this option causes the User field to be set to 'anonymous'. The Password field is not
required, but some systems suggest that your email address be supplied as the
password.

Passive Connection
Use this option to request that the FTP session use a passive connection. A passive
connection may be required by some firewalls.

ASCII transfers
Use this option to indicate that file transfers are to be performed in ASCII mode. If this
option is not selected transfers will be made in Binary mode.

Line ender conversion issues can arise when transferring files from Unix systems. If
the results you are seeing are unsatisfactory, try switching the sense of the ASCII
transfers option.

Advanced Settings
The advanced settings dialog tab is reserved for future use.

FTP Open Dialog

Account
The Account list provides a drop-down list of all defined accounts. Select the desired
account before clicking Connect.

Connect / Disconnect
The Connect button is used to initiate an FTP connection. Once the connection is
established, the label of this button changes to Disconnect.

Boxer Text Editor38

Copyright © 1991-2010 by Boxer Software

File List
The File List display shows the names of the files on the remote system. The format of
this list will depend on the remote system. Boxer does not coerce the data supplied by
the remote system into a new format. Likewise, the method used to indicate directory
names will vary from system to system. The most common formats use either a 'd' in
column one, or the string '<DIR>' somewhere near the filename.

File entries on the remote system which are 'links' or 'redirects' will not be shown in
the File List. The knowledge of where a link points to is maintained on the remote
system. Opening a link via FTP does not have the expected results.

Activity Log
At the lower left of the dialog is the Activity Log. This scrolling list maintains a record
of the functions that have been performed during the FTP session. The log can be
cleared with the Clear Log button that appears in the Extra Functions panel.

Show directories in list
Use this option to dictate whether or not directory names should appear in the File List.

Put directories at top of list
Use this option to dictate whether or not directory names should be placed at the top of
the File List. If directories are not placed at the top they will appear sorted among the
filename entries.

Show files starting with '.'
Use this option to control whether or not filenames that begin with a period should be
displayed in the File List. On some systems such files are used for configuration and
should not be disturbed.

Keep dialog open after transfer
Use this option to control whether the FTP dialog should remain open after the transfer
is completed. This may be desirable if multiple files are to be opened from different
remote directories.

Send NOOPs to keep session open
Use this option to request that an FTP session be kept open by sending NOOPs (NO
Operation commands) to the remote system. This option could be used to defeat a
system which enforced an automatic logout after a period of inactivity.

Some systems will not interpret NOOPs as legitimate FTP activity and will proceed
with automatic logout.

Extra Functions
The Extra Functions button will toggle on and off a panel that displays additional FTP
functions. The following functions are available:

Change To
Use this function to change to the selected directory.

The Enter and Right Arrow keys can also be used to descend into a selected
directory.

Command Reference (in menu order) 39

Copyright © 1991-2010 by Boxer Software

Up Dir
Use this function to change to the parent directory.

The Left Arrow can also be used to ascend to a parent directory.

Make Dir
Use this function to create a new directory.

Rename
Use this function to rename a remote file or directory.

Delete
Use this function to delete a remote file or directory. A confirmation will be required

before the deletion is performed.

Power Copy
The Power Copy function will copy all local files that are open in the editor to the
current remote directory. If any of these files have been modified they will be saved
automatically. A confirmation is required before the Power Copy operation is
performed.

This function can be very useful when editing local copies of website files.

Refresh View
Use this function to refresh the File List display. This might be required if you suspect
that another program or process has made changes to the remote system that affect
the file listing.

Clear Log
Use this function to clear the content of the Activity Log window.

Notes

Once a remote file is opened for editing, the name and path of that file will be displayed
in the title bar of its edit window. The FTP Filepath includes the information that Boxer
needs in order to be able to save the file, or to reopen it at a later time. An FTP
Filepath has the form:

ftp://(AccountName)/remote_dir/remote_filename.ext

Many different areas of Boxer have been enhanced to recognize and process FTP
filepaths:

File Save
When the Save command is issued an FTP connection to the remote system will be
established automatically so that the file can be saved.

Command Line
When an FTP Filepath appears on Boxer's command line it will automatically be opened
for editing when the edit session begins.

Boxer Text Editor40

Copyright © 1991-2010 by Boxer Software

Wildcard file specifications are not supported in this context.

Project Files
An FTP Filepath can be placed within a Project file so that it can be opened along with
other files named in the Project file.

Most Recently Used Files
When an FTP Filepath is recalled from the Recent Files list near the bottom of the File
menu, it will be opened automatically.

Restored Session
When a previous edit session is restored, any remote files that were open in that
session will be opened automatically.

Filename at Cursor
If an FTP Filepath is found beneath the text cursor, the Open Filename at Cursor
command will open the file automatically.

Spaces are permitted within an FTP account name, but you might wish to avoid
using them. Doing so will make it easier to use FTP Filepaths on the command line,
or with the Open Filename at Cursor command, since double quoting of the filepath
will not be required.

4.1.6 Open Other -> Header File

Menu: File > Open Other > Header File

Default Shortcut Key: Ctrl+H

Macro function: OpenHeaderFile()

The Open Header File command provides a method to quickly open the header file
which is associated with the file being edited. The most common use of this command
will be for programming, but the command's utility could be extended to any file
extension pairs which are related in the same way.

Example: while editing in the C++ file main.cpp, issuing the Open Header File

command will cause main.hpp to be loaded. Likewise, if main.hpp is being edited,

issuing the Open Header File command will cause main.cpp to be loaded. If the

associated file is already loaded within the editor, it simply becomes the active window.
Issuing the command repeatedly will allow you to toggle back and forth between the
two associated files.

Boxer comes with several header file associations pre-defined for common programming
languages. Additional header file extension pairs can be defined on the Configure |
Preferences | File I/O options page. The option is titled Open Header File extensions.

Command Reference (in menu order) 41

Copyright © 1991-2010 by Boxer Software

4.1.7 Open Other -> Filename at Cursor

Menu: File > Open Other > Filename at Cursor

Default Shortcut Key: Ctrl+L

Macro function: OpenFilenameAtCursor()

Open Filename at Cursor is a timesaving command which allows the filename beneath
the text cursor to be loaded for editing. Simply issue this command while the cursor is
atop a filename and the file will be loaded into a new editing window. If the file does
not exist, a new file with that name will be created in the current directory.

If selected text of a suitable size is present, the selected text will be used as the
filename to be opened. If the filename to be opened contains spaces, it must be
selected to ensure the full filename, including embedded spaces, will be used.

This command will be disabled when the text cursor is sitting upon a text string which
could not be a valid filename, such as a series of spaces.

If the filename at the cursor does not exist in the current working directory, but
does exist in the directory of the currently edited file, it will be opened from that
directory instead.

4.1.8 Open Other -> System Files

Menu: File > Open Other > System Files

Default Shortcut Key: none

Macro function: OpenSystemFiles()

The Open System Files command automatically loads a variety of operating system files
into the editor. On Windows 95, Windows 98 and Windows Me, the following files are
opened:

 autoexec.bat
 config.sys
 system.ini
 win.ini

On Windows NT, 2000 and XP, the following files are also opened:

 config.nt
 autoexec.nt

If the command is invoked while one or more system files are already open, an option is
provided to close these files.

It is advisable to exercise extreme caution when editing files of this nature, and to

Boxer Text Editor42

Copyright © 1991-2010 by Boxer Software

always keep a backup copy of the original file.

4.1.9 Open Other -> File in Browser

Menu: File > Open Other > File in Browser

Default Shortcut Key: Ctrl+B

Macro function: OpenFileInBrowser()

The Open File in Browser command will attempt to load and display the current file
within your Internet browser program. This command is useful for reviewing the effect
of changes made to HTML files, or any other files which are eligible for viewing within
an Internet browser..

For those comfortable with HTML coding, this command permits Boxer to be used as a
powerful HTML editor with true WYSIWYG display. The procedure to use is as follows:
make your HTML changes within Boxer, save the file, press Ctrl+B to activate the
browser window, and then click 'Reload' or 'Refresh' to load the latest changes from
disk. Once the browser has been opened you can continue to use Ctrl+B from within
Boxer to switch back to the browser window. Some users may find this method
preferable to using a dedicated HTML editor, since many of these editors lack a true
WYSIWYG display and/or comprehensive editing features.

Boxer decides whether a file is eligible for display within a browser by checking its list of
eligible file extensions. This list can be edited from the Configure | Preferences | File
I/O options page. The option is titled Open File in Browser extensions.

In order to launch your browser, Boxer relies upon the file associations which exist
within the operating system between the browser and its eligible file types. Most
browsers establish these file associations during their setup procedure. If you find
that certain file extensions do not result in your browser being launched, it is due to
the absence of the required file association(s) within the operating system, and not
due to any shortcoming in Boxer itself.

4.1.10 Open Other -> Email at Cursor

Menu: File > Open Other > Email at Cursor

Default Shortcut Key: Ctrl+E

Macro function: OpenEmailAtCursor()

The Open Email at Cursor command will attempt to launch your email program to send
a message to the email address beneath the text cursor. Your email program will
display the email address in its 'to' field and prompt for a subject. You can then
compose your message and send it in the usual way.

Command Reference (in menu order) 43

Copyright © 1991-2010 by Boxer Software

This command can also be invoked by double clicking with the mouse on an email
address which appears within text. The mouse cursor will change to the pointing hand
when atop an email address to indicate that the address has been recognized.

In order to launch your email program, Boxer relies upon the operating system
shell's ability to process a 'mailto' directive. When an email client program is
installed, it typically establishes itself as the program which is called by the shell to
process the mailto command. If you find that your active email program is not
launched by Boxer, or if some other inactive email program is launched instead, it's
probably because your active email program did not establish itself to be the
program that processes mailto commands. This situation cannot be remedied by
Boxer, and is not due to any shortcoming in Boxer. You might consult the
documentation of your email program, or contact its vendor.

4.1.11 Open Other -> URL at Cursor

Menu: File > Open Other > URL at Cursor

Default Shortcut Key: Ctrl+U

Macro function: OpenURLAtCursor()

The Open URL at Cursor command will attempt to launch your Internet browser to view
the URL address beneath the text cursor.

This command can also be invoked by double clicking with the mouse on a URL which
appears within text. The mouse cursor will change to the pointing hand when atop a
URL to indicate that the address has been recognized.

In order to launch your Internet browser, Boxer relies upon the operating system
shell's ability to open an Internet address. When an Internet browser is installed, it
typically establishes itself as the program which is called by the shell to open such
addresses. This is true of all common browsers you are likely to encounter. If you
find that your Internet browser is not launched by Boxer, or if some other inactive
browser is launched instead, it's because your active browser has not established
itself as the one that processes the 'open' request from the operating system shell
for Internet addresses. This situation should be rare, cannot be remedied by Boxer,
and is not due to any shortcomings in Boxer.

Boxer also supports opening local files with URLs of the form:

Boxer Text Editor44

Copyright © 1991-2010 by Boxer Software

file://c:\website\index.html

4.1.12 Open Other -> Program at Cursor

Menu: File > Open Other > Program at Cursor

Default Shortcut Key: none

Macro function: OpenProgramAtCursor()

The Open Program at Cursor command can be used to open the program or document
that appears at the text cursor. For example, if the filepath to a .PDF file appears at

the text cursor, this command will open that file in Acrobat Reader. If a .DOC file

appears at the cursor, the file will be opened in Microsoft Word.

This command relies on the underlying ability of the operating system to identify
and locate the program that is associated with a given file type. If a document does
not have an associated program, it cannot be opened. See File Associations for
more details.

4.1.13 Close

Menu: File > Close

Default Shortcut Key: Alt+X

Macro function: Close()

The Close command is used to close the file in the active editor window. If unsaved
changes have been made to the file, a dialog box will first appear to alert you to this
fact. You will then be able to choose whether to save the changes before closing, close
without saving, or cancel the Close operation altogether.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar, or on its File Tab.

A file can also be closed by clicking the 'X' box in the upper right corner of its window.

Command Reference (in menu order) 45

Copyright © 1991-2010 by Boxer Software

When a file's window is maximized, the 'X' box will be located at the far right of the
main menu bar.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

4.1.14 Close All

Menu: File > Close All

Default Shortcut Key: none

Macro function: CloseAll()

The Close All command is used to close all open files within the editor. If unsaved
changes have been made to any file, a dialog box will appear for each such file to alert
you to this fact. You will then be able to choose whether to save the changes before
closing, close without saving, or to cancel the Close All operation. If Close All is issued
when more than one file is modified, Yes-to-All and No-to-All buttons are provided to
save time:

You can tell quickly whether a file has unsaved changes by looking for an asterisk (*
) to the left of its name in the title bar, or on its File Tab.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

The File | Close All command is functionally equivalent to the Window | Close All
command, since each file resides in its own window.

4.1.15 Insert

Menu: File > Insert

Default Shortcut Key: Ctrl+I

Boxer Text Editor46

Copyright © 1991-2010 by Boxer Software

Macro function: InsertFile()

The File Insert command is used to insert (some may say 'import') the content of
another file at the current location of the text cursor. The file open dialog is presented
for selecting a file and, after its selection, the content of the file will be placed at the
cursor.

Any text file can be selected for insertion (subject to Sizes and Limits), even one which
is being edited in another editor window.

See the Open command for full details on using both the custom and standard Windows
File Open dialogs.

4.1.16 Reload

Menu: File > Reload

Default Shortcut Key: Shift+Ctrl+O

Macro function: ReloadFile()

The Reload command can be used to reload the current file from disk, thereby losing
any unsaved changes in the file. Because of the potential for losing changes
accidentally, a dialog box will appear to confirm your intention to reload.

Command Reference (in menu order) 47

Copyright © 1991-2010 by Boxer Software

The most common use for this command is to restart the editing of a file after having
made a large number of unwanted changes. The Undo command can be used to step
back through the changes made, but its limits can be exhausted if a large number of
changes are made. In that case, the Reload command must be used.

4.1.17 Save

Menu: File > Save

Default Shortcut Key: Ctrl+S

Macro function: Save()

The Save command is used to write the contents of the current file to disk. If the file
being edited is a new file with a temporary untitled name, the Save As command will be
performed automatically so that a name can be provided. The Save command will be
disabled when there are no changes in the current file that need to be saved.

If the Save command is issued while text is selected, a dialog box can appear to get
the name of the file to which the selected text should be saved. This option is off by
default, but can be enabled on the Configure | Preferences | File I/O options page.
The option is titled File Save performs Save Selection As, when text is selected. This
option page also contains other configuration options which relate to saving files.

4.1.18 Save All

Menu: File > Save All

Default Shortcut Key: Shift+Ctrl+S

Macro function: SaveAll()

The Save All command can be used to write the contents of all files with unsaved
changes to disk. If any of the files being edited are new files with a temporary untitled
name, the Save As command will be performed automatically so that a name can be
provided. The Save All command will be disabled when there are no changes in any
open files that need to be saved.

Boxer Text Editor48

Copyright © 1991-2010 by Boxer Software

4.1.19 Save As

Menu: File > Save As

Default Shortcut Key: F12

Macro function: SaveAs()

The Save As command is used to save the current file to disk using a new filename. A
standard Windows File Save dialog box will appear so that a new name can be specified.
The file will remain on disk under its old name (except when an untitled file is being
saved), and a copy of the file will be saved to the new name provided. Boxer will then
record the file's new name so that all future save operations are made to the new
name.

If you would like to change either the line ender style (PC, Macintosh, or Unix), or
the file encoding (ASCII, UTF-8, UTF-16), visit the File Properties dialog before using
the Save As command to save the file.

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

If the Save As command is used to save a file which is being viewed in read-only
Hex Mode, the hex view of the file--and not the file's true content--is what will be
saved to disk. If a file was opened for editing in hex mode, then Save As will create
a copy of the file's actual content.

Command Reference (in menu order) 49

Copyright © 1991-2010 by Boxer Software

4.1.20 FTP Save As

Menu: File > FTP Save As

Default Shortcut Key: Shift+Alt+F12

Macro function: none

The FTP Save As command is used to save the current file to a remote computer using
a new filename. The file will remain on disk under its old name (except when an
untitled file is being saved), and a copy of the file will be saved to the new name and
location provided. Boxer will then record the file's new name so that all future save
operations are made to the new name.

Boxer's FTP dialog will be used to initiate the connection to the remote computer. For
full details about this dialog please see the FTP Open command.

If you are editing a remote file and wish to save a copy locally, use the Save As
command.

4.1.21 Save a Copy As

Menu: File > Save a Copy As

Default Shortcut Key: none

Macro function: SaveACopyAs()

The Save a Copy As command is used to save the current file to disk under a new
filename. A standard File Save dialog box will appear so that a new name can be
specified. Unlike the Save As command, the editor does not record the new filename
for use by future save operations. This command can be useful for creating progressive
copies of a file during a long edit session so that a change history is created, or at
anytime when a copy might be useful.

Boxer Text Editor50

Copyright © 1991-2010 by Boxer Software

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

If the Save a Copy As command is used to save a file which is being viewed in
read-only Hex Mode, the hex view of the file--and not the file's true content--is what
will be saved to disk. If a file was opened for editing in hex mode, then Save a Copy
As will create a copy of the file's actual content.

4.1.22 File Properties

Menu: File > Properties

Default Shortcut Key: none

Macro function: FileProperties()

The File Properties command displays a dialog box containing information about the file
on disk which is associated with the editor's current file. The file's long and short
names, create/modify/access times, file size and file attributes are all displayed.
Because this command reports information about the current file's disk file, it will be
disabled when editing a file which has yet to be written to disk.

Command Reference (in menu order) 51

Copyright © 1991-2010 by Boxer Software

Line ender

PC
Use this option to save files with a PC style line ender (CR+LF).

Unix
Use this option to save files with a Unix style line ender (LF only).

Macintosh
Use this option to save files with a Macintosh style line ender (CR only).

UTF-8 line separator
Use this option to save files with a UTF-8 line separator. This option is only valid when
file encoding is set to Unicode UTF-8. Note that this line ender sequence uses three
bytes: hex 0xE2, 0x80 and 0xA8.

Boxer Text Editor52

Copyright © 1991-2010 by Boxer Software

UTF-16 line separator
Use this option to save files with a UTF-16 line separator (U+2028). This option is only
valid when file encoding is set to one of the Unicode UTF-16 encoding options.

Boxer can read files with any type of line ender, and it will make note of the line
ender as the file is read. The above options can be used to force a file to be written
with a specific line ender.

An option to set the line ender styles that is used for newly created files appears on
the Configure | Preferences | Editing 1 dialog page.

Remove all line enders when saving
This option can be used to ensure that no line enders are written to the output file
when it is saved. This option should not be used for conventional text files, as all
line-related formatting will be lost. Rather, this option can be useful when saving a file
that contains fixed length records, if its file format requires that line enders not appear
within the data stream. To load such a file for viewing or editing, Boxer's File Open
dialog contains an option to impose a fixed length record format onto the file being
opened. The -F command line option is also available for this purpose.

File encoding

ASCII
Use this option to save the current file with ASCII encoding. This is the standard file
format for most text files. No header characters or null characters will appear in the
output file.

UTF-8
Use this option to save the current file with UTF-8 encoding. This is a Unicode format
that uses between one and four bytes to encode each character unambiguously. Null
characters do not appear in UTF-8 encoded files.

Though it is not displayed on-screen in the editor, the three-byte UTF-8 Byte Order
Mark (0xEF 0xBB 0xBF) will be applied when a UTF-8 encoded file is saved to disk.
These bytes will appear as the first three bytes in the file.

UTF-16, little endian
Use this option to save the current file with UTF-16 little endian encoding. This is a
Unicode format that uses two bytes to encode each character that appears in the file.
The 'little endian' designator refers to the byte order in the output file. The little endian
version of UTF-16 is popular on Windows-based PCs. Null characters will almost
certainly appear in the output file.

Though it is not displayed on-screen in the editor, the UTF-16 Byte Order Mark
(U+FEFF) will be applied when a UTF-16 encoded file is saved to disk. In a UTF-16 little
endian file, the first two bytes will be 0xFF 0xFE.

UTF-16, big endian
Use this option to save the current file with UTF-16 big endian encoding. This is a
Unicode format that uses two characters to encode each character that appears in the
file. The 'big endian' designator refers to the byte order in the output file. Null

Command Reference (in menu order) 53

Copyright © 1991-2010 by Boxer Software

characters will almost certainly appear in the output file.

Though it is not displayed on-screen in the editor, the UTF-16 Byte Order Mark
(U+FEFF) will be applied when a UTF-16 encoded file is saved to disk. In a UTF-16 big
endian file, the first two bytes will be 0xFE 0xFF.

See the help topic Unicode Files for full information about Boxer's handling of
Unicode files.

The active code page can be viewed using the System Info option on Boxer's About
dialog.

An option to set the default line ender for newly created files appears on the
Configure | Preferences | Editing 1 dialog page

An option to set the file encoding format for newly created files appears on the
Configure | Preferences | Editing 1 dialog page

Statistics

The statistics section displays the date and time when the current file was
created/modified/accessed, as well the file size and file attributes. When a file attribute
is set, it is displayed in normal density; when not set, it is displayed as grayed or
disabled.

The Long Name and Short Name properties are displayed in read-only edit boxes to
permit the strings to be copied to the Windows clipboard, if desired.

4.1.23 Toggle Read-Only

Menu: File > Toggle Read-Only

Default Shortcut Key: None

Macro function: ToggleReadOnly()

The Toggle Read-Only command can be used to toggle the status of the current file
between read-only and writable. The current state is displayed in the status bar. 'WR'
denotes that the file is writable. 'RO' indicates that the file is read-only.

This command duplicates the functionality available by double-clicking within the status
bar in the read-only display panel, but it also provides the ability to assign that function
to a key sequence (via Configure | Keyboard), if desired.

Boxer Text Editor54

Copyright © 1991-2010 by Boxer Software

4.1.24 Page Setup

Menu: File > Page Setup

Default Shortcut Key: none

Macro function: PageSetup()

The Page Setup command provides access to a dialog box which controls the layout of
the printed page. The following controls are provided:

The settings made using the Page Setup command will be used for all print jobs that
are performed from within Boxer. In other words, the Page Setup settings belong to
the editor, and not to the current file. This method of operation differs from that of
a Page Setup command within a word processor. A word processor is able to save
its page settings within each document because the format of its documents is
proprietary. As a text editor Boxer must save its files in ASCII format, and
therefore cannot embed such information in the files it creates.

Command Reference (in menu order) 55

Copyright © 1991-2010 by Boxer Software

Margins

Inches
The margin values will be entered in inches. Use floating point values if needed (2.50),
but not fractional values (2-1/2).

Millimeters
The margin values will be entered in millimeters.

Points
The margin values will be entered in points. There are 72 points to the inch.

Printer Pixels
The margin values will be entered in printer pixels. The number of pixels (dots) per
inch will depend on the printer. Most printers are either 300 dpi or 600 dpi. This option
provides the finest control over margin sizes.

Character width or height
The margin values are related to the width or height of a printed character. The Top
and Bottom margin values will dictate the number of lines of margin. The Left and
Right margin values will dictate the number of character widths of margin.

Margin values can be no smaller than the printer's non-printable zone, which is the
area at each edge of the paper on which the printer is physically incapable of
printing. Boxer computes this value automatically, so you do not need to account
for it when specifying margin values.

Top
Use this option to specify the distance from the top edge of the printed page to the
header line, or to top of the body text when a header line is not used.

Bottom
Use this option to specify the distance from the bottom edge of the printed page to the
footer line, or to the bottom of the body text when a footer line is not used.

Left
Use this option to specify the distance from the left edge of the paper to the beginning
of the body text, or line numbers (if applicable).

Right
Use this option to specify the distance from the right edge of the paper to the right
edge of the body text. Depending on the state of the Wrap long lines to next line
checkbox (see below), long lines will either be wrapped to the next line or truncated.

Changing the right margin value does not influence the wrap column of
preformatted text as might occur within a Word Processor. Because Boxer is a Text
Editor, not a Word Processor, the user alone controls hard line enders, and these are
never re-wrapped without your knowledge. It may be necessary to experiment with
different Printer Font sizes and/or different Text Width values to achieve optimum
results on the printed page. The Print Preview command will be useful in this

Boxer Text Editor56

Copyright © 1991-2010 by Boxer Software

regard, as it enables you to preview a print job on-screen without sending it to the
printer.

Line Spacing

Select from Single, Double or Triple. Double and triple might be used when
submitting a document which will be marked up by a teacher, for example.

Options

Display line numbers at left edge
If checked, line numbers will be applied at the left edge of the printed page. Overflow
lines will be marked with a '+', and will therefore not alter the actual line count
unnaturally.

Print visible spaces/tabs/newlines
If checked, Spaces, Tabs and Newline characters will be appear on the printed page as
visible characters, using the same characters as have been configured for the Visible
Spaces command.

The symbols which are used to represent Spaces, Tabs and Newlines are
user-configurable. These can be set using options on the Configure | Preferences |
Display options page. Separate options are provided for use with both ANSI and OEM
printer fonts.

Skip page number on first page
If this option is selected, the page number will not be printed on the first page.

Wrap long lines to the next line
If checked, long lines will be wrapped to the next line rather than being truncated.
Using a smaller Printer Font is one way to cure overflow lines. Another is to Reformat
the document using a narrower Text Width.

Header

Display header on printed page
When checked, the related header controls become active and a header line will appear
on all printed pages.

Skip header on first page
If checked, the header will not be printed on the first page.

Draw a line below the header
Use this option to cause a thin solid line to appear just the below the line of header
text.

Number of blank lines below header
This option controls the number of lines of spacing between the header line and the top
of the body text.

Left / Center / Right
These fields allow the text that is to appear in each header zone to be specified. You

Command Reference (in menu order) 57

Copyright © 1991-2010 by Boxer Software

may enter any text you like or use one or more of several pre-defined substitution
sequences to insert a page number, filename, time, date, etc. Clicking the button to
the right of each field displays the available sequences:

Footer

Display footer on printed page
When checked, the related footer controls become active and a footer line will appear
on all printed pages.

Skip footer on first page
If checked, the footer will not be printed on the first page.

Draw a line above the footer
Use this option to cause a thin solid line to appear just above the line of footer text.

Number of blank lines above footer
This option controls the number of lines of spacing between the footer line and the
bottom of the body text.

In the evaluation version of Boxer, a 'watermark' will appear on all printed pages
between the footer line and the bottom of the body text. This line serves as both a
reminder and an encouragement to order a fully licensed copy. This reminder line is
of course not present in the fully licensed version of Boxer.

Left / Center / Right
These fields allow the text which is to appear in each footer zone to be specified. You
may enter any text you like or use one or more of several pre-defined substitution
sequences to insert a page number, filename, time, date, etc. Click the button to the
right of each field to select from the list of available sequences.

Boxer Text Editor58

Copyright © 1991-2010 by Boxer Software

4.1.25 Print Setup

Menu: File > Print Setup

Default Shortcut Key: none

Macro function: PrintSetup()

The Print Setup command provides access to the standard Windows print setup dialog
which allows the current printer to be selected. You can also select paper size, paper
orientation (portrait or landscape), and other options which may vary from printer to
printer.

4.1.26 Print Preview

Menu: File > Print Preview > Normal / Color Syntax / Mono Syntax

Default Shortcut Key: none

Macro functions: PrintPreview, PrintPreviewMonochrome, PrintPreviewColor

The Print Preview command provides a means of viewing a print job on-screen before it
is sent to the printer. The print document will be shown in a window that has controls
for moving quickly to any page within the document. The PgUp and PgDn keys can also
be used to page through the document. You can click with the left mouse in the turned
page corner to advance to the next page; clicking with the right mouse button will
move backward to the previous page.

Command Reference (in menu order) 59

Copyright © 1991-2010 by Boxer Software

The Print Preview form has buttons to access the Printer Font, Page Setup, Print Setup
and Print commands directly from Print Preview mode. This makes it easy to see the
effect of a font face or size change, or to view the result of changing margins, paper
orientation, header and footer text, line spacing, line numbering or line wrapping.

Print Preview can be performed in any of three modes:

Normal
The preview is shown without the application of syntax highlighting coloration.

Monochrome Syntax
The preview is shown with monochrome syntax highlighting applied. Syntax elements
will be displayed in bold, italic and/or underlined font styles in accordance with the
current settings.

Color Syntax
The preview is shown with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

The Monochrome Syntax and Color Syntax preview modes are disabled unless the
file being edited is a file type for which Syntax Highlighting information is defined.

The color and font style settings for Monochrome Syntax and Color Syntax are
accessed from the Configure | Colors dialog by selecting the appropriate mode from
the drop-down list at the upper left.

Because of the difference in resolution between the printer and the screen, the
screen can never present a perfect image of the printed page. Under some
circumstances, with certain font sizes, you may see imperfect line or character
spacing or other small inaccuracies. It should not be assumed that the printed page
will have the same inaccuracies. Print Preview can be expected to accurately show
the layout of the page, page breaks, positioning, etc.

4.1.27 Print

Menu: File > Print > Print Normal / Print Color Syntax / Print Mono Syntax

Default Shortcut Key: Ctrl+P (Print Normal)

Macro functions: Print / PrintColor / PrintMonochrome

The Print command is used to send the current file to the printer. The layout of the
printed page will be determined by the current settings within the Page Setup dialog.
You may wish to use Print Preview to display the print job on-screen before sending it
to the printer.

Boxer Text Editor60

Copyright © 1991-2010 by Boxer Software

Printing can be performed in any of three modes:

Normal
The file is printed without applying syntax highlighting coloration.

Color Syntax
The file is printed with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

Monochrome Syntax
The file is printed with monochrome syntax highlighting applied. Syntax elements will
be displayed in bold, italic and/or underlined font styles in accordance with the current
settings.

The Monochrome Syntax and Color Syntax printing modes will be disabled when the
file being edited is a file type for which Syntax Highlighting information is not
available.

The standard Windows print dialog is presented before printing begins:

From here you can select the range of pages to be printed, and the number of copies to
be printed. If text has been selected, you will be able to choose a radio button which
dictates that only the selected text is to be printed. See the note below regarding
printing selections of program source code.

Boxer will automatically convert any Tabs within the text being printed to Spaces. This

Command Reference (in menu order) 61

Copyright © 1991-2010 by Boxer Software

ensures that the Tab Display Size used by Boxer does not conflict with that of the
printer.

The color/font settings for Monochrome Syntax Print and Color Syntax Print are
accessed from the Configure | Colors dialog by selecting the appropriate mode from the
drop-down list at the upper left.

When printing selected text from program source code using either Monochrome or
Color Syntax Print mode, improper highlighting can occur if the starting or ending
points of the selection fall in the middle of a syntax element, or if the starting line of
the selection falls within a multi-line comment block. Likewise, printing a columnar
selection is likely to result in improper syntax highlighting. For best results, choose
the selected area logically so that its start and end points occur at natural break
points in the code.

Strictly speaking, the use of Color Syntax Printing requires that a color printer be
installed and attached. Some users may wish to use the Print to File option
available from the Print dialog to save a print image on disk at one PC for later
printing on another PC with a color printer. For this reason the Print Color Syntax
command is not disabled when the PC is found to lack a color printer. Users will
need to be careful when transporting a printer image file in this way, because it may
not be compatible with the destination printer.

A formfeed character can be placed in column one--or in the last position on a
line--to indicate that a new page should begin at that point. The footer of the
page--if one has been defined--will be printed and the page will eject. A formfeed in
any other column will be ignored by Boxer's print routine.

4.1.28 Print All

Menu: File > Print > Print All Normal / Print All Color Syntax / Print All Mono Syntax

Default Shortcut Key: none

Macro functions: PrintAll / PrintAllColor / PrintAllMonochrome

The Print All command is used to send all files currently being edited to the printer.
The layout of the printed page will be determined by the current settings within the
Page Setup dialog. You may wish to use Print Preview to display the print jobs
on-screen before sending it to the printer.

Printing can be performed in any of three modes:

Normal
The file is printed without applying syntax highlighting coloration.

Color Syntax
The file is printed with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

Boxer Text Editor62

Copyright © 1991-2010 by Boxer Software

Monochrome Syntax
The file is printed with monochrome syntax highlighting applied. Syntax elements will
be displayed in bold, italic and/or underlined font styles in accordance with the current
settings.

 The Monochrome Syntax and Color Syntax printing modes will be disabled when the
file being edited is a file type for which Syntax Highlighting information is not available.

The standard Windows print dialog is presented before printing begins:

From here you can select the range of pages to be printed, and the number of copies to
be printed. If text has been selected, you will be able to choose a radio button which
dictates that only the selected text is to be printed. See the note below regarding
printing selections of program source code.

Boxer will automatically convert any Tabs within the text being printed to Spaces. This
ensures that the Tab Display Size used by Boxer does not conflict with that of the
printer.

The color/font settings for Monochrome Syntax Print and Color Syntax Print are
accessed from the Configure | Colors dialog by selecting the appropriate mode from the
drop-down list at the upper left.

When printing selected text from program source code using either Monochrome or
Color Syntax Print mode, improper highlighting can occur if the starting or ending
points of the selection fall in the middle of a syntax element, or if the starting line of
the selection falls within a multi-line comment block. Likewise, printing a columnar

Command Reference (in menu order) 63

Copyright © 1991-2010 by Boxer Software

selection is likely to result in improper syntax highlighting. For best results, choose
the selected area logically so that its start and end points occur at natural break
points in the code.

Strictly speaking, the use of Color Syntax Printing requires that a color printer be
installed and attached. Some users may wish to use the Print to File option
available from the Print dialog to save a print image on disk at one PC for later
printing on another PC with a color printer. For this reason the Print Color Syntax
command is not disabled when the PC is found to lack a color printer. Users will
need to be careful when transporting a printer image file in this way, because it may
not be compatible with the destination printer.

A formfeed character can be placed in column one--or in the last position on a
line--to indicate that a new page should begin at that point. The footer of the
page--if one has been defined--will be printed and the page will eject. A formfeed in
any other column will be ignored by Boxer's print routine.

4.1.29 Recent Files

Menu: File

Default Shortcut Key: not applicable

Macro function: OpenRecentFile()

The Recent Files list appears near the bottom of the File menu, above the Exit
command. Each time a file is opened for editing, its name is added to the list. If
necessary, the eldest entry is bumped from the list. This list makes it easy to recall
files which were recently viewed or edited without the need to use the Open command,
as is typically done. The filenames are displayed with a 'hot' number to their left, so
that Alt+F, F, followed by the number, will load the named file.

The number of files displayed in the list can be controlled on the Configure |
Preferences | File I/O options page. The option is named Number of recent files on the
File menu.

Long filenames will be shortened for display if the relevant option on the Configure |
Preferences | Display options page is checked.

Boxer Text Editor64

Copyright © 1991-2010 by Boxer Software

4.1.30 Clear Recent Files List

Menu: File > Clear Recent Files List

Default Shortcut Key: None

Macro function: ClearRecentFilesList()

Use this command to clear the record of recently accessed files from the Recent Files
submenu.

4.1.31 Exit

Menu: File > Exit

Default Shortcut Key: Alt+F4

Macro function: Exit()

The Exit command is used to close Boxer and end your editing session. If unsaved
changes have been made to any file a dialog box will appear for each such file to alert
you to this condition. You will then be able to choose whether to save the changes
before exiting, exit without saving, or cancel the Exit request altogether.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar, or on its File Tab.

Boxer has an option to warn on exit if the size of the text on the clipboard exceeds a
user-defined threshold. This option can be found on the Configure | Preferences |
Messages dialog.

4.2 Edit Menu

4.2.1 Undo

Menu: Edit > Undo

Default Shortcut Key: Ctrl+Z

Macro function: Undo()

The Undo command can be used to reverse the effect of the most recent change to the
current file. Successive Undo commands will have the effect of stepping back in time,
with each command undoing the previous change, until the limits of Undo become
exhausted. If a change is undone which you'd like to get back, the Redo command can
be used to 'undo undo'.

By default, cursor motion changes will also be undone. For example, if you're editing

Command Reference (in menu order) 65

Copyright © 1991-2010 by Boxer Software

mid-file and then jump to start of file to check something, Undo can be used to return
you to your previous location. If you prefer that cursor motion commands not be stored
for Undo, uncheck the relevant option on the Configure | Preferences | Editing 1 dialog
page.

The Undo command does not affect the content of the current clipboard.

The size of the Undo buffer (in bytes) can be controlled on the Configure | Preferences |
Editing 1 options page. The option is titled Undo buffer size. Values between 2048 and
65535 may be entered. The default value is 65535, which is also the maximum. There
is little reason to select smaller values, as the memory cost is small compared to the
utility that Undo provides.

Undo information is stored separately for each file, so there is no chance that excessive
editing within one file can exhaust the undo capacity in another file.

An option is also provided to control whether or not Undo is allowed after the Save
command. This option is titled Allow Undo after File Save

4.2.2 Undo All

Menu: Edit > Undo All

Default Shortcut Key: none

Macro function: UndoAll()

The Undo All command can be used to reverse the effect of all changes for which undo
information is available. Unless you feel sure about the number of changes which have
been recorded by Undo, it is often safer to use the Undo command to step singly
through the changes so that their effect can be seen on-screen before proceeding.
Should the Undo All command go 'too far', the Redo All command can be used to
reverse its effect, or the Redo command can be used to restore the changes one at a
time.

4.2.3 Redo

Menu: Edit > Redo

Default Shortcut Key: Ctrl+Y

Macro function: Redo()

The Redo command can be used to reverse the effect of the most recent Undo
command. For example, while issuing a series of Undo commands to reverse unwanted
changes, you suddenly see that the last Undo went too far. Issuing Redo will undo the
last Undo. Undo and Redo are opposites.

Undo cannot be undone after additional changes are made; Redo must be issued before

Boxer Text Editor66

Copyright © 1991-2010 by Boxer Software

other changes are made.

The Redo command is disabled until at least one Undo command has been performed.

4.2.4 Redo All

Menu: Edit > Redo All

Default Shortcut Key: none

Macro function: RedoAll()

The Redo All command can be used to undo the effect of all Undo commands which
have been issued since the last change was made. Unless you feel sure about the
number of undos which have been recorded by Redo, it is often safer to use the Redo
command to step singly through the changes so that their effect can be seen on-screen
before proceeding.

4.2.5 Clear Undo

Menu: Edit > Clear Undo

Default Shortcut Key: none

Macro function: ClearUndo()

The Clear Undo command can be used to clear the record of changes which are used by
the Undo and Redo commands. After issuing this command, the record of changes for
the current file is erased, and the Undo and Redo commands become disabled until
additional changes are made.

4.2.6 Cut

Menu: Edit > Cut

Default Shortcut Key: Ctrl+X

Macro function: Cut()

The Cut command removes the selected text from the current file and places it on the
current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Cut command will operate on the current line. This behavior
can be controlled on the Configure | Preferences | Editing 1 options page. The option is
titled Cut/Copy/Append commands use current line when no text is selected.

Command Reference (in menu order) 67

Copyright © 1991-2010 by Boxer Software

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

When operating in Typeover mode on a columnar selection, the Cut command will fill
the selected area with Spaces without closing up the rectangle occupied by the text.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

4.2.7 Copy

Menu: Edit > Copy

Default Shortcut Key: Ctrl+C

Macro function: Copy()

The Copy command copies the selected text in the current file onto the current
clipboard. The current clipboard might be the Windows clipboard or one of Boxer's
eight internal clipboards. See the Edit | Set Clipboard command for details on changing
the current clipboard.

If text is not selected, the Copy command will operate on the current line. This
behavior can be controlled on the Configure | Preferences | Editing 1 options page. The
option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format

Boxer Text Editor68

Copyright © 1991-2010 by Boxer Software

to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

4.2.8 Append

Menu: Edit > Append

Default Shortcut Key: Shift+Ctrl+C

Macro function: Append()

The Append command copies the selected text from the current file and adds it to the
current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Append command will operate on the current line. This
behavior can be controlled on the Configure | Preferences | Editing 1 options page. The
option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

Text cannot be appended to a clipboard if the selection type (stream or columnar)
differs from the type of the text which is already present on the clipboard.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
allows a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

4.2.9 Cut Append

Menu: Edit > Cut Append

Command Reference (in menu order) 69

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Shift+Ctrl+X

Macro function: CutAppend()

The Cut Append command removes the selected text from the current file and adds it to
the current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Cut Append command will operate on the current line. This
behavior can be controlled on the Configure | Preferences | Editing 1 options page. The
option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

When operating in Typeover mode on a columnar selection, the Cut Append command
will fill the selected area with Spaces without closing up the rectangle occupied by the
text.

Text cannot be appended to a clipboard if the selection type (stream or columnar)
differs from the type of the text which is already present on the clipboard.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

4.2.10 Paste

Menu: Edit > Paste

Default Shortcut Key: Ctrl+V

Macro function: Paste()

Boxer Text Editor70

Copyright © 1991-2010 by Boxer Software

The Paste command inserts the text from the current clipboard at the location of the
text cursor in the current file. The current clipboard might be the Windows clipboard or
one of Boxer's eight internal clipboards. See the Edit | Set Clipboard command for
details on changing the current clipboard.

If stream text (Edit | Select Stream) is being pasted, the clipboard text is inserted as if
it had been typed from the keyboard. That is, the character at the text cursor is
pushed along as far as is needed to accommodate the new text.

If columnar text (Edit | Select Columnar) is being pasted, the method of insertion is
sensitive to the current edit mode. In Insert mode text will be pushed right to
accommodate the size of the rectangular block being inserted. In Typeover mode the
clipboard text will overwrite any text which may exist in the destination rectangle.

If an entire line has been placed on the clipboard by using the Copy or Cut command
without first selecting text, the text cursor will be positioned to the start of line before
the text is inserted.

The placement of the text cursor after a Paste operation can be controlled with an
option on the Configure | Preferences | Editing 1 options page. The option is titled Stay
at insertion point when Pasting.

If the Paste command is issued when no files are open, and when text is present on
the active clipboard, a new file will be created automatically and the clipboard text
will be pasted into that file.

When the Paste command is issued repeatedly to paste the same clipboard content,
the status line will report a count of the number of times that the content has been
pasted.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

4.2.11 Paste As

Menu: Edit > Paste As

Default Shortcut Key: Shift+Ctrl+V

Macro function: PasteAs()

The Paste As command allows the content of the Windows clipboard to be viewed in
various formats, and with various viewers. This makes it possible to Paste text into
Boxer in formats other than normal text. After selecting the desired format, simply
click the Paste button.

Command Reference (in menu order) 71

Copyright © 1991-2010 by Boxer Software

Background: the Windows clipboard is capable of holding multiple pieces of data
simultaneously. Sometimes this capability is exploited so that different versions of the
same data can be made available. In other cases, different formats will hold more
descriptive copies of the same data. For example, when you copy text from a web page
that is being displayed in Internet Explorer, the data will be placed on the clipboard in
several different formats. These formats are HTML Format, Rich Text Format (RTF),
ANSI Text and OEM Text. When another application pastes that data from the
clipboard, it chooses the format that is most meaningful to that application. Boxer's
Paste command would use the ANSI Text format. This is where the Paste As command
becomes useful. There might be times when you would prefer that Boxer be able to
paste the clipboard data in HTML format, so that HTML formatting codes and hyperlinks
are not lost. For some users, having access to the data in RTF format might prove
useful. The Paste As command allows all available formats to be viewed so that the
most useful format can be used.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

4.2.12 Delete

Menu: Edit > Delete

Default Shortcut Key: Del

Boxer Text Editor72

Copyright © 1991-2010 by Boxer Software

Macro function: Delete()

The Delete command deletes the selected text from the current file. If text is not
selected, the character at the text cursor is deleted.

When operating in Typeover mode on a columnar selection, the Delete command will fill
the selected area with Spaces without closing up the rectangle occupied by the text.

4.2.13 Select All Text

Menu: Edit > Select All Text

Default Shortcut Key: Ctrl+A

Macro function: SelectAllText()

The Select All Text command can be used to quickly select all text within the current
file. The selected text can then be operated upon in all the ways in which manually
selected text might be manipulated.

If the default selection mode is columnar (Edit | Select Columnar), the selection
mode must be changed to stream mode (Edit | Select Stream) in order to perform
the Select All Text command.

4.2.14 Copy Filename

Menu: Edit > Copy Filename

Default Shortcut Key: none

Macro function: CopyFilename()

The Copy Filename command copies the full filepath of the current window to the
current clipboard.

To insert the filepath of the current file into the edited text, use the Insert Filename
command.

This command can be useful when supplying the name of an edited file to an email
program for attachment to a message.

4.2.15 Paste Clipboard

Menu: Edit > Paste Clipboard > Clipboard n

Default Shortcut Key: Shift+Alt+n

Macro function: PasteClipboard()

Command Reference (in menu order) 73

Copyright © 1991-2010 by Boxer Software

The Paste Clipboard commands permit the content of any clipboard to be inserted into
the text file directly, without the need to first select that clipboard with the Set
Clipboard command before using Paste.

The content of Boxer's internal clipboards is saved from session to session (subject
to a limit; see Sizes and Limits), ensuring that their content is always available.
Since the Paste Clipboard commands allow pasting from any clipboard with a single
key sequence, the internal clipboards can be the ideal place to store commonly used
text blocks.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

4.2.16 Set Clipboard

Menu: Edit > Set Clipboard > Clipboard n

Default Shortcut Key: none

Macro function: SetClipboard()

The Set Clipboard command is used to set the active clipboard. The active clipboard
can be either the Windows clipboard or one of Boxer's eight internal (private)
clipboards. Text which is placed on the Windows clipboard will be accessible by other
applications. Likewise, text placed on the Windows clipboard by other applications is
available to Boxer whenever the active clipboard is the Windows clipboard. Text that is
placed on any of Boxer's internal clipboards is not available to other applications.

The content of each clipboard is displayed in a popup window as the menu cursor is
moved across the clipboard's menu entry. This makes it easy to check what's on a
clipboard without actually pasting the content into a file.

The content of Boxer's internal clipboards will be saved at the end of an edit session, as
long as the length of the text on the clipboard is 2,048 characters or less. Because the
content of the internal clipboards persists from session to session, and cannot be
changed by other applications, these clipboards can be useful for storing frequently
used text blocks for insertion into your files. The Edit Clipboard command might be
used to create these text blocks and maintain them.

The content of a single clipboard can be cleared with the Clear Clipboard command.
The content of all clipboards can be cleared with the Clear All Clipboards command.

When the content of a clipboard is displayed in a popup window, the text is

Boxer Text Editor74

Copyright © 1991-2010 by Boxer Software

displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

4.2.17 Set Clipboard -> Previous

Menu: Edit > Set Clipboard > Previous

Default Shortcut Key: none

Macro function: SetClipboardPrevious()

This command can be used to set the active clipboard to be the previous clipboard. For
example, if clipboard 3 is active, issuing this command will make clipboard 2 the active
clipboard. Clipboard 8 is considered the previous clipboard to the Windows clipboard.

4.2.18 Set Clipboard -> Next

Menu: Edit > Set Clipboard > Next

Default Shortcut Key: none

Macro function: SetClipboardNext()

This command can be used to set the active clipboard to be the next clipboard. For
example, if clipboard 3 is active, issuing this command will make clipboard 4 the active
clipboard. The Windows clipboard is considered the next clipboard to the clipboard 8.

4.2.19 Edit Clipboard

Menu: Edit > Edit Clipboard

Default Shortcut Key: none

Macro function: EditClipboard()

The Edit Clipboard command can be used to edit the content of the clipboard selected.
The content of the clipboard is placed into an editing window and can be edited in all
the same ways a file may be edited. When the text in the window is saved, it is written
back to the clipboard. The Windows clipboard and any of Boxer's internal clipboards can
be edited. The Windows clipboard is not eligible for editing if it contains non-text data.

The content of each clipboard is displayed in a popup window as the menu cursor is
moved across the clipboard's menu entry. This makes it easy to check what's on a

Command Reference (in menu order) 75

Copyright © 1991-2010 by Boxer Software

clipboard without pasting the content into a file or opening it for editing.

The content of Boxer's internal clipboards will be saved at the end of an edit session, as
long as the length of the text on the clipboard is 2,048 characters or less. Because the
content of the internal clipboards persists from session to session, and cannot be
changed by other applications, these clipboards can be useful for storing frequently
used text blocks for insertion into your files. The Edit Clipboard command might be
used to create these text blocks and maintain them.

The content of a clipboard can be cleared with the Clear Clipboard command. The
content of all clipboards can be cleared with the Clear All Clipboards command.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

4.2.20 Clear Clipboard

Menu: Edit > Clear Clipboard > Clipboard n

Default Shortcut Key: none

Macro function: ClearClipboard()

The Clear Clipboard command can be used to clear (erase) the content of the clipboard
selected. The content of each clipboard is displayed in a popup window as the menu
cursor is moved across the clipboard's menu entry. This makes it easy to check what's
on a clipboard before deciding whether to clear it.

The effect of the Clear Clipboard command cannot be undone with Undo, so use this
command carefully.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

The Clear Windows Clipboard command will remain enabled even when the Windows
Clipboard contains non-text data. This allows the content of the clipboard to be
cleared by Boxer, in case this operation is desired.

Boxer Text Editor76

Copyright © 1991-2010 by Boxer Software

4.2.21 Clear Clipboard -> All Clipboards

Menu: Edit > Clear Clipboard > All Clipboards

Default Shortcut Key: none

Macro function: ClearAllClipboards()

The Clear All Clipboards command can be used to clear (erase) the content of all
clipboards. The Windows clipboard and the eight internal clipboards will all be affected.

The effect of the Clear All Clipboards command cannot be undone with Undo, so use this
command carefully.

4.2.22 Insert -> Character(s)

Menu: Edit > Insert > Character(s)

Default Shortcut Key: none

Macro function: InsertCharacter()

The Insert Character(s) command can be used to insert one or more characters by
specifying their numeric values. The values to be entered are typed into a popup dialog
box. This command is useful for entering characters which are not readily typed from
the keyboard, such as those values below the Space (character value 32), and those
above 127.

The ANSI Chart and OEM Chart can also be used to insert non-standard characters into
a file. After locating the desired character in the chart, simply press Enter or double
click on the selected entry.

When the need to insert a special character or symbol arises frequently, consider using

Command Reference (in menu order) 77

Copyright © 1991-2010 by Boxer Software

the Insert Symbols feature rather than the Insert Character command. The Insert
Symbols feature permits a defined character to be entered using a single keystroke.

For additional information, see the Inserting Special Characters topic.

Boxer's Value at Cursor command can be used to verify the value of the character at
the cursor.

On most PCs, a character can be entered from the keyboard by typing its numeric
value in a special way. With the Numlock key on, depress and hold the Alt key.
Then type the 0 (zero) on the numeric keypad, followed by the decimal value of the
character to be inserted. Finally, release the Alt key. The character whose value
was typed will appear at the text cursor.

4.2.23 Insert -> Formfeed

Menu: Edit > Insert > Formfeed

Default Shortcut Key: none

Macro function: Formfeed()

The Insert Formfeed command can be used to quickly insert the formfeed, character
value 12, at the current text cursor location. The formfeed character is recognized by
printers as a request to eject the current page and advance to (or load) a new page.

When printing a text file from within Boxer, a formfeed character can be placed in
column one--or in the last position on a line--to indicate that a new page should begin
at that point. The footer of the page--if one has been defined--will be printed and the
page will eject. A formfeed in any other column will be ignored by Boxer's printing
service.

4.2.24 Insert -> Tab

Menu: Edit > Insert > Tab

Default Shortcut Key: Tab

Macro function: Tab()

The Insert Tab command inserts a Tab (character value 9) at the text cursor location.
After insertion, the text cursor moves to the next tabstop, as determined by the Tab
Display Size.

If the Tab key has been configured to insert Spaces, an equivalent number of Spaces
will be inserted instead of a Tab. The option which controls this behavior appears on
the Configure | Preferences | Tabs options page. The option is titled Tab key inserts
spaces.

The Configure | Preferences | Tabs page also contains an option for the Tab key to

Boxer Text Editor78

Copyright © 1991-2010 by Boxer Software

insert Spaces and obtain its tabstops from the line above. When this option is used,
the Tab key will advance the text cursor to the next field of data as determined from
the line above the current line. This option is especially useful when editing tabular
data within a table or chart.

Boxer's default Tab Display Size is 4, which permits program source code with several
indent levels to be displayed without exceeding the screen width. Many other
programs, and most printers, will treat Tabs as having a display size of 8. You may
need to make adjustments in order to print or display files with another program which
does not use a Tab display size of 4. One remedy could be to use the Tabs to Spaces
command to convert a copy of the file before using it with the other program. Note that
Boxer's Print command will automatically convert Tabs to Spaces before sending its
data to the printer, so there will be no such difficulty when printing files from within
Boxer.

Tabs, Spaces and Newline characters can be made visible with the Visible Spaces
command.

If the Insert Tab command is issued when a range of lines is selected, the Indent
one Tabstop command will be performed. If a small selection is present on a single
line the selection will be replaced with a Tab character.

4.2.25 Insert -> Filename

Menu: Edit > Insert > Filename

Default Shortcut Key: Tab

Macro function: InsertFilename()

The Insert Filename command inserts the full filepath of the current window into the
edited text.

To copy the filepath of the current window to the clipboard, use the Copy Filename
command.

When editing source code, use this command to quickly place the name of the file
into a program comment.

4.2.26 Insert -> HTML Image Tag

Menu: Edit > Insert > HTML Image Tag

Default Shortcut Key: none

Macro function: HTMLImageTag()

The Insert HTML Image Tag command can be used to insert an HTML image tag into the
current file for a selected graphics file. The image tag will use the filename, image
height, and image width of the selected image file. The following image file formats are

Command Reference (in menu order) 79

Copyright © 1991-2010 by Boxer Software

supported: BMP, GIF and JPEG.

A dialog will appear so that the name of the image file can be selected. If you like,
multiple image files can be selected at the same time.

Before the image tag is created, a dialog appears to confirm the operation, and to
provide access to the image template:

You can control the format of the image tag by editing the HTML Image Tag Template in
the upper edit box. The format of the template string can be changed freely, so long as
the %1, %2 and %3 sequences appear in the string, and remain associated with the

filename (src), width and height properties, respectively. The image tag that will be

inserted appears in the lower edit box. Buttons are provided to quickly convert the tag
to uppercase or lowercase, as well as a Reset to Default button that will restore the
template string to its original form.

You can also activate the Insert HTML Image Tag feature by dragging and dropping
images onto Boxer.

4.2.27 Insert -> Line Below

Menu: Edit > Insert > Line Below

Default Shortcut Key: Ctrl+Enter

Macro function: InsertLineBelow()

The Insert Line Below command can be used to create a new line beneath the current
line. The effect of this command is the same as moving the cursor to the end of line
and pressing Enter while in Insert mode.

4.2.28 Insert -> Line Above

Menu: Edit > Insert > Line Above

Boxer Text Editor80

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Shift+Ctrl+Enter

Macro function: InsertLineAbove()

The Insert Line Above command can be used to create a new line above the current
line. The effect of this command is the same as moving the cursor to the end of the
previous line and pressing Enter, while in Insert mode.

4.2.29 Insert -> Short Date

Menu: Edit > Insert > Short Date

Default Shortcut Key: Shift+F11

Macro function: InsertShortDate()

The Insert Short Date command can be used to insert a text string representing the
current date, in short date format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Short Date menu
entry.

The format used to display the short date is in accordance with the regional settings for
date display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Date.

Double clicking atop the date display on the Status Bar will also issue the Insert Short
Date command.

4.2.30 Insert -> Long Date

Menu: Edit > Insert > Long Date

Default Shortcut Key: Shift+Ctrl+F11

Macro function: InsertLongDate()

The Insert Long Date command can be used to insert a text string representing the
current date, in long date format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Long Date menu
entry.

The format used to display the long date is in accordance with the regional settings for
date display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Date.

Command Reference (in menu order) 81

Copyright © 1991-2010 by Boxer Software

4.2.31 Insert -> Short Time

Menu: Edit > Insert > Short Time

Default Shortcut Key: Shift+F12

Macro function: InsertShortTime()

The Insert Short Time command can be used to insert a text string representing the
current time, in short time format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Short Time menu
entry.

The format used to display the short time is in accordance with the regional settings for
time display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Time.

Double clicking atop the time display on the Status Bar will also issue the Insert Short
Time command.

4.2.32 Insert -> Long Time

Menu: Edit > Insert > Long Time

Default Shortcut Key: Shift+Ctrl+F12

Macro function: InsertLongTime()

The Insert Long Time command can be used to insert a text string representing the
current time, in long time format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Long Time menu
entry.

The format used to display the long time is in accordance with the regional settings for
time display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Time.

4.2.33 Delete -> Previous Word

Menu: Edit > Delete > Previous Word

Default Shortcut Key: Ctrl+Backspace

Macro function: DeletePreviousWord()

The Delete Previous Word command deletes from the text cursor to the end of the
previous word.

Boxer Text Editor82

Copyright © 1991-2010 by Boxer Software

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

4.2.34 Delete -> Next Word

Menu: Edit > Delete > Next Word

Default Shortcut Key: Ctrl+Del

Macro function: DeleteNextWord()

The Delete Next Word command deletes from the text cursor to the beginning of the
next word.

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

4.2.35 Delete -> Current Line

Menu: Edit > Delete > Current Line

Default Shortcut Key: Alt+D

Macro function: DeleteLine()

The Delete Current Line command deletes all of the text and the newline character on
the current line. Whenever possible, the column of the text cursor will be preserved
when moving to the next line.

4.2.36 Delete -> to End of Line

Menu: Edit > Delete > to End of Line

Default Shortcut Key: none

Macro function: DeleteToEndOfLine()

The Delete to End of Line command deletes from the text cursor to the end of line. The
Newline character is not deleted. The position of the text cursor is unchanged.

If issued on an empty line with the text cursor in column 1, the Delete to End of Line
command will delete the entire line.

4.2.37 Delete -> to Start of Line

Menu: Edit > Delete > to Start of Line

Command Reference (in menu order) 83

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Ctrl+K

Macro function: DeleteToStartOfLine()

The Delete to Start of Line command deletes from the left of the text cursor to the start
of line. The cursor is left in Column 1.

If issued on an empty line with the text cursor in column 1, the Delete to Start of Line
command will delete the entire line.

4.2.38 Delete -> Lines that Begin with

Menu: Edit > Delete > Lines That Begin With

Default Shortcut Key: none

Macro function: DeleteLinesThatBeginWith()

This command can be used to delete all lines that begin with a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

4.2.39 Delete -> Lines that End with

Menu: Edit > Delete > Lines That End With

Default Shortcut Key: none

Macro function: DeleteLinesThatEndWith()

This command can be used to delete all lines that end with a user-specified text string.
If a range of lines is selected, the operation will be restricted to the selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

4.2.40 Delete -> Lines that Contain

Menu: Edit > Delete > Lines That Contain

Boxer Text Editor84

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: DeleteLinesThatContain()

This command can be used to delete all lines that contain a user-specified text string.
If a range of lines is selected, the operation will be restricted to the selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

4.2.41 Delete -> Lines that do not Begin with

Menu: Edit > Delete > Lines That Do Not Begin With

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotBeginWith()

This command can be used to delete all lines that do not begin with a user-specified
text string. If a range of lines is selected, the operation will be restricted to the
selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

4.2.42 Delete -> Lines that do not End with

Menu: Edit > Delete > Lines That Do Not End With

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotEndWith()

This command can be used to delete all lines that do not end with a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

Command Reference (in menu order) 85

Copyright © 1991-2010 by Boxer Software

4.2.43 Delete -> Lines that do not Contain

Menu: Edit > Delete > Lines That Do Not Contain

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotContain()

This command can be used to delete all lines that do not contain a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

4.2.44 Delete -> Blank Lines

Menu: Edit > Delete > Blank Lines

Default Shortcut Key: none

Macro function: DeleteBlankLines()

The Delete Blank Lines command can be used to delete blank lines within the current
file. If a range of lines is selected, the operation will be restricted to the selected lines.
Due to the destructive nature of this command, a confirmation is required before the
operation begins.

A line is considered blank if it has no text, or if its text consists only of whitespace.

4.2.45 Delete -> Duplicate Lines

Menu: Edit > Delete > Duplicate Lines

Default Shortcut Key: none

Macro function: DeleteDuplicateLines()

The Delete Duplicate Lines command can be used to delete duplicate lines within the
current file. If a range of lines is selected, the operation will be restricted to the
selected lines. Due to the destructive nature of this command, a confirmation is
required before the operation begins.

Delete Duplicate Lines will not delete the first instance of a duplicated line. In other
words, given a file that contained five lines with the text 'sample', four of these lines

would be deleted.

Boxer Text Editor86

Copyright © 1991-2010 by Boxer Software

This command is similar in effect to the Find Unique Lines and Find Distinct Lines
commands. For certain tasks, one of these commands might be more suitable.

To delete blank lines, use the Delete Blank Lines command.

4.2.46 Delete -> Bookmarked Lines

Menu: Edit > Delete > Bookmarked Lines

Default Shortcut Key: none

Macro function: DeleteBookmarkedLines()

The Delete Bookmarked Lines command can be used to delete all bookmarked lines
from the current file. For example, the Toggle Bookmark command can be used to 'flag'
several lines for deletion, and then the Delete Bookmarked Lines command can be used
to delete the lines.

This command deletes lines, not simply bookmarks. To remove the bookmarks from
bookmarked lines, use either the Toggle Bookmark or the Bookmark Manager
command. If you have accidentally deleted bookmarked lines when you meant only to
clear their bookmarks, use the Undo command to recover these lines.

4.2.47 Line -> Duplicate Line

Menu: Edit > Line > Duplicate Line

Default Shortcut Key: F2

Macro function: DuplicateLine()

The Duplicate Line command can be used to make a copy of the current line. The new
line will be created below the current line, and the text cursor will be moved onto the
new line at the current cursor column.

The Duplicate Line command is a quick alternative to using the Copy and Paste
commands to perform the same task, and does not affect the content of the current
clipboard.

When the Duplicate Line command is issued repeatedly to duplicate a line, the
status line will report a count of the number of times the command has issued.

4.2.48 Line -> Duplicate and Increment

Menu: Edit > Line > Duplicate and Increment

Default Shortcut Key: Shift+F2

Macro function: DuplicateAndIncrement()

Command Reference (in menu order) 87

Copyright © 1991-2010 by Boxer Software

The Duplicate and Increment command is similar to the Duplicate Line command, with
one important difference: as it copies the current line to a new line below, it increments
any values it finds within the line. A few examples will help illustrate its utility:

When the cursor is placed on a line with the following text:

 width1 = MainForm->WidthArray[1];

and the Duplicate and Increment command is issued three times, the following text will
result:

 width1 = MainForm->WidthArray[1];
 width2 = MainForm->WidthArray[2];
 width3 = MainForm->WidthArray[3];
 width4 = MainForm->WidthArray[4];

Duplicate and increment also recognizes character constants...

 char01 = 'A';

would become:

 char01 = 'A';
 char02 = 'B';
 char03 = 'C';
 char04 = 'D';

... and on hexadecimal values:

 pos[15] := $DF;

becomes:

 pos[15] := $DF;
 pos[16] := $E0;
 pos[17] := $E1;
 pos[18] := $E2;

Hexadecimal values are recognized in three forms: 0xFF, FFh and $FF.

The examples above relate to programming, but Duplicate and Increment can also be
useful in non-technical situations. If you needed to start a numbered list of items, you
could create the first line:

 Part No. 3141001

and then use Duplicate and Increment to make as many copies as needed:

 Part No. 3141001
 Part No. 3141002
 Part No. 3141003
 Part No. 3141004
 Part No. 3141005

Boxer Text Editor88

Copyright © 1991-2010 by Boxer Software

When the Duplicate and Increment command is issued repeatedly to duplicate a
line, the status line will report a count of the number of times the command has
issued.

4.2.49 Line -> Move Line Up

Menu: Edit > Line > Move Line Up

Default Shortcut Key: Shift+Alt+Up

Macro function: MoveLineUp()

The Move Line Up command moves the text of the current line to the line above, and
moves the text cursor to that line so it follows the line being moved. This command
can be useful when rearranging items in an ordered list, since it removes the need to
select, cut and then paste text from the clipboard as a means of reordering a series of
lines.

If the current line is the first line in the file, the command has no effect.

See also: Move Line Down

4.2.50 Line -> Move Line Down

Menu: Edit > Line > Move Line Down

Default Shortcut Key: Shift+Alt+Down

Macro function: MoveLineDown()

The Move Line Down command moves the text of the current line to the line below, and
moves the text cursor to that line so it follows the line being moved. This command
can be useful when rearranging items in an ordered list, since it removes the need to
select, cut and then paste text from the clipboard as a means of reordering a series of
lines.

If the current line is the last line in the file, the command has no effect.

The effect of this command is similar to that of the Swap Lines command, which used to
reside in the Edit menu, and remains accessible via key assignment and its macro
function.

See also: Move Line Up

Command Reference (in menu order) 89

Copyright © 1991-2010 by Boxer Software

4.2.51 Math -> Increment

Menu: Edit > Math > Increment

Default Shortcut Key: none

Macro function: Increment()

The Increment command can be used to increment an integer value (ie, a whole
number, not a floating point value) at the text cursor by another integer value. A
dialog box will appear to retrieve the value to be added. After clicking 'OK' the
arithmetic is performed, and the old value is replaced by the result.

If the text cursor is situated on a character rather than a numeric value, the supplied
value will be added to the character at the cursor and the new character will be
displayed. If the resultant character value is out of range, an error message will be
given.

4.2.52 Math -> Decrement

Menu: Edit > Math > Decrement

Default Shortcut Key: none

Macro function: Decrement()

The Decrement command can be used to decrement an integer value (ie, a whole
number, not a floating point value) at the text cursor by another integer value. A
dialog box will appear to retrieve the value to be subtracted. After clicking 'OK' the
arithmetic is performed, and the old value is replaced by the result.

If the text cursor is situated on a character rather than a numeric value, the supplied
value will be subtracted from the character at the cursor and the new character will be
displayed. If the resultant character value is out of range, an error message will be
given.

4.2.53 Math -> Multiply

Menu: Edit > Math > Multiply

Default Shortcut Key: none

Macro function: Multiply()

The Multiply command can be used to multiply an integer value (ie, a whole number,
not a floating point value) at the text cursor by another integer value. A dialog box will
appear to retrieve the value to multiply by. After clicking 'OK' the arithmetic is
performed, and the old value is replaced by the result.

Boxer Text Editor90

Copyright © 1991-2010 by Boxer Software

If the text cursor is situated on a character rather than a numeric value, the character
value of the character at the cursor will be multiplied by the supplied value and the
resultant character will be displayed. If the resultant character value is out of range, an
error message will be given.

4.2.54 Math -> Divide

Menu: Edit > Math > Divide

Default Shortcut Key: none

Macro function: Divide()

The Divide command can be used to divide an integer value (ie, a whole number, not a
floating point value) at the text cursor by another integer value. The result will be
displayed as an integer value. A dialog box will appear to retrieve the value to divide
by. After clicking 'OK' the arithmetic is performed, and the old value is replaced by the
result.

If the text cursor is situated on a character rather than a numeric value, the character
value of the character at the cursor will be divided by the supplied value and the
resultant character will be displayed. If the resultant character value is out of range, an
error message will be given.

4.2.55 Swap Words

Menu: Edit > Swap Words

Default Shortcut Key: Shift+F4

Macro function: SwapWords()

The Swap Words command can be used to swap the word at the text cursor with the
word to its right.

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

The last word on a line cannot be swapped, since the Swap Words command does not
span lines.

4.2.56 Swap Lines

Menu: none

Default Shortcut Key: F4

Command Reference (in menu order) 91

Copyright © 1991-2010 by Boxer Software

Macro function: SwapLines()

The Swap Lines command exchanges the current line with the line below. The text
cursor remains on the same line it was on before the command was issued. This
command is useful for swapping the order of a pair of items within an ordered list.

The last line in the file is not eligible for this operation.

 This command used to reside in the Edit menu, but has been replaced by the Move
Line Up and Move Line Down commands. Though not accessible directly from the
menu, the command remains active internally, and can be accessed by a key
assignment, and via its macro function.

4.2.57 Flip Case

Menu: Edit > Flip Case

Default Shortcut Key: Shift+Ctrl+F

Macro function: FlipCase()

The Flip Case command flips (toggles, inverts) the case of the character at the text
cursor, and moves the cursor to the next character in the line. Use this command to
quickly convert a short string of lowercase characters to uppercase, or uppercase
characters to lowercase, by issuing the command repeatedly to move through the
string.

4.3 Block Menu

4.3.1 Select Stream

Menu: Block > Select Stream

Default Shortcut Key: Alt+1

Macro function: SelectStream()

Stream Selection
The Select Stream command is used to set Boxer's default selection mode to Stream. In
this mode text is selected by lines, as opposed to rectangular blocks as can be achieved
with Select Columnar. Stream selection is the conventional type of text selection found
in most text editors and word processors.

Boxer Text Editor92

Copyright © 1991-2010 by Boxer Software

The default selection mode determines what selection style is used when text selection
is initiated either from the keyboard or with the left mouse button. If the default
selection mode is Columnar, a temporary override to Stream can be achieved by
holding down the Shift key before selecting with the mouse.

Selecting Text with the Keyboard
Text selection can be performed by keyboard by pressing and holding down the Shift
key and moving the text cursor. Any cursor movement key can be used to move the
cursor, e.g., PgUp, PgDn, Home, End, etc, so long as the Shift key remains depressed.
As the text cursor is moved through the file, the selected area is extended.

Selecting Text with the Mouse
Text selection can be accomplished with the mouse by pressing and holding the left
mouse button and dragging the mouse to highlight the desired text. As the mouse
pointer is moved through the file, the selected area is extended. An existing selection
can be extended by depressing Shift or Ctrl before clicking or dragging the mouse.

Text can also be selected by clicking or dragging the mouse in the area to the left of
column one. A single line can be selected by clicking the left mouse button at the far
left edge of the line. Multiple lines can be selected by dragging the mouse in this area.
An existing selection can be extended by depressing Shift before clicking in this area.

A word can be selected by double clicking anywhere within the word.

Selecting the Entire File
The entire file can be selected by issuing the Select All Text command.

Ending Text Selection
Text selection ends when the mouse button or the Shift key is released. The selected
text remains highlighted and is ready to be operated upon by any of Boxer's Block
commands, such as Cut, Copy, Append, Cut-Append, etc.

Extending a Selection with Other Commands
When text is selected, the Go to Line and Find commands provide options to extend the
selection to the new cursor position that results from their operation. The Replace
command provides an option to limit the replacement operation to the selected text.

Saving and Printing Text Selections

Command Reference (in menu order) 93

Copyright © 1991-2010 by Boxer Software

When text is selected, issuing either the Save or Save Selection As command prompts
the user to save the selected area to a disk file. Similarly, when text is selected and
the Print command is issued, an option is available to print only the selected area.

Deselecting Text
Selected text can be deselected by clicking once with the left mouse button, pressing
the Escape key, or pressing any of the cursor arrow keys. Pressing the Enter key, or
any other alphanumeric key will cause selected text to be deleted.

If a stream selection is started in the virtual space beyond the end of a line, or
within the virtual space of a preceding Tab character, the starting column of the
selection will be moved to the nearest column to the left which contains a character.

If you start a selection and find that the mode was set to Columnar, simply issue
this command to convert the existing selection to Stream. There's no need to
cancel a selection; the selection mode can be toggled between Stream and
Columnar at will.

4.3.2 Select Columnar

Menu: Block > Select Columnar

Default Shortcut Key: Alt+2

Macro function: SelectColumnar()

Columnar Selection
The Select Columnar command is used to set Boxer's default selection mode to
Columnar. In this mode text is selected in rectangular blocks, as opposed to lines.

The default selection mode determines what selection style is used when text selection

Boxer Text Editor94

Copyright © 1991-2010 by Boxer Software

is initiated either from the keyboard or with the left mouse button. If the default
selection mode is Stream, a temporary override to Columnar can be achieved by
holding down the Ctrl key before selecting with the mouse. If a three-button mouse is
installed, the center button can be used to perform Columnar text selection regardless
of the current selection mode.

Selecting Text with the Keyboard
Text selection can be performed by keyboard by pressing and holding down the Shift
key and moving the text cursor. Any cursor movement key can be used to move the
cursor, e.g., PgUp, PgDn, Home, End, etc., as long as the Shift key remains depressed.
As the text cursor is moved through the file, the selected area is extended.

Selecting Text with the Mouse
Text selection can be accomplished with the mouse by pressing and holding the left (or
center) mouse button and dragging the mouse to highlight the desired text. As the
mouse pointer is moved through the file, the selected rectangle is extended. An
existing selection can be extended by depressing Shift or Ctrl before clicking or
dragging the mouse.

Selecting the Entire File
The entire file can be selected by issuing the Select All Text command. Doing so while
in Columnar mode will result in the default selection mode being changed to Columnar.

Ending Text Selection
Text selection ends when the mouse button or the Shift key is released. The selected
text remains highlighted and is ready to be operated upon by any of Boxer's Block
commands, such as Cut, Copy, Append, Cut-Append, etc.

Extending a Selection with Other Commands
When selected text is present, the Go to Line and Find commands provide options to
extend the selection to the new cursor position that results from their operation. The
Replace command provides an option to limit the replacement operation to the selected
text.

Saving and Printing Text Selections
When text is selected, issuing either the Save or Save Selection As command prompts
the user to save the selected area to a disk file. Similarly, when text is selected and
the Print command is issued, an option is available to print only the selected area.

Deselecting Text
Selected text can be deselected by clicking once with the left mouse button, pressing
the Escape key, or pressing any of the cursor arrow keys. Pressing Enter, or any other
alphanumeric key will cause selected text to be deleted.

If a columnar selection is started in the virtual space beyond the end of a line, or
within the virtual space of a preceding Tab character, the starting column of the
selection will be moved to the nearest column to the left which contains a character.

If you start a selection and find that the mode was set to Stream, simply issue this
command to convert the existing selection to Columnar. There's no need to cancel a
selection; the selection mode can be toggled between Stream and Columnar at will.

Command Reference (in menu order) 95

Copyright © 1991-2010 by Boxer Software

4.3.3 Select without Shift

Menu: Block > Select without Shift

Default Shortcut Key: Alt+M

Macro function: SelectWithoutShift()

This command can be used to initiate a text selection mode in which the Shift key does
not need to be kept depressed during selection, as is the custom under Windows. After
this command is issued, any cursor movement command can be used to extend the
selection as desired. The text selection can be released by pressing Escape.

The type of selection that results is determined by the current selection mode, which
can be set using the Select Columnar and Select Stream commands.

Former users of Boxer/DOS may welcome this command as it provides a method of
text selection that approximates the operation of our earlier products.

4.3.4 Indent One Space

Menu: Block > Indent One Space

Default Shortcut Key: Ctrl+Space

Macro function: IndentOneSpace()

The Indent One Space command causes a selected range of lines to be indented by one
space. On lines which already contain one or more Tab characters of indent, the space
character will be applied to the right of the existing indent so that the expected effect is
achieved.

If no lines are selected, indentation will be performed on the current line only.

Regardless of the shortcut key assigned to this command, the Space key will always
perform a block indent when a range of lines is selected. If a small selection is
present on a single line the selection will be replaced with a Space character.

4.3.5 Indent One Tabstop

Menu: Block > Indent One Tabstop

Default Shortcut Key: Shift+Tab

Macro function: IndentOneTabstop()

The Indent one Tabstop command causes a selected range of lines to be indented by
one tabstop. Tab options may be set using the Configure | Preferences | Tabs options
page.

Boxer Text Editor96

Copyright © 1991-2010 by Boxer Software

If no lines are selected, indentation is performed on the current line only.

Pressing the key assigned to the Insert Tab command will also serve to indent a
selected range of lines. In most of the keyboard layouts which accompany Boxer
the Tab key is assigned to the Insert Tab command.

4.3.6 Indent with String

Menu: Block > Indent with String

Default Shortcut Key: none

Macro function: IndentWithString()

The Indent with String command can be used to simultaneously indent a range of
selected lines, and fill the indent region with a user-specified text string.

4.3.7 Unindent

Menu: Block > Unindent

Default Shortcut Key: Shift+Backspace

Macro function: Unindent()

The Unindent command causes a selected range of lines to be unindented by one space
or one tab character. If the range of lines to be unindented contains lines with varying
levels of indent--or mixed indents of spaces and tabs--the Unindent command can still
be used without concern. Once all of the whitespace on a given line has been deleted,
Unindent will not remove additional characters, though it will continue to operate on
other lines within the selection with remaining indent.

If text is not selected, Unindent will act upon the current line.

4.3.8 Convert Case -> Upper

Menu: Block > Convert Case > Upper

Default Shortcut Key: none

Macro function: CaseUpper()

The Upper command converts alphabetic characters within the selected text to
uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.

Command Reference (in menu order) 97

Copyright © 1991-2010 by Boxer Software

After conversion : THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

4.3.9 Convert Case -> Lower

Menu: Block > Convert Case > Lower

Default Shortcut Key: none

Macro function: CaseLower()

The Lower command converts alphabetic characters within the selected text to
lowercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : the quick brown fox jumped over the lazy dog.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

4.3.10 Convert Case -> Invert

Menu: Block > Convert Case > Invert

Default Shortcut Key: none

Macro function: CaseInvert()

The Invert command converts alphabetic characters within the selected text to the
opposite case. Uppercase characters are converted to lowercase; lowercase characters
are converted to uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : tHE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

4.3.11 Convert Case -> Words

Menu: Block > Convert Case > Words

Default Shortcut Key: none

Macro function: CaseWords()

Boxer Text Editor98

Copyright © 1991-2010 by Boxer Software

The Words command converts the first character of all words within the selected text to
uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : The Quick Brown Fox Jumped Over The Lazy Dog.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

By default, this command will first convert the selected text to lowercase before
capitalizing each word. This ensures that the command operates as expected when
processing text in all uppercase. Converting to lowercase may disrupt some all-caps
words (such as acronyms) that should have remained in uppercase, so you should
review the results for accuracy after applying the conversion. If you prefer that the
selected text not be forced to lowercase prior to operation, you can change this
behavior on the Configure | Preferences | Editing 2 dialog page.

4.3.12 Convert Case -> Sentences

Menu: Block > Convert Case > Sentences

Default Shortcut Key: none

Macro function: CaseSentences()

The Sentences command converts the first character of all sentences within the
selected text to uppercase. For purposes of this command, a sentence is considered to
be a series of words that ends with either a period, a question mark, or an exclamation
mark.

Before conversion: the quick brown fox jumped over the lazy dog.
After conversion : The quick brown fox jumped over the lazy dog.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

By default, this command will first convert the selected text to lowercase before
capitalizing each sentence. This ensures that the command operates as expected
when processing text in all uppercase. Converting to lowercase may disrupt some
all-caps words (such as acronyms and proper nouns) that should have remained in
uppercase, so you should review the results for accuracy after applying the
conversion. If you prefer that the selected text not be forced to lowercase prior to
operation, you can change this behavior on the Configure | Preferences | Editing 2
dialog page.

4.3.13 Convert Case -> Title

Menu: Block > Convert Case > Title

Command Reference (in menu order) 99

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: CaseTitle()

This command converts the selected text to conform to the rules of title case (aka
proper case). Grammar experts do not all agree on the precise rules for title case, but
most references use these rules:

1. Always capitalize the first word
2. Always capitalize the last word
3. Capitalize all other words, except articles, prepositions and conjunctions which

have fewer than five letters

Because the application of title case presumes a knowledge of the
language--capitalization depends on parts of speech--this command is limited to
operating on English text.

By default, this command will first convert the selected text to lowercase before
capitalizing words. This ensures that the command operates as expected when
processing text in all uppercase. Converting to lowercase may disrupt some all-caps
words (such as acronyms) that should have remained in uppercase, so you should
review the results for accuracy after applying the conversion. If you prefer that the
selected text not be forced to lowercase prior to operation, you can change this
behavior on the Configure | Preferences | Editing 2 dialog page.

4.3.14 Convert Other -> Tabs to Spaces

Menu: Block > Convert Other > Tabs to Spaces

Default Shortcut Key: none

Macro function: TabsToSpaces()

The Tabs to Spaces command can be used to convert the Tabs within a selected area of
text into an equivalent number of Spaces. In doing so, Boxer uses the current display
value of a Tab (View | Tab Display Size) to determine how many Spaces should be
used.

No attempt is made to determine whether the Tabs being changed reside within a
quoted string. Programmers should be careful when using this command, as
changing Tabs within a quoted string my yield undesirable results if the string was
to be displayed in a message on-screen.

The Spaces to Tabs and Tabs to Spaces commands are not opposites. If the Tab
Display Size is 4, the sentence:

The<tab>dog<tab>ran<tab>wild.

would be converted by the Tabs to Spaces command to:

Boxer Text Editor100

Copyright © 1991-2010 by Boxer Software

The<space>dog<space>ran<space>wild.

Running the Spaces to Tabs command on this sentence would not yield the original
sentence. A sequence of two or more spaces is required before a tab character is
considered for placement into the converted text.

If the Tab Display Size command has been used to designate an additional tab
character for display purposes, the Tabs to Spaces command will treat that
character as a tab when performing its conversion to spaces. This makes it possible
to convert a data file that uses a character-separated field format into a fixed width
field format. See Converting CSV Data to Fixed Width for more details.

4.3.15 Convert Other -> Spaces to Tabs

Menu: Block > Convert Other > Spaces to Tabs

Default Shortcut Key: none

Macro function: SpacesToTabs()

The Spaces to Tabs command can be used to convert the Spaces within a selected area
of text into an equivalent number of Tabs. In doing so, Boxer uses the current display
value of a Tab (View | Tab Display Size) to determine how many Tabs should be used.

No attempt is made to determine whether the Spaces being changed reside within a
quoted string. Programmers should be careful when using this command, as
changing Spaces within a quoted string may yield undesirable results if the string
was to be displayed in a message on-screen.

The Spaces to Tabs and Tabs to Spaces commands are not opposites. If the Tab
Display Size is 4, the sentence:

The<tab>dog<tab>ran<tab>wild.

would be converted by the Tabs to Spaces command to:

The<space>dog<space>ran<space>wild.

Running the Spaces to Tabs command on this sentence would not yield the original
sentence. A sequence of two or more spaces is required before a tab character is
considered for placement into the converted text.

4.3.16 Convert Other -> OEM to ANSI

Menu: Block > Convert Other > OEM to ANSI

Default Shortcut Key: none

Command Reference (in menu order) 101

Copyright © 1991-2010 by Boxer Software

Macro function: OEMtoANSI()

The OEM to ANSI command converts characters within the selected text from OEM
(ASCII) character encoding to ANSI character encoding. These character encoding
schemes share all the common alphabetic and numeric character mappings, but differ
in the area of accented and/or graphic characters. A conversion may be appropriate
when a file which was created with a DOS program must be prepared for use with a
Windows program. Note that not all characters will have equivalents in the destination
character set. In such cases, a conversion will not be made for that character.

Boxer's OEM Chart and ANSI Chart commands can be useful for viewing the character
assignments in each of these encoding schemes.

4.3.17 Convert Other -> ANSI to OEM

Menu: Block > Convert Other > ANSI to OEM

Default Shortcut Key: none

Macro function: ANSItoOEM()

The ANSI to OEM command converts characters within the selected text from ANSI
character encoding to OEM (ASCII) character encoding. These character encoding
schemes share all the common alphabetic and numeric character mappings, but differ
in the area of accented and/or graphic characters. A conversion may be appropriate
when a file which was created with a Windows program must be prepared for use with a
DOS program. Note that not all characters will have equivalents in the destination
character set. In such cases a conversion will not be made for that character.

Boxer's ANSI Chart and OEM Chart commands can be useful for viewing the character
assignments in each of these encoding schemes.

4.3.18 Convert Other -> EBCDIC to ASCII

Menu: Block > Convert Other > EBCDIC to ASCII

Default Shortcut Key: none

Macro function: EBCDICtoASCII()

This command will convert text encoded in the EBCDIC character set to the ASCII
character set. The text to be converted must first be selected. If an entire file is to be
converted, use the Select All Text command to select the whole file.

EBCDIC is a character encoding system used primarily on mainframe computers. The
ASCII character encoding system is used widely on personal computers. At times, a file
that uses EBCDIC encoding may need to be converted for use on a computer that uses
the ASCII character encoding system. This command can be used for that purpose.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

Boxer Text Editor102

Copyright © 1991-2010 by Boxer Software

ASCII is an acronym for American Standard Code for Information Interchange.

4.3.19 Convert Other -> ASCII to EBCDIC

Menu: Block > Convert Other > ASCII to EBCDIC

Default Shortcut Key: none

Macro function: ASCIItoEBCDIC()

This command will convert text encoded in the ASCII character set to the EBCDIC
character set. The text to be converted must first be selected. If an entire file is to be
converted, use the Select All Text command to select the whole file.

EBCDIC is a character encoding system used primarily on mainframe computers. The
ASCII character encoding system is used widely on personal computers. At times, a file
that uses ASCII encoding may need to be converted for use on a computer that uses
the EBCDIC character encoding system. This command can be used for that purpose.

ASCII is an acronym for American Standard Code for Information Interchange.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

4.3.20 Convert Other -> ROT5

Menu: Block > Convert Other > ROT5

Default Shortcut Key: none

Macro function: ROT5()

This command will apply a ROT5 (rotation 5) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT5 is a simple substitution cypher that replaces each digit (0-9) with the digit that
resides 5 positions higher in sequence. The digit '0' would be replaced by '5', '1' by '6',
and so on. When adding 5 would exceed the digit '9', the conversion wraps back to the
beginning of the sequence.

ROT5 is sometimes used to disguise numeric text from casual viewing, such as when
the answer to a puzzle is presented alongside the question. Applying the conversion to
ROT5-encoded text a second time returns the original text. Additional information
about ROT13 and other cyphers can be found on Wikipedia.

4.3.21 Convert Other -> ROT13

Menu: Block > Convert Other > ROT13

http://en.wikipedia.org/wiki/ROT13

Command Reference (in menu order) 103

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: ROT13()

This command will apply a ROT13 (rotation 13) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT13 is a simple text substitution cypher that replaces each alphabetic character (A-Z
and a-z) with the character that resides 13 positions forward in the alphabet. The letter
'A' would be replaced by 'N', 'B' by 'O', and so on. When adding 13 would exceed the
letter 'Z', the conversion wraps back to the beginning of the alphabet.

ROT13 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Some entries in the Windows
Registry are ROT13 encoded. Applying the conversion to ROT13-encoded text a second
time returns the original, human-readable text. Additional information about ROT13
can be found on Wikipedia.

4.3.22 Convert Other -> ROT18

Menu: Block > Convert Other > ROT18

Default Shortcut Key: none

Macro function: ROT18()

This command will apply a ROT18 (rotation 18) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT18 is a simple text substitution cypher that replaces each alphabetic character (A-Z
and a-z) with the character that resides 13 positions forward in the alphabet, and each
digit (0-9) with the digit that resides 5 positions higher in sequence. A ROT18
conversion is thus equivalent to applying the ROT5 and ROT13 conversion commands to
the same text.

ROT18 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Applying the conversion to
ROT18-encoded text a second time returns the original, human-readable text.
Additional information about ROT13 and other cyphers can be found on Wikipedia.

4.3.23 Convert Other -> ROT47

Menu: Block > Convert Other > ROT47

Default Shortcut Key: none

Macro function: ROT47()

This command will apply a ROT47 (rotation 47) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT47 is a simple text substitution cypher that replaces each character value in the
ASCII range 33 to 126 inclusive with the character whose value is 47 positions higher.

http://en.wikipedia.org/wiki/ROT13
http://en.wikipedia.org/wiki/ROT13

Boxer Text Editor104

Copyright © 1991-2010 by Boxer Software

When adding 47 would exceed character value 126, the conversion wraps back to the
beginning of the sequence.

ROT47 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Applying the conversion to
ROT47-encoded text a second time returns the original, human-readable text.
Additional information about ROT13 and other cyphers can be found on Wikipedia.

4.3.24 Comment

Menu: Block > Comment

Default Shortcut Key: F5

Macro function: Comment()

The Comment command can be used to apply commenting to the current line--or to a
selected range of lines--when editing a file for which Boxer has syntax information
defined (see Configure | Syntax Highlighting).

When text is not selected, the current line will be commented using the end-of-line
comment sequence for the language being edited. If that sequence is not available, the
entire line will be enclosed using the open and close comment sequences. In either
case the text cursor is advanced to the line below following the operation.

If text is selected, the selected lines will be bracketed with the open and close block
comment sequences for the language being edited. If the language does not support
block commenting, the end-of-line comment sequence will be applied to each line within
the selected range. If neither of these sequences has been defined, an error message
will be given.

The Uncomment command can be used to remove commenting from the current line or
from selected text.

4.3.25 Uncomment

Menu: Block > Uncomment

Default Shortcut Key: Shift+F5

Macro function: Uncomment()

The Uncomment command will remove commenting from the current line--or the
selected text--according to Boxer's syntax information about the language being edited
(see Configure | Syntax Highlighting).

The Comment command can be used to apply commenting to the current line or to
selected text.

http://en.wikipedia.org/wiki/ROT13

Command Reference (in menu order) 105

Copyright © 1991-2010 by Boxer Software

4.3.26 Auto-Number

Menu: Block > Auto-Number

Default Shortcut Key: None

Macro function: AutoNumber()

The Auto-Number command can be used to automatically number a selected range of
lines. A variety of options are available to control the numbering operation, and are
described below:

Numbering

Start at
This is the value that will be used to start the numbering from.

Step by
This is the increment that numbering will jump by from line to line. Programmers
might use 10 or 100 for program listings, for example.

Use actual line numbers
This option allows the line number for each line to be used. When this option is used,
the Start at and Step by options are disabled.

Skip blank lines
Use this option to control whether or not blank lines will be numbered.

Boxer Text Editor106

Copyright © 1991-2010 by Boxer Software

Restart after blank lines
This option causes line numbering to restart from the starting value after a sequence of
one or more blank lines is encountered.

Order

Ascending
Use this option for numbering which increases in value.

Descending
Use this option for numbering which decreases in value.

Options

Insert leading zeros
This option can be used to force leading zeros on the numbers.

Field width
Use the field width property to control the width of the numbers that will be generated.
Use '0' for automatic sizing.

Prefix string
Use this edit box to specify the text to be placed at the left of the numbers.

Suffix string
Use this edit box to specify the text to be placed at the right of the numbers.

Justification

Left justify
This option can be used for numbering which is left aligned.

Right justify
This option can be used for numbering which is right aligned.

Number System

Decimal
Use this option for numbering in the decimal system.

Hexadecimal
Use this option for numbering in the hexadecimal system. The case of the alphabetic
characters used can be controlled with the Lowercase and Uppercase options below.

Octal
Use this option for numbering in the octal system.

Base
Use this combobox to select any base in the range 2 to 36. For bases 11 and above,
alphabetic characters are used in place of digits. The case of the alphabetic characters
used can be controlled with the Lowercase and Uppercase options below.

Command Reference (in menu order) 107

Copyright © 1991-2010 by Boxer Software

Roman Numeral
Use this option for numbering with Roman Numerals. The case of the alphabetic
characters used can be controlled with the Lowercase and Uppercase options below.

Case

Lowercase
This option can be used to dictate that lowercase characters be used when Hexadecimal
or Roman Numeral numbering is in use.

Uppercase
This option can be used to dictate that uppercase characters be used when Hexadecimal
or Roman Numeral numbering is in use.

4.3.27 Fill with String

Menu: Block > Fill with String

Default Shortcut Key: none

Macro function: FillWithString()

The Fill with String command can be used to fill a selected area with a supplied text
string. The selected area will be filled automatically with the string supplied. If the text
supplied is less than the width of the selected text, the pattern will be repeated to fill
the selected area.

To prevent unexpected results, the lines affected are automatically de-tabbed prior to
performing the Fill operation. If any lines in the selected range are too short, they will

Boxer Text Editor108

Copyright © 1991-2010 by Boxer Software

be extended so that a complete fill of the selected area is achieved.

Special characters can be entered into the Fill with String edit box using the
technique described in the Help topic Inserting Special Characters.

4.3.28 Invert Lines

Menu: Block > Invert Lines

Default Shortcut Key: none

Macro function: InvertLines()

The Invert Lines command can be used to invert a range of selected lines. The last
selected line will become first, and the first selected line will become the last.

For example, the text:

 1. Colorado Springs, CO
 2. Denver, CO
 3. Eugene, OR
 4. Las Vegas, NV
 5. Los Angeles, CA
 6. Oakland, CA
 7. Phoenix, AZ
 8. Portland, OR
 9. Pueblo, CO
10. Riverside, CA

would become:

10. Riverside, CA
 9. Pueblo, CO
 8. Portland, OR
 7. Phoenix, AZ
 6. Oakland, CA
 5. Los Angeles, CA
 4. Las Vegas, NV
 3. Eugene, OR
 2. Denver, CO
 1. Colorado Springs, CO

4.3.29 Line Spacing

Menu: Block > Line Spacing

Default Shortcut Key: none

Macro function: LineSpacing()

The Line Spacing command allows a range of selected lines to be converted to single-,

Command Reference (in menu order) 109

Copyright © 1991-2010 by Boxer Software

double- or triple-spaced format. If no selection is present, the operation will be
performed across the entire file.

If you simply need to adjust the line spacing of the printed document, you might
wish to do so using the line spacing option on the Page Setup dialog.

4.3.30 Save Selection As

Menu: Block > Save Selection As

Default Shortcut Key: none

Macro function: SaveSelectionAs()

The Save Selection As command brings up the standard Windows Save dialog and
prompts the user for a filename under which to save the selected text.

Boxer Text Editor110

Copyright © 1991-2010 by Boxer Software

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

The current file encoding and line ender style, as indicated in File Properties, will be
used for the file that's created. If you want to save the selected text to a file using
different encoding or line enders, paste the text into a new file and set the
properties of the new file before saving.

If the Save command is issued while text is selected, a dialog box can appear to get
the name of the file to which the selected text should be saved. This option is off by
default, but can be enabled on the Configure | Preferences | File I/O options page.
The option is titled File Save performs Save Selection As when text is selected. This
option page also contains other configuration options which relate to loading and
saving files.

4.3.31 Sort Lines

Menu: Block > Sort Lines

Default Shortcut Key: none

Macro function: SortLines()

The Sort Lines command can be used to sort a range of selected lines. A variety of
options are provided to control the nature of the sort performed. These options are
described below:

Command Reference (in menu order) 111

Copyright © 1991-2010 by Boxer Software

Sort Type

Alphabetic
Use this option to sort alphabetically. Any digits that appear within the data will not be
treated as numeric values.

Alphanumeric
This option sorts alphabetically, but embedded sequences of digits within the data are
treated as numeric values. This is sometimes called a natural sort, and is best
understood with an example. Consider the results of the Alphabetic and Alphanumeric
sorting options when applied to a list of filenames:

Alphabetic sort: Alphanumeric sort:
z1.txt z1.txt
z10.txt z2.txt
z100.txt z3.txt
z101.txt z4.txt
z102.txt z5.txt
z11.txt z6.txt
z12.txt z7.txt
z19.txt z8.txt
z2.txt z9.txt
z20.txt z10.txt
z3.txt z11.txt
z4.txt z12.txt
z5.txt z19.txt

Boxer Text Editor112

Copyright © 1991-2010 by Boxer Software

z6.txt z200.txt
z7.txt z100.txt
z8.txt z101.txt
z9.txt z102.txt

In the left column, the results of an Alphabetic sort are shown. On the right, the more
pleasing results of an Alphanumeric are displayed.

Numeric
Use this option to sort numerically. The data will be interpreted as numbers, and not as
character data. Alphabetic data will sort as though its value were zero.

Date
Use this option to sort chronologically by date. Be sure to set the proper Date Format
in the options box provided.

IP Address
Use this option to sort IP Addresses data with proper consideration to each node within
the address.

Line Length
Use this option to sort lines according to their length.

Position of the string:
This option allows data to be sorted based on the position of a supplied string within the
data. This option can be useful for segregating lines of data that contain a certain type
of information. For example, by sorting on the string '@', lines containing email
addresses would be isolated from those lines not containing email addresses.

Sort Column

Start of selection
Use this option if the sort should be performed based on the starting column of the
selection. The column number of the start of the selection is shown in parentheses to
the right.

End of selection
Use this option if the sort should be performed based on the ending column of the
selection. The column number of the end of the selection is shown in parentheses to
the right.

Other
Use this option if the sort should be performed based on some other column in the
data.

Sort Order

Ascending
Use this option to sort in increasing order.

 The sort command will consult the current locale so that accented characters are

Command Reference (in menu order) 113

Copyright © 1991-2010 by Boxer Software

sorted according to the local collating sequence.

Descending
Use this option to sort in decreasing order.

 The sort command will consult the current locale so that accented characters are
sorted according to the local collating sequence.

Random
Use this option to sort randomly. This option might be used to randomly order a list
which was already sorted. When this option is selected, all other options on the dialog
become irrelevant.

Case Comparison

Case Sensitive
When an alphabetic or alphanumeric sort is being performed, this option can be used to
ensure that character case is considered significant.

Case Insensitive
When an alphabetic or alphanumeric sort is being performed, this option can be used to
ensure that character case is ignored.

Character Comparison

Character Value
When an alphabetic or alphanumeric sort is being performed, this option causes
characters to be compared based on their actual character values. This is sometimes
called an 'ASCII sort.'

Locale Tables
When an alphabetic or alphanumeric sort is being performed, this option causes
characters to be compared using the 'locale tables' supplied by the operating system.
Using the locale tables ensures that when accented characters are encountered in the
data being sorted, they will be sorted according to local custom.

The results of a Locale Table sort can vary from those achieved using Character Value.
A case sensitive sort using Character Value would yield the following result:

AAA
BBB
CCC
aaa
bbb
ccc

If the same data is sorted with case sensitive and Locale Tables, the following result is
achieved:

aaa
AAA
bbb

Boxer Text Editor114

Copyright © 1991-2010 by Boxer Software

BBB
ccc
CCC

 A Locale Table sort uses a "word sort," rather than a "string sort." A word sort treats
hyphens and apostrophes differently than it treats other symbols that are not
alphanumeric, in order to ensure that words such as "coop" and "co-op" stay
together within a sorted list.

Date Format

The date options below are applicable when a Date sort is being performed. The slash
character is shown for illustration only; any separator symbol--or none at all--may
appear in the data being sorted.

MM / DD / YY
Data is formatted with 2-digit month, date and year. This option can also be used for
MM / DD / YYYY format dates.

DD / MM / YY
Data is formatted with 2-digit date, month, and year. This option can also be used for
DD / MM / YYYY format dates.

YY / MM / DD
Data is formatted with 2-digit year, month, and date.

YYYY / MM / DD
Data is formatted with 4-digit year, 2-digit month and 2-digit date.

4.3.32 Strip HTML/XML Tags

Menu: Block > Strip HTML/XML Tags

Default Shortcut Key: none

Macro function: StripHTMLTags()

The Strip HTML/XML Tags command can be used to remove HTML or XML tags from
selected text. HTML tags are markup sequences which appear within the '<' and '>'

characters. Boxer does not require that the tag names found within these brackets be
legitimate HTML tags. It merely removes any text found to be within such delimiters.
In this way, Boxer will be able to process new tags properly as the HTML standard
evolves.

Caution: If the text being processed contains unbalanced angle bracket
characters--specifically an unmated open angle bracket--then all text following the
open angle bracket will be treated as an HTML tag, and will be removed.

In addition to stripping HTML tags, the following HTML sequences will be converted to
their character equivalents:

Command Reference (in menu order) 115

Copyright © 1991-2010 by Boxer Software

 <space>
& &
" "
< <
> >
– -
— --
‘ '
’ '
“ "
” "
… ...

The conversion of other such sequences is complicated by the fact that accented
characters do not map to unique character codes in the ANSI and OEM characters set.
These translations are therefore not performed.

4.3.33 Strip Leading Spaces

Menu: Block > Strip Leading Spaces

Default Shortcut Key: none

Macro function: StripLeadingSpaces()

The Strip Leading Spaces command can be used to remove leading Spaces and/or Tabs
from the start of each line within the selection.

4.3.34 Strip Trailing Spaces

Menu: Block > Strip Trailing Spaces

Default Shortcut Key: None

Macro function: StripTrailingSpaces()

The Strip Trailing Spaces command can be used to remove trailing Spaces and/or Tabs
from the end of each line within the selection. The number of characters removed is
reported upon completion.

Trailing blanks can also be stripped automatically when loading a file. See the Strip
trailing blanks when loading a file option on the Configure | Preference | File I/Ooptions
page.

Trailing blanks can also be stripped automatically when saving a file. See the Strip
trailing blanks when saving a file option on the Configure | Preference | File I/O options
page.

Boxer Text Editor116

Copyright © 1991-2010 by Boxer Software

4.3.35 Total and Average

Menu: Block > Total and Average

Default Shortcut Key: None

Macro function: TotalAndAverage()

The Total and Average command can be used to obtain a report on the numeric data
contained on a range of selected lines. In addition to computing the total and average (
mean), the number of items, median, mode and standard deviation are also reported.

The median is the midpoint between the low and high values in the data.

The mode is the most frequently occurring value among the data.

The standard deviation provides a measure of the dispersion of the values within the
data.

The Total and Average command can be used on ranges of numbers that include
thousands separators (commas or periods, typically). The data is analyzed to
determine what convention for the thousands and decimal separator is in use. The
format of the report is adjusted to reflect the format in use.

Total and Average can be used on values that contain a leading currency symbol.
The following symbols will be ignored during computation: dollar sign, yen sign,
pound sterling sign, euro sign.

The Total and Average command reports its results using read-only edit boxes so
that any of the fields can be copied to the Windows clipboard. The Copy button can

Command Reference (in menu order) 117

Copyright © 1991-2010 by Boxer Software

be used to copy the full report to the current clipboard.

4.3.36 Word Count

Menu: Block > Word Count

Default Shortcut Key: None

Macro function: WordCount()

The Word Count command reports the number of lines, words and characters in the
current file, or within the currently selected text. The percentage of the processed text,
with respect to the whole file, is also reported.

The Word Count command reports its results using read-only edit boxes so that any
of the fields can be copied to the Windows clipboard. The Copy button can be used
to copy the fill report to the current clipboard.

4.4 Search Menu

4.4.1 Find

Menu: Search > Find

Default Shortcut Key: Ctrl+F

Macro function: Find()

The Find command is used to specify and initiate a search for a text string. Many
different options are available to make searching more flexible and more powerful.
Wildcard characters (also known as Regular Expressions) can also be used within the

Boxer Text Editor118

Copyright © 1991-2010 by Boxer Software

search string.

If the search string is found the text cursor will be moved to the matching string and
the text will be selected, if the Select matched text option is active. The matched text
can then be operated upon as can any other selected text.

If the search string is not found a dialog box will appear to report this fact. If you
prefer that this report appear on the message line instead, use the option provided on
the Configure | Preferences | Messages options page. The option is titled Report failed
searches in a popup message box.

The controls and options in the Find dialog box are described below:

Find
This is the edit box where the search string is entered. When the Find command is
issued, the word beneath the text cursor is placed into the Find edit box, in case that
word--or a word which is nearly the same--is to be the search string. The Find Fast
command can also be used to search for the word at the text cursor without raising the
Find Text dialog. To recall a search string which was previously entered, use the
drop-down list or press the up or down arrow keys to review the items in the history
list. Regular Expressions may be used within the search string.

The Delete key can be used while the drop-down list is displayed to delete a

Command Reference (in menu order) 119

Copyright © 1991-2010 by Boxer Software

selected entry from the history list.

Special characters can be entered into the Find edit box using the technique
described in the Help topic Inserting Special Characters.

Insert Tab
Use this button to insert a tab character into the Find edit box.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

In most fonts, the tab character does not have a unique visual representation. It
will often be depicted as an open square box (), as will be other characters in the
low-ASCII portion of the character set.

Sort list
If this box is checked the history list will be maintained in alphabetic order, rather than
in the order the strings were entered.

When switching to an alphabetically sorted list, the chronological ordering of the list
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Find operations, a list could result that contained only phrases beginning with
the letter 'A'. This occurs because entries at the bottom of the list will be removed
after the maximum size of the list is reached.

Direction

Forward
This option causes the search to be performed downward, toward the end of file.

Backward
This option causes the search to be performed upward, toward the start of file.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the

Boxer Text Editor120

Copyright © 1991-2010 by Boxer Software

longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

The Match Whole Words option is logically incompatible with the Incremental Search
option, and will therefore be disabled when Incremental Search is active.

Match at start of Line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of Line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Match syntax element
This option can be used to force a matching string to belong to a specified syntax
group. Example: you could type the search string 'while' and require that it be matched
only when it appears as a Reserved Word. Instances that occur within program
comments or quoted strings (or any other syntax) would not be matched. (This is a
powerful capability with lots of potential, and one we've never seen in another editor.)

Scope

Selected Text
This option can be used to restrict the search to the extent of the selected text.

Cursor to bottom / Cursor to top
This option causes the search to be performed from the text cursor onward, according
to the current direction. The search ends when either the top or bottom of the file is
reached.

Wrap around
This option causes the search to be performed from the cursor onward, according to the
current direction. When either the top or bottom of file is reached, the search wraps
around, and continues to the original cursor position.

When Find Next or Find Previous are used in wrap around mode, a message appears
on the status bar when the search has wrapped back to the location of the first
match. An option on the Configure | Preferences | Messages dialog page can be
used if you prefer that this event be reported in a pop-up message box instead.

Command Reference (in menu order) 121

Copyright © 1991-2010 by Boxer Software

Top to bottom / Bottom to top
This option causes the search to be performed from the top or bottom of file onward,
according to the current direction.

All open files
This option causes the search to be performed across all open files.

Active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Display Options

Incremental search
This option causes the search process to begin as soon as a character is pressed, rather
than waiting for OK to be pressed. When typing long search strings, you may find that
the match is found before you're done, thereby saving typing. Just press Enter to
dismiss the dialog and remain at the displayed match.

This option is disabled when Perl Regular Expressions are in use, since it is often the
case that a regular expression cannot be properly evaluated until it has been
completely typed.

Select matched text
This option causes the matched string to be selected so that it can be operated upon by
any command that operates upon selected text. When this option is not used, the text
cursor is simply placed at the start of the matching string.

This option is incompatible with the Extend Selection option, and will therefore be
disabled when that checkbox is checked.

Highlight all matches
This option causes all instances of the matched string to be highlighted within the
current file, and within other edited files. The highlighting will persist until a new Find
operation is performed, or until the end of the editing session. Alternatively,
highlighting can be disabled altogether using the View | Text Highlighting command
(this also affects the general Text Highlighting feature). The foreground and background
colors used to highlight matches can be set on the Configure | Colors dialog.

This option is not available for searches which use Regular Expressions.

To permanently configure one or more text strings for highlighting, use the Text
Highlighting feature.

Extend Selection
This option can be used to extend an existing selection to the point of the matched
string.

This option is logically incompatible with the Select matched text option, and will
therefore be disabled when that checkbox is checked. This option will also be

Boxer Text Editor122

Copyright © 1991-2010 by Boxer Software

disabled when the Scope has been set to Selected text.

Show at
This option controls the screen position at which matched strings are displayed. When
a new match is already on-screen, it will be shown in place, without redrawing the
screen. If the screen must be redrawn to show a new match, then the matching line will
be positioned at the designated screen location.

Notes

When the Incremental search and Select matched text options are both in use, the
Find Next and Find Previous commands can be issued from the keyboard (F3 and
Shift+F3, respectively) in order to display additional matches to the partially typed
search string while the Find dialog is still open.

4.4.2 Find (Hex)

Menu: Search > Find

Default Shortcut Key: Ctrl+F

Macro function: Find()

When a file is being viewed or edited in hex mode, a special version of the Find dialog is
presented for searching:

The Hex Find dialog has fewer options than the conventional Find dialog, and some
extra options that are particular to hex searching.

Search String

Command Reference (in menu order) 123

Copyright © 1991-2010 by Boxer Software

Find
This is the edit box where the search string is entered. The search string can be
entered as either a normal text string ("ABC," for example), or as a sequence of
two-digit hex bytes separated by spaces ("41 42 43," for example). The radio buttons
below the Find edit box can be used to force recognition of the search string in the
format you intend, but in most cases they will sense what you're typing and adjust to
the content of the string automatically.

Scope

Cursor to bottom / Cursor to top
This option causes the search to be performed from the text cursor onward, according
to the current direction. The search ends when either the top or bottom of the file is
reached.

Top to bottom / Bottom to top
This option causes the search to be performed from the top or bottom of file onward,
according to the current direction.

Direction

Forward
This option causes the search to be performed downward, toward the end of file.

Backward
This option causes the search to be performed upward, toward the start of file.

Options

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

4.4.3 Find Next

Menu: Search > Find Next

Default Shortcut Key: F3

Macro function: FindNext()

The Find Next command is used to repeat the most recent search in a forward direction.
The new search will obey all of the search options which were used when the search
was first initiated with the Find command.

When the Incremental search and Select matched text options are both in use, the
Find Next command can be issued from the keyboard in order to display additional
matches to the partially typed search string while the Find dialog is still open.

Boxer Text Editor124

Copyright © 1991-2010 by Boxer Software

4.4.4 Find Previous

Menu: Search > Find Previous

Default Shortcut Key: Shift+F3

Macro function: FindPrevious()

The Find Previous command is used to repeat the most recent search in a backward
direction. The new search will obey all the of search options which were used when the
search was first initiated with the Find command.

When the Incremental search and Select matched text options are both in use, the
Find Previous command can be issued from the keyboard (Shift+F3) in order to
display additional matches to the partially typed search string while the Find dialog
is still open.

4.4.5 Find Fast

Menu: Search > Find Fast

Default Shortcut Key: Ctrl+F3

Macro function: FindFast()

The Find Fast command can be used to quickly search for the next occurrence of the
word beneath the text cursor. The search is performed in the forward direction, toward
the end of file. The search options from the Find command dialog box are used, even if
the Find command has not yet been used in the current edit session.

4.4.6 Unhighlight Matches

Menu: Search > Unhighlight Matches

Default Shortcut Key: none

Macro function: UnhighlightMatches()

The Unhighlight Matches command removes on-screen highlighting from any text
strings that matched the most recent Find operation.

The Highlight all matches option on the Find dialog causes matched strings to be
highlighted throughout the current file. The Unhighlight Matches command removes
that highlighting, without disabling the Find dialog option. When a new text string is
searched for and found, it will again be highlighted. Put another way: this command
provides a means to remove the highlighting added by the Find command without the
need to disable the highlighting feature altogether, or perform a new, contrived search
that is designed to fail.

Command Reference (in menu order) 125

Copyright © 1991-2010 by Boxer Software

4.4.7 Replace

Menu: Search > Replace

Default Shortcut Key: Ctrl+R

Macro function: Replace()

The Replace command can be used to search for a text string and replace it with
another string. Replacements can be made selectively or globally, within the current
file or across all edited files. Regular Expressions can be entered within the search
string.

The controls and options in the Replace dialog box are described below:

Find text
This is the edit box where the search string is entered. When the Replace command is
issued, the word beneath the text cursor is placed into the Find Text edit box, in case
that word--or a word which is nearly the same--is to be the search string. To recall a
search string which was previously entered, use the drop-down list or press the up or
down arrow keys to review the items in the history list. Regular Expressions may be
used within the search string.

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Special characters can be entered into the Find text edit box using the technique

Boxer Text Editor126

Copyright © 1991-2010 by Boxer Software

described in the Help topic Inserting Special Characters.

Replace with
This is the edit box where the replace string is entered. To recall a replace string which
was previously entered, use the drop-down list or press the up or down arrow keys to
review the items in the history list.

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

The Replace command is line-oriented. It considers each line individually and does
not look across line enders to match a search string which might span lines.
Consequently, it is not possible to create new line enders using the Replace
command, nor to delete existing line enders. For these types of operations, the
Replace Line Enders command must be used.

Insert Tab
Use this button to insert a tab character into the Find Text or Replace with edit boxes.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Scope

Selected text
This option can be used to restrict the search and replace operation to the extent of the
selected text.

Cursor to bottom
This option causes the search and replace operation to be performed from the cursor
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

Wraparound
This option causes the search to be performed from the cursor onward, toward the end
of file. When the end of file is reached, the search resumes at the top and continues to
the original cursor position.

Top to bottom
This option causes the search and replace operation to be performed from the top of file
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

All open files
This option causes the search and replace operation to be performed across all open
files.

Active project
Use this option to limit the scope of the Replace operation to those files within the

Command Reference (in menu order) 127

Copyright © 1991-2010 by Boxer Software

active project.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Replace Options

Process $1, $2, $3... substring directives in the replace string
When this option is checked, special directives in the replace string will be replaced at
match-time with subpatterns from the search string. This is a very powerful feature, as
the following examples will illustrate.

Example 1:

Find text: (\w+),(\w+)
Replace with: $2 $1

The search string will match a string of one or more word characters followed by a
comma, followed by another string of one or more word characters. For example:

Smith,John. The parentheses are used to define subpatterns. The first open

parenthesis indicates subpattern number 1, the next number 2, and so on. In this way,

Boxer Text Editor128

Copyright © 1991-2010 by Boxer Software

the replace string can vary depending on what the search string matches. If the string

Smith,John is matched, then the replace string will be John Smith. Running this

search and replace operation on a data file would have the effect of inverting a list of

Lastname,Firstname data to Firstname Lastname format.

Example 2:

Find text: (Boxer|BOXER)
Replace with: $1

This search string will match either Boxer or BOXER. The replace string will be equal to

whatever the string matched, surrounded by the HTML open-bold and close-bold
sequences. In this way, the target word can be replaced without regard to its case,
while ensuring that no case conversion occurs due to the replacement.

The entire matching string is designated as $0, even if subpatterns are not used.

Up to 100 subpatterns can be referenced, numbering from $0 to $99.

Example 3:

Find text: "([^"]+),([^"]*)"
Replace with: "$1$2"

This pair of search and replace strings can be used to remove commas from within the
data fields of quote and comma-delimited data, without disturbing the commas that are
used as field separators. The search pattern matches an entire double-quoted data
field, so long as a comma appears within the data with at least one character to its left.
The replace string references the data on either side of the comma as $1 and $2,

resulting in a replace string that duplicates the string matched, except that the comma
is excluded. (If multiple commas appear within a single data field, you'll need to run
the replace operation repeatedly until all occurrences have been replaced.)

References to named subpatterns such as (?P=name) are also recognized in the

replace string. See the Regular Expressions topic for more information about named
subpatterns.

Replace only the first occurrence on a line
When this option is checked, only the first matching instance on a line will be
considered eligible for replacement.

Confirm during Replace All
When this option is selected the Replace All operation will prompt before making each
replacement. A dialog box will be presented so that each replacement can be
confirmed. From this confirmation dialog box it is possible to later opt for unconditional
replacements, by selecting its All button.

Sort history lists
If this box is checked the search and replace history lists will be maintained in
alphabetic order, rather than in the order the strings were entered.

Command Reference (in menu order) 129

Copyright © 1991-2010 by Boxer Software

When switching to alphabetically sorted lists, the chronological ordering of the lists
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Replace operations, a list could result that contained only phrases beginning
with the letter 'A'. This occurs because entries at the bottom of the list will be
removed after the maximum size of the list is reached.

4.4.8 Replace (Hex)

Menu: Search > Replace

Default Shortcut Key: Ctrl+R

Macro function: Replace()

When a file is being edited in Hex Mode, a special version of the Replace dialog is
presented for performing replacements:

The Hex Replace dialog has fewer options than the conventional Replace dialog, and
some extra options that are particular to hex replacing.

Search String

Boxer Text Editor130

Copyright © 1991-2010 by Boxer Software

Find text
This is the edit box where the search string is entered. The search string can be
entered as either a normal text string ("ABC," for example), or as a sequence of
two-digit hex bytes separated by spaces ("41 42 43," for example). The radio buttons
below the Find text edit box can be used to force recognition of the search string in the
format you intend, but in most cases they will sense what you're typing and adjust to
the content of the string automatically.

Replace String

Replace with
This is the edit box where the replacement string is entered. The replacement string
can be entered as either a normal text string ("ABC," for example), or as a sequence of
two-digit hex bytes separated by spaces ("41 42 43," for example). The radio buttons
below the Replace with edit box can be used to force recognition of the replace string in
the format you intend, but in most cases they will sense what you're typing and adjust
to the content of the string automatically.

After the Replace button is clicked, a confirmation dialog appears:

As noted, the Replace Hex command does not provide an option to selectively choose
which matches will be replaced. To begin the replace operation, click Yes.

Scope

Cursor to bottom
This option causes the search and replace operation to be performed from the text
cursor onward. The operation ends when the bottom of the file is reached, or when no
additional matches can be found.

Top to bottom
This option causes the search and replace operation to be performed from the top of file
onward. The operation ends when the bottom of the file is reached, or when no
additional matches can be found.

Command Reference (in menu order) 131

Copyright © 1991-2010 by Boxer Software

Options

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Length of search string must equal length of replace string
In many cases, it is not allowable to change the length of the hex/binary file that is
being edited. When this option is checked, Boxer will enforce a requirement that the
length of the search and replace string be equal, thereby guaranteeing that the file's
length will not change due to a Replace operation. In this case, a warning dialog is
presented:

4.4.9 Replace Again

Menu: Search > Replace Again

Default Shortcut Key: Shift+Ctrl+R

Macro function: ReplaceAgain()

The Replace Again command is used to repeat the most recent search and replace
operation. The new operation will obey all of the options which were used when the
previous search and replace operation was initiated with the Replace command.

4.4.10 Replace Line Enders

Menu: Search > Replace Line Enders

Default Shortcut Key: Ctrl+Alt+R

Macro function: ReplaceLineEnders()

The Replace Line Enders command can be used to search for a text string and replace it

Boxer Text Editor132

Copyright © 1991-2010 by Boxer Software

with another string. Replacements can be made selectively or globally, within the
current file or across all edited files. Regular Expressions can be entered within the
search string.

Unlike the Replace command, the Replace Line Enders command can be used to
perform search and replace operations that span lines, and which may result in the
addition or removal of lines from the file.

 Important Note: The Replace Line Enders command performs its replacements
unconditionally, without user confirmation. When large operations are
performed, Undo may be unavailable. For these reasons, it's advisable to make a
backup copy of your file before using this command.

The controls and options in the Replace Line Enders dialog box are described below:

Find text
This is the edit box where the search string is entered. When the Replace Line Enders
command is issued, the word beneath the text cursor is placed into the Find Text edit
box, in case that word--or a word which is nearly the same--is to be the search string.
To recall a search string which was previously entered, use the drop-down list or press
the up or down arrow keys to review the items in the history list. Regular Expressions
may be used within the search string.

Use the sequence \n to represent a line ender (newline). Example: if you are searching

for a line that ends with 'jelly' that occurs just before a line that starts with 'bean', your

Command Reference (in menu order) 133

Copyright © 1991-2010 by Boxer Software

search string would be: jelly\nbean

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Special characters can be entered into the Find text edit box using the technique
described in the Help topic Inserting Special Characters.

Replace with
This is the edit box where the replace string is entered. To recall a replace string which
was previously entered, use the drop-down list or press the up or down arrow keys to
review the items in the history list.

Use the sequence \n to represent a line ender (newline). Example: if you wanted to

add two blank lines after all lines that end with the text THE FOLLOWING:, theses

search and replace strings would be used:

Find text: THE FOLLOWING:\n
Replace with: THE FOLLOWING:\n\n\n

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Insert Tab
Use this button to insert a tab character into the Find text or Replace with edit boxes.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Scope

Selected text
This option can be used to restrict the search and replace operation to the extent of the
selected text.

Cursor to bottom
This option causes the search and replace operation to be performed from the cursor
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

Top to bottom
This option causes the search and replace operation to be performed from the top of file
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

All open files

Boxer Text Editor134

Copyright © 1991-2010 by Boxer Software

This option causes the search and replace operation to be performed across all open
files.

Active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Replace Options

Process $1, $2, $3... substring directives in the replace string
When this option is checked, special directives in the replace string will be replaced at
match-time with subpatterns from the search string. This is a very powerful feature, as
the following examples will illustrate.

Example 1:

Find text: (\w+),(\w+)
Replace with: $2 $1

Command Reference (in menu order) 135

Copyright © 1991-2010 by Boxer Software

The search string will match a string of one or more word characters followed by a
comma, followed by another string of one or more word characters. For example:

Smith,John. The parentheses are used to define subpatterns. The first open

parenthesis indicates subpattern number 1, the next number 2, and so on. In this way,
the replace string can vary depending on what the search string matches. If the string

Smith,John is matched, then the replace string will be John Smith. Running this

search and replace operation on a data file would have the effect of inverting a list of

Lastname,Firstname data to Firstname Lastname.

Example 2:

Find text: (Boxer|BOXER)
Replace with: $1

The search string will match either Boxer or BOXER. The replace string will be equal to

whatever the string matched, surrounded by the HTML open-bold and close-bold
sequences. In this way, the target word can be replaced without regard to its case,
while ensuring that no case conversion occurs due to the replacement.

The entire matching string is designated as $0, even if subpatterns are not used.
Up to 100 subpatterns can be referenced, numbering from $0 to $99.

Sort history lists
If this box is checked the search and replace history lists will be maintained in
alphabetic order, rather than in the order the strings were entered.

When switching to alphabetically sorted lists, the chronological ordering of the lists
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Replace operations, a list could result that contained only phrases beginning
with the letter 'A'. This occurs because entries at the bottom of the list will be
removed after the maximum size of the list is reached.

4.4.11 Find Mate

Menu: Search > Find Mate

Default Shortcut Key: Ctrl+]

Macro function: FindMate()

The Find Mate command locates the mating parenthetical element to the parenthetical
element at the text cursor, and moves the text cursor ahead (or back) to that position.
The search begins at the text cursor and will continue all the way to the start or end of
the file, as may be needed.

Boxer Text Editor136

Copyright © 1991-2010 by Boxer Software

If the text cursor is sitting on an opening parenthetical character such as (, [, <, or {
, the cursor will be moved ahead to the corresponding closing mate, with consideration

given to nesting. If the cursor is situated on a closing parenthetical character such as)
,], >, or }, the cursor will be moved backward to the corresponding opening mate,

again with consideration given to nesting.

The Find Mate command also recognizes text strings as parenthetical elements, and
many of the most common parenthetical pairs have been pre-defined. For example: if
the cursor is sitting on begin, Find Mate will locate end. If the cursor is sitting on <i>
(the HTML code to begin italics), Find Mate will find </i>. If the cursor is sitting on

while, Find Mate will find endwhile.

The Find Mate command can be used to extend an existing text selection to a closing
element. For example, to select a parenthesized block of text, select the opening
parenthesis and issue the Find Mate command. The selection will be extended to
include all of the text up to and including the closing parenthesis.

The parenthetical pairs recognized by Find Mate can be viewed and/or defined on the
Configure | Preferences | Editing 1 options page. The name of the option is Set mating
pairs for Find Mate.

When editing a file for which syntax highlighting information is available, Find Mate
will ignore parenthetical elements that occur within block comments, end-of-line
comments, character constants and quoted strings. If syntax highlighting is
disabled, or unavailable, this feature cannot be performed.

Find Mate can also be used to test for unmated parenthetical elements, since a
request to find a mate for an unbalanced element will result in a report that the
closing mate could not be found.

When defining Find Mate pairs for tagged languages such as HTML, remember that
commands which include parameters will need different treatment than commands
that cannot use parameters. For example, if you were to define 'table' using the
definition <table>=</table>, Boxer would not be able to find matches when

'table' was used with parameters, such as <table width="200">. For this

reason, a definition of the form <table=</table> should be used instead, without

the closing > character.

Find Mate is not able to handle mating pairs whose beginning or ending element is
shared by other parenthetical pairs. For example, the definitions #if=#endif,

#ifdef=#endif and #ifndef=#endif all share the same closing element,

#endif. The nesting complexities that could arise from such definitions is beyond

the scope of the Find Mate command.

4.4.12 Find and Count

Menu: Search > Find and Count

Command Reference (in menu order) 137

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: FindAndCount()

The Find and Count command can be used to count the number of occurrences of a
specified text string within the current file, or within all edited files. Find and Count is a
passive operation, it simply reports the number of matches found for the specified
string, within the specified range.

The search options that appear in the Find and Count dialog box are the same as those
which appear in the Replace dialog box. See the Replace topic for full details.

The Find and Count command reports its result using a read-only edit box so that
the value can be copied to the Windows clipboard.

4.4.13 Find a Disk File

Menu: Search > Find a Disk File

Default Shortcut Key: none

Macro function: FindADiskFile()

The Find a Disk File command provides the ability to locate one or more disk files which
match a supplied filename or file pattern(s). Matching filenames are displayed in a
results window, and one or more files from the list can then be selected for editing.
The dialog box is non-modal and stay-on-top, so you can peruse the files opened and
later return to the dialog to open other files, without losing the search results.

A range of options are provided to control how the search is conducted, and what

Boxer Text Editor138

Copyright © 1991-2010 by Boxer Software

drives, directories and files should be considered:

Disk drive to search on
This drop-down list allows you to specify the disk drive to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Directory to search in
This drop-down list allows you to specify the directory to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Use the folder icon with the red square in it to jump to the directory of the current
file.

File or file pattern(s) to search for
This edit box allows you to specify the filename and/or file pattern(s) to search for. A
list of common file patterns has been supplied in the drop-down list, or you can type
your own. When specifying multiple patterns, separate the patterns with a semi-colon
and do not use intervening spaces.

Options

Command Reference (in menu order) 139

Copyright © 1991-2010 by Boxer Software

Search all drives and directories
If this option is selected all drives and subdirectories will be searched, except that
removable drives may be exempted using the option below.

Ignore removable drives
If this option is selected drives with removable media (such as floppy drives and mass
storage cartridges) will not be searched.

Search subdirectories
If this option is selected all subdirectories below the selected directory will also be
searched.

Consider Hidden bit files
If this option is selected, files whose Hidden attribute bit is set will be considered during
the file search. The Hidden attribute causes a file to become invisible to many directory
listing programs, and is often used together with the System file attribute.

Consider System bit files
If this option is selected, files whose System attribute bit is set will be considered
during the file search. The System attribute is sometimes used by the operating
system to distinguish files which should not be altered or deleted.

Consider Archive bit files

If this option is selected, files whose Archive attribute bit is set will be considered
during the file search. The Archive attribute is used by the operating system to flag
those files which have been changed since the previous backup operation. Backup
programs will typically reset a file's Archive bit after saving the file to a backup device.
In most cases you will want to leave this checkbox active to ensure that recently
changed files will be searched.

4.4.14 Find Text in Disk Files

Menu: Search > Find Text in Disk Files

Default Shortcut Key: none

Macro function: FindTextInDiskFiles()

The Find Text in Disk Files command provides the ability to search for a text string
across a specified range of drives, directories and files. Lines which contain the desired
string are presented in a results window, and the file containing a match can be opened
by pressing Enter or double clicking on the line.

Regular Expressions can be used when specifying the search string, and one or more
file patterns can be used to search within an entire class of files.

The results window is non-modal, so you can peruse the files opened and later return to
the window to open other files, without losing the search results. The results window
has a Copy All button which allows its results to be copied to the current clipboard.
The Copy Selected button will copy only those lines that have been selected. The Open

Boxer Text Editor140

Copyright © 1991-2010 by Boxer Software

All button will automatically open all files in which matching lines were found.

A wide range of options are provided to control how the search is conducted, and what
drives, directories and files should be searched:

Disk drive to search on
This drop-down list allows you to specify the disk drive to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Directory to search in
This drop-down list allows you to specify the directory to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled. Note that a
double-click is required to select a directory; a single-click will not suffice.

Use the folder icon with the red square in it to jump to the directory of the current
file.

Favorite directories
This control can be used to recall other directories that have been used in the past.

File(s) or file pattern(s) to search within
This edit box allows you to specify the filename and/or file pattern(s) to search within.
A list of common file patterns has been supplied in the drop-down list, or you can type
your own. When specifying multiple patterns, separate the patterns with a semi-colon (

;) and do not use intervening spaces.

Command Reference (in menu order) 141

Copyright © 1991-2010 by Boxer Software

The file patterns that appear in the drop-down list are shared with the File Open
dialog. The file patterns which appear in this dialog are user-definable via the
Configure | Preferences | File I/O options page.

Regardless of whether or not such files match the supplied filename(s) or file
pattern(s), binary files will not be searched by this command.

Text to search for
This edit box is used to specify the text string to be found. Regular Expressions can
used if desired. The associated drop-down list can be used to recall previous search
strings.

The Delete key can be used while the drop-down list is displayed to delete the
selected entry from the history list.

Special characters can be entered into the Text to search for edit box using the
technique described in the Help topic Inserting Special Characters.

Insert Tab
Use this button to insert a tab character into the Text to search for edit box.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Sort List
If this box is checked the history list will be maintained in alphabetic order, rather than
in the order the strings were entered.

When switching to an alphabetically sorted list, the chronological ordering of the list
will be lost, and cannot be restored by unchecking the checkbox.

File Search Options

Search all drives and directories
If this option is selected all drives and subdirectories will be searched, except that
removable drives may be exempted using the option below.

Ignore removable drives
If this option is selected drives with removable media (such as floppy drives and mass
storage cartridges) will not be searched.

Search subdirectories
If this option is selected all subdirectories below the selected directory will also be
searched.

Consider Hidden bit files
If this option is selected, files whose Hidden attribute bit is set will be considered during
the search. The Hidden attribute causes a file to become invisible to many directory
listing programs, and is often used together with the System file attribute.

Boxer Text Editor142

Copyright © 1991-2010 by Boxer Software

Consider System bit files
If this option is selected, files whose System attribute bit is set will be considered
during the search. The System attribute is sometimes used by the operating system to
distinguish files which should not be altered or deleted.

Consider Archive bit files
If this option is selected, files whose Archive attribute bit is set will be considered
during the search. The Archive attribute is used by the operating system to flag those
files which have been changed since the previous backup operation. Backup programs
will typically reset a file's Archive bit after saving the file to a backup device. In most
cases you will want to leave this checkbox active to ensure that recently changed files
will be searched.

Stop searching after n matches are found
Use this option to stop the search after a specified number of matches have been
found.

Scope

Search within the file set specified to the left
Use this option to search a file set which has been designated in the disk, directory and
file controls at the left side of the dialog.

Search within all open files
Use this option to restrict the search to those files that are currently open for editing.

Search the active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Text Search options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole

Command Reference (in menu order) 143

Copyright © 1991-2010 by Boxer Software

word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Report Options

Show matching files/lines
If this option is selected, the text of the matching lines will be shown in the results
window, grouped by file.

Show matching files
If this option is selected, the filenames in which matching lines occurred will be
reported, but the matching lines will not be shown..

Show files that do not contain the search text
If this option is selected, the filenames in which matching lines do not appear will be
reported..

Show line numbers
If this option is selected, line numbers will be displayed to the left of each matching
line.

Show count of matches
If this option is selected, the count of matches found in each file will be shown in the
results window.

Show divider bars

If this option is selected, divider bars will be used within the results window to separate
one file's matches from another.

If you prefer that the Find Text in Disk Files dialog automatically start in the
directory of the current file, use the relevant option on the Configure | Preferences |
File I/O dialog page.

4.4.15 Find Duplicate Lines

Menu: Search > Find Duplicate Lines

Default Shortcut Key: none

Boxer Text Editor144

Copyright © 1991-2010 by Boxer Software

Macro function: FindDuplicateLines()

The Find Duplicate Lines command can be used to locate all lines within the current file
which are duplicated elsewhere in the file. The duplicate lines are copied, with line
numbers, into an untitled file. No change is made to the current file during the
operation.

If a range of lines is selected, Find Duplicate Lines will operate only on that portion of
the file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

If you need to delete duplicate lines, use the Delete Duplicate Lines command.

This command can be useful for finding duplicate items within a list which is
expected to contain only unique entries. For example: given a list of charitable
donor names, Find Duplicate Lines could be used to find those parties who have
contributed more than once.

4.4.16 Find Unique Lines

Menu: Search > Find Unique Lines

Default Shortcut Key: none

Macro function: FindUniqueLines()

The Find Unique Lines command can be used to locate all lines within the current file
which are not duplicated elsewhere in the file. The unique lines are copied, with line
numbers, into an untitled file. No change is made to the current file during the
operation.

If a range of lines is selected, Find Unique Lines will operate only on that portion of the
file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

The effect of this command is similar to the Find Distinct Lines command, with an
important difference: Find Unique Lines omits any lines which are duplicated from its
report. Find Distinct Lines includes duplicated lines, but places just a single instance of
such lines in its report. An example will clarify:

Original File's Content... Find Unique Lines gives... Find Distinct Lines gives...

AAA AAA AAA

BBB DDD BBB

BBB EEE CCC

Command Reference (in menu order) 145

Copyright © 1991-2010 by Boxer Software

CCC FFF DDD

CCC EEE

DDD FFF

EEE

FFF

This command can be useful for finding items within a list which are not duplicated
elsewhere in the list. For example: given a list of zip codes to which deliveries must
be made, Find Unique Lines could be used to find those zip codes for which only one
delivery must be made, allowing special arrangements to be made.

4.4.17 Find Distinct Lines

Menu: Search > Find Distinct Lines

Default Shortcut Key: none

Macro function: FindDistinctLines()

The Find Distinct Lines command can be used to isolate all distinct lines within the
current file. The distinct lines are copied, with line numbers, into an untitled file. No
change is made to the current file during the operation.

If a range of lines is selected, Find Distinct Lines will operate only on that portion of the
file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

The effect of this command is similar to the Find Unique Lines command, with an
important difference: Find Unique Lines omits from its report any lines which are
duplicated. Find Distinct Lines includes duplicated lines, but places just a single
instance of such lines in its report. An example will clarify:

Original File's Content... Find Unique Lines gives... Find Distinct Lines gives...

AAA AAA AAA

BBB DDD BBB

BBB EEE CCC

CCC FFF DDD

CCC EEE

DDD FFF

EEE

Boxer Text Editor146

Copyright © 1991-2010 by Boxer Software

FFF

This command can be useful for isolating distinct entries in a list. For example: a
file contains lists of email address that were merged from multiple sources. Find
Distinct Lines could be used to create a new list that contains one occurrence of
each distinct email address. (Following the same example, a similar result could be
obtained using the Delete Duplicate Lines command.)

4.4.18 Find Differing Lines

Menu: Search > Find Differing Lines

Default Shortcut Key: Ctrl+D

Macro function: FindDifferingLines()

The Find Differing Lines command can be used to locate differing lines among two or
more similar files. After the command is issued, the text cursor will be advanced in
each open file to the next line whose text is not identical in among all open files.

This command will be most efficient when used as follows: open the files to be
compared and select Window | Tile Across or Window | Tile Down to arrange the
windows in a left-to-right or top-to-bottom arrangement. Position the text cursor in
each file to line 1, or to a line just before where the comparison is to begin. In any
case, the text on each starting line should be identical among all the files being
compared. When the Find Differing Lines command is issued, the text cursor will be
advanced in each file until a line is found which differs among the open files.

The first differing column in the line will be highlighted, and the operation is complete.
You can make any corrections that might be needed and then issue the command again
to find the next difference. If the difference that was found involves the addition or
deletion of one or more lines, the files will need to be re-synchronized manually before
proceeding. That is, the text cursor must be moved in each file to a line with identical
content so that a new comparison can begin.

Find Differing Lines ignores minimized files during its operation, so if there are any
files open which should not be compared they can be minimized before beginning.

4.5 Jump Menu

4.5.1 Go to Line

Menu: Jump > Go to Line

Default Shortcut Key: Ctrl+G

Macro function: GoToLine()

Command Reference (in menu order) 147

Copyright © 1991-2010 by Boxer Software

The Go to Line command can be used to jump immediately to a specified line number in
the current file. Options are also provided in the Go to Line dialog box to move up or
down by the value specified, or to treat the value as a percentage. For example,
specifying 50% would result in movement to a line midway through the current file.

If text is selected when this command is issued, an option will be available to extend
the selection to the new location.

The current line number is always displayed on the Status Bar, next to the 'L' label.
The Go to Line command can also be issued by double clicking within the line number
display in the Status Bar.

The Go To Line number dialog also recognizes the following syntax: +10 to jump
ahead 10 lines; -15 to jump back 15 lines, and 45% to move to the 45 percent
position in the file. The use of this syntax overrides the mode indicated by the
radiobutton options.

4.5.2 Go to Column

Menu: Jump > Go to Column

Default Shortcut Key: Shift+Ctrl+G

Macro function: GoToColumn()

The Go to Column command can be used to jump immediately to a specified column
number on the current line. Options are also provided in the Go to Column dialog box
to move left or right by the value specified, or to treat the value as a percentage. For
example, specifying 25% would result in movement to column 25 in a line with 100
characters.

If text is selected when this command is issued, an option will be available to extend
the selection to the new location.

Boxer Text Editor148

Copyright © 1991-2010 by Boxer Software

The current column number is always displayed on the Status Bar, next to the 'C' label.
The Go to Column command can also be issued by double clicking within the column
number display in the Status Bar.

The Go To Column dialog also recognizes the following syntax: +10 to jump ahead
10 columns; -15 to jump back 15 columns, and 45% to move to the 45 percent
position along the current line. The use of this syntax overrides the mode indicated
by the radiobutton options.

4.5.3 Go to Byte Offset

Menu: Jump > Byte Offset

Default Shortcut Key: none

Macro function: GoToByteOffset()

The Go to Offset command can be used to jump immediately to a specified byte offset
within the current file. Options are also provided in the Go to Offset dialog box to move
backward or forward by the value specified, or to treat the value as a percentage. For
example, specifying 50% would result in movement to a character midway through the
file.

When viewing a file in Hex Mode, the Go to Byte Offset command will adjust itself to
provide the expected movement to positions within the hex display. A hexadecimal
offset can be specified by prefixing the value entered with an 'x'.

If text is selected when this command is issued, an option will be available to extend
the selection to the new location.

Command Reference (in menu order) 149

Copyright © 1991-2010 by Boxer Software

The Go To Offset dialog also recognizes the following syntax: +10 to jump ahead 10
bytes; -15 to jump back 15 bytes, and 45% to move to the 45 percent position in
the file. The use of this syntax overrides the mode indicated by the radiobutton
options.

4.5.4 Next Bookmark

Menu: Jump > Next Bookmark

Default Shortcut Key: Shift+Ctrl+Down

Macro function: NextBookmark()

The Next Bookmark command moves the text cursor to the nearest bookmark which
appears below the text cursor's current location. If the Next Bookmark command finds
no bookmarks below the current line, the text cursor will wrap around and be placed on
the first bookmark in the file.

Travel among bookmarks is based upon location, not bookmark number.

The Bookmark Manager can be used to view all bookmarked lines in a single view, and
navigate to, or delete, selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

If a selection exists when this command is issued, the selection will be extended to
the bookmarked location.

4.5.5 Previous Bookmark

Menu: Jump > Previous Bookmark

Default Shortcut Key: Shift+Ctrl+Up

Macro function: PreviousBookmark()

Boxer Text Editor150

Copyright © 1991-2010 by Boxer Software

The Previous Bookmark command moves the text cursor to the nearest bookmark which
appears above the text cursor's current location. If the Previous Bookmark command
finds no bookmarks above the current line, the text cursor will wrap around and be
placed on the last bookmark in the file.

Travel among bookmarks is based upon location, not bookmark number.

The Bookmark Manager can be used to view all bookmarked lines in a single view, and
navigate to, or delete, selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

If a selection exists when this command is issued, the selection will be extended to
the bookmarked location.

4.5.6 Toggle Bookmark

Menu: Jump > Toggle Bookmark

Default Shortcut Key: F9

Macro function: ToggleBookmark()

The Toggle Bookmark command places a bookmark at the current location of the text
cursor, or clears a bookmark if the line is already bookmarked. Bookmarks are
displayed at the far left edge of the window as a small number (0-9) within a gray box.
Up to ten bookmarks can be placed in a file at any one time.

Command Reference (in menu order) 151

Copyright © 1991-2010 by Boxer Software

If the bookmarked column is altered due to the addition or deletion of text on the
bookmarked line, the bookmark will be adjusted automatically. If a line containing a
bookmark is deleted, the bookmark will be cleared.

Bookmarks can be used to mark various points of interest within a text file. Once one
or more lines have been bookmarked, you can use the Previous Bookmark and Next
Bookmark commands to move among the bookmarked lines. The Bookmark Manager
can be used to view all bookmarked lines in a single view, and navigate to, or delete,
selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

The display of bookmarks is controlled by the View | Bookmarks command. Bookmarks
remain operational even if they are not currently being shown on-screen.

4.5.7 Bookmark Manager

Menu: Jump > Bookmark Manager

Default Shortcut Key: Shift+F9

Macro function: BookmarkManager()

The Bookmark Manager command displays a pop-up dialog showing all bookmarked
lines in the files being edited. Double clicking on an entry causes the associated file to
become current, and the cursor to be placed on the bookmarked line. The display can
be sorted on any of the fields by clicking on the header bar at the top of each field.
Press the Delete key to remove a bookmark.

Boxer Text Editor152

Copyright © 1991-2010 by Boxer Software

The Bookmark Manager can be left open while working in Boxer, so that it's available
for reference or quick navigation.

Show filepaths
Use this option to control whether filenames or full filepaths are displayed for each
bookmark entry.

Stay on Top
This checkbox controls whether or not the dialog will remain on top of other windows.

Show Grid Lines
Use this option to toggle on/off the display of grid lines within the view.

Show all bookmarks
This checkbox can be used to control whether bookmarks are displayed for all open
files, or for only the current file.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

Command Reference (in menu order) 153

Copyright © 1991-2010 by Boxer Software

4.5.8 Next Paragraph

Menu: Jump > Next Paragraph

Default Shortcut Key: none

Macro function: NextParagraph()

The Next Paragraph command moves the text cursor to the start of the next paragraph.

 For purposes of this command, a paragraph is considered to be a block of lines with
one or more empty lines between them. Contiguous paragraphs which are denoted
by a change of indent on the first line, and not by an intervening blank line, will not
be recognized to be distinct paragraphs.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

4.5.9 Previous Paragraph

Menu: Jump > Previous Paragraph

Default Shortcut Key: none

Macro function: PreviousParagraph()

The Previous Paragraph command moves the text cursor to the start of the previous
paragraph.

 For purposes of this command, a paragraph is considered to be a block of lines with
one or more empty lines between them. Contiguous paragraphs which are denoted
by a change of indent on the first line, and not by an intervening blank line, will not
be recognized to be distinct paragraphs.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

4.5.10 Go to Paragraph

Menu: Jump > Go to Paragraph

Default Shortcut Key: none

Macro function: GoToParagraph()

The Go to Paragraph command can be used to jump immediately to a specified
paragraph number in the current file. The distinction between lines and paragraphs
relates to the Visual Wrap feature. When Visual Wrap is active, lines with soft line

Boxer Text Editor154

Copyright © 1991-2010 by Boxer Software

enders are wrapped to width of the window, or to some other wrapping margin. In
Visual Wrap mode, a single physical line of text might occupy more than one line on the
screen; screen line 11 might correspond to paragraph 4.

Go to Paragraph can be used to move easily among paragraphs:

 The distinction between lines and paragraphs will become more obvious if the View
Line Numbers option is active.

4.5.11 Next Function

Menu: Jump > Next Function

Default Shortcut Key: Ctrl+Alt+Down

Macro function: NextFunction()

The Next Function command moves the cursor to the next function (or procedure)
declaration within the current file. This command makes it possible to move through a
source code file on a function-by-function basis.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

 The Next Function command relies upon the Ctags Function Index feature to
perform its service. If the Ctags feature has been disabled, or if the file being
edited is not supported by Ctags, the Next Function command will be unavailable.

 The types of Ctags identifiers for which this command applies is user-configurable.
The default setting includes entries for "function", "procedure", "subroutine",
"method", etc. The full list can be viewed or changed on the Advanced tab of the
Configure | Ctags Function Indexing dialog.

4.5.12 Previous Function

Menu: Jump > Previous Function

Default Shortcut Key: Ctrl+Alt+Up

Command Reference (in menu order) 155

Copyright © 1991-2010 by Boxer Software

Macro function: PreviousFunction()

The Previous Function command moves the cursor to the previous function (or
procedure) declaration within the current file. This command makes it possible to move
backward through a source code file on a function-by-function basis.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

 The Previous Function command relies upon the Ctags Function Index feature to
perform its service. If the Ctags feature has been disabled, or if the file being
edited is not supported by Ctags, the Previous Function command will be
unavailable.

 The types of Ctags identifiers for which this command applies is user-configurable.
The default setting includes entries for "function", "procedure", "subroutine",
"method", etc. The full list can be viewed or changed on the Advanced tab of the
Configure | Ctags Function Indexing dialog.

4.5.13 Declaration

Menu: Jump > Declaration

Default Shortcut Key: none

Macro function: Declaration()

When editing within a supported source code file, the Declaration command provides a
means to jump from an identifier reference to the point at which the identifier was
declared. For example, when sitting at a function/procedure call, issuing the
Declaration command will cause the cursor to jump to the declaration of the
function/procedure being referenced. The Declaration command can also be used to
jump to the declaration point of defined constants and global variables, so long as these
entities are indexed by Ctags.

If the declaration resides in another file, that file will be opened and/or made current
before moving the cursor to the relevant declaration line. If more than one declaration
exists for the identifier at the cursor, the Ctags Function Index dialog will be displayed
so that the proper instance can be selected.

 The Declaration command relies upon the Ctags Function Index feature to perform
its service. If the Ctags feature has been disabled, or if the file being edited is not
supported by Ctags, the Declaration command will be unavailable.

After moving to a declaration, use the Reference command to return to the identifier
reference from which the Declaration command was made.

4.5.14 Reference

Menu: Jump > Reference

Boxer Text Editor156

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: Reference()

The Reference command is used in conjunction with the Declaration command. After
issuing the Declaration command to jump from an identifier reference to its declaration,
use the Reference command to return to the point of reference.

4.5.15 Ctags Function Index

Menu: Jump > Ctags Function Index

Default Shortcut Key: none

Macro function: CtagsFunctionIndex()

The Ctags Function Index command displays a dialog containing a list of functions,
procedures and global variables for the files currently being edited. The list can be used
as a handy reference to function names and their calling parameters, or as a navigation
aid: double-clicking on an entry will jump to the file and line that corresponds to the
highlighted entry. The dialog is non-modal, so it can remain open alongside Boxer as
you're doing other work.

In order to index the edited files, Boxer runs an external program and then reads the
output file it creates. Exuberant Ctags is a fast, multi-language implementation of the
original ctags and etags programs that are available on Unix. Exuberant Ctags is

http://ctags.sourceforge.net/

Command Reference (in menu order) 157

Copyright © 1991-2010 by Boxer Software

distributed under the GNU General Public License. The program ctags.exe and a zip

file containing the program's source code have been installed in a directory named
'Ctags' beneath the Boxer installation directory.

Exuberant Ctags provides built-in support for indexing the following languages:

Ant HTML Ruby

Assembler Jave Scheme

ASP Javascript Shell scripts (Bourne/Korn/Z)

Awk Lisp S-Lang

Basic Lua SML (Standard ML)

BETA Make Tcl

C and C++ MATLAB TeX

C# Objective Caml Vera

COBOL Pascal Veilog

DOS Batch Perl VHDL

Eiffel PHP Vim

Erlang PL/SQL YACC

Flex Python

Fortran REXX

In addition, Boxer is supplied with a CTAGS.CNF configuration file that adds support for

these languages:

ActionScript Latex System Verilog

Cascading Style Sheets Miva XML

INI files

Support for indexing additional languages can be added by making additions to the

CTAGS.CNF file. The process is not trivial, however, and it's often easier to find a

configuration on the internet which has been developed by someone else.
Instructions for adding additional languages can be found at the Exuberant Ctags
website. By keeping your copy of Ctags up-to-date, you can also be assured of
getting access to new built-in languages as they are added by its developers. The
version of Ctags that was supplied with Boxer was current at the time of Boxer's
release.

The list can be sorted on any of its columns by clicking on the associated column title in
the header at the top of the listing. Clicking on the same header a second time will
reverse the order of the sort.

The function prototype information contained in the Ctags Function Index dialog is also

http://ctags.sourceforge.net/

Boxer Text Editor158

Copyright © 1991-2010 by Boxer Software

available for display when the mouse hovers over a function that has been indexed:

The display of these popup tool tips can be configured by clicking the Settings button,
which leads to the Configure Ctags Function Indexing dialog.

Popup tool tips can also be displayed for global variables, structure and class members,
typedefs, macros and other language-dependent identifiers:

Refresh
Use the Refresh button to re-index all open files, and any other 'extra files' that may
have been designated in the Configure Ctags Function Indexing dialog. You might want
to use the Refresh button when changes have been made to an edited file that would
invalidate the information that was previously gathered. For example, if a function's
calling parameters are changed, or a function is added or deleted, use Refresh.

It is not necessary to use Refresh simply because the line number of a function's
declaration has changed. The indexing is maintained in a format that is not
sensitive to changes in line numbers.

Settings
The Settings button will display the Configure Ctags Function Indexing dialog, which
provides options that control how and when files will be indexed, the appearance of the
function list, and whether popup tool tips will be displayed.

Display
Use the Display combobox to filter the listing of indexed functions and variables. The
available choices are:

all indexed files
all open files
files in active project
current file
extra files

Command Reference (in menu order) 159

Copyright © 1991-2010 by Boxer Software

Extra files to be indexed can be designated in the Configure Ctags Function Indexing
dialog.

The Display setting will also influence which identifiers are visible to the popup tool
tip feature. If you have filtered the listing to show only those entries in the current
file, for example, you may wish to restore the Display setting to all indexed files so
that the full collection of indexed identifiers are available to the popup tool tips
feature.

4.5.16 Make Line Top

Menu: Jump > Make Line Top

Default Shortcut Key: none

Macro function: MakeLineTop()

The Make Line Top command causes the screen to be redrawn so that the current line is
at the top of screen. This command is useful for showing the text below the current
view without losing the current line.

If there is insufficient text to fill the window, the command will be disabled.

4.5.17 Make Line Center

Menu: Jump > Make Line Center

Default Shortcut Key: none

Macro function: MakeLineCenter()

The Make Line Center command causes the screen to be redrawn so that the current
line is at the middle of the screen.

4.5.18 Make Line Bottom

Menu: Jump > Make Line Bottom

Default Shortcut Key: none

Macro function: MakeLineBottom()

The Make Line Bottom command causes the screen to be redrawn so that the current
line is at screen bottom. This command is useful for showing the text above the
current view without losing the current line.

Boxer Text Editor160

Copyright © 1991-2010 by Boxer Software

If there is insufficient text to fill the window, the command will be disabled.

4.5.19 Left Window Edge

Menu: Jump > Left Window Edge

Default Shortcut Key: none

Macro function: LeftWindowEdge()

The Left Window Edge command positions the text cursor to the left edge of the current
window. If the file has been scrolled to the right, the amount of scroll will not be
affected.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

4.5.20 Right Window Edge

Menu: Jump > Right Window Edge

Default Shortcut Key: none

Macro function: RightWindowEdge()

The Right Window Edge command positions the text cursor to the right edge of the
current window.

 If the cursor has been constrained to move from the end of a line to the start of the
next line, the behavior of the Right Window Edge command will be impacted. In
this case, when issued on a line that does not reach the right window edge, this
command will move to the cursor to the end of the line.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

4.5.21 Backtab

Menu: Jump > Backtab

Default Shortcut Key: Alt+Left Arrow

Macro function: Backtab()

The Backtab command is used to move the text cursor backward to the previous
tabstop. The size of tabstops is determined by the Tab Display Size command.

Command Reference (in menu order) 161

Copyright © 1991-2010 by Boxer Software

4.6 Paragraph Menu

4.6.1 Visual Wrap

Menu: Paragraph > Visual Wrap

Default Shortcut Key: Alt+F10

Macro function: VisualWrap()

The Visual Wrap command toggles a passive display mode that causes long lines to be
wrapped to the window width (or another wrapping margin) without introducing hard
line enders into the file, as would occur if the Reformat command were used. Visual
Wrap is useful when editing files with very long lines that would otherwise extend
off-screen to the right, out of view. It's also useful for preparing text that will later be
imported into another program that prefers a long, flowing stream of text without
intra-paragraph line enders.

When Visual Wrap is active, the line counter in the status bar switches to a paragraph
counter, since a one-to-one relationship between screen lines and physical lines no
longer exists. If Line Numbers are being displayed in the left margin, that display is
also adjusted to show paragraph numbers rather than line numbers. When Visible
Spaces are in use, the soft line enders on wrapped line will be denoted with a double
chevron symbol (<<), while hard line enders are marked with a single chevron (<).
The Go to Paragraph command can be used to jump to a paragraph by its number.

The Visual Wrap Options dialog provides access to options related to the operation of
Visual Wrap. Wrapping can be set to occur at the window width, the Text Width, or at
the Right Margin Rule. By default, Visual Wrap is maintained when edits are made,
although this can be optionally disabled. An option is also provided for dealing with
trailing spaces when Visual Wrap is first applied.

Boxer uses a trailing space to mark lines that are split or wrapped by Visual Wrap.
When Visual Wrap is first applied to a file, a check is performed to see if any lines in the
file already contain trailing spaces. If such lines are found, the following dialog is
presented:

Boxer Text Editor162

Copyright © 1991-2010 by Boxer Software

The nature of the file being processed will determine which option should be selected.
If the trailing spaces are extraneous, the first option (delete) should be used. If the file
is one in which trailing spaces are being used to mark soft line enders, the second
option should be used.

The Soften Line Enders command can be used to prepare a file for processing by
Visual Wrap. It converts hard line enders to soft line enders, with proper
consideration to paragraph boundaries, thereby making the lines of a text file
flowable.

The Harden Line Enders command can be used convert soft line enders to hard line
enders, thereby making permanent the current on-screen formatting.

Visual Wrap Theory

When Visual Wrap is activated, any lines that are longer than the designated wrapping
margin are wrapped to fit within the margin. A trailing space is left at the location
where each line was split to denote that the line has a "soft" line ender. Some word
processing programs insert a special character into the data stream to denote a soft line
ender. As a text editor, Boxer is obliged not to introduce special characters into the
text files it creates, so it simply adds a space to the end of the line. The last line of a
paragraph ends with a hard line ender, and thus has no trailing space.

The use of a trailing space to mark lines with a soft line ender has several advantages:

· The space character can be seen when Visible Spaces mode is active.

· The space character will not be visible when the document is printed.

· Line enders can be easily converted between hard and soft by adding or removing the
space.

Command Reference (in menu order) 163

Copyright © 1991-2010 by Boxer Software

Note: When Visual Wrap is applied to (or removed from) an entire file, the length of
the text on each line changes, as does the total number of lines. The text itself is
not changed, just its on-screen formatting. But internally, these changes cause any
previously stored Undo information to become invalid. Ordinarily, Visual Wrap will
be enabled just after a file is opened. If the wrapping margin is not changed
thereafter, Visual Wrap will have very little impact on Undo. But if a file is frequently
rewrapped or unwrapped, this side effect is something to bear in mind.

 Visual Wrap mode is incompatible with Typing Wrap. If Typing Wrap is on when
Visual Wrap is enabled, it will be automatically turned off.

4.6.2 Visual Wrap Options

Menu: Paragraph > Visual Wrap Options

Default Shortcut Key: none

Macro function: VisualWrapOptions()

The Visual Wrap Options dialog contains settings that relate to the operation of Visual
Wrap:

Boxer Text Editor164

Copyright © 1991-2010 by Boxer Software

Wrapping Margin

Wrap to window
Choose this option if you want text to be wrapped to the width of the document
window. The text will re-wrap automatically if the window is resized.

Wrap to the Text Width
Choose this option if you want text to be wrapped to the Text Width value that's used
for various paragraph operations, such as Reformat. When this option is used, text will
only rewrap when the Text Width value is changed, and not when the document window
is simply resized.

Wrap to the Right Margin Rule
Choose this option if you want text to be wrapped to the Right Margin Rule value. The
Right Margin Rule is an optional display feature that causes a fine vertical line to appear
on-screen at the designated column. When this option is used, text will only rewrap
when the Right Margin Rule value is changed, and not when the document window is
simply resized.

Wrapping Options

Maintain Visual Wrap formatting automatically while editing

Command Reference (in menu order) 165

Copyright © 1991-2010 by Boxer Software

This is option is enabled by default. You might choose to disable this option if you find
yourself distracted by the automatic wrapping that occurs when editing which causes
lines to split and join automatically.

If trailing spaces are found when Visual Wrap is first enabled, display a dialog
with options for handling them
When trailing spaces are found in a file to which Visual Wrap is being applied, Boxer
displays a dialog with options for how these spaces should be handled. On that dialog,
and option appears to disable display of the dialog. This option provides a means to
re-enable the display of that dialog.

4.6.3 Harden Line Enders

Menu: Paragraph > Harden Line Enders

Default Shortcut Key: none

Macro function: HardenLineEnders()

The Harden Line Enders command converts soft line enders to hard line enders. If a
selection is present, the operation is restricted to the selected range of lines. If a
selection is not present, the operation is performed across the whole file. A
confirmation dialog will appear before the operation is performed:

The concept of "soft" and "hard" line enders relates to the Visual Wrap command. A
line with one or more spaces at the end is considered to have a soft line ender. Lines
without trailing spaces are considered to have hard line enders. When Visual Wrap
mode is active, lines with soft line enders are eligible to be merged with the content of
lines below, allowing text to be reformatted to fit within the window width (or whatever
other wrapping margin is chosen).

Applying the Harden Line Enders command to a file has the effect of making the current
on-screen formatting permanent... until or unless the Soften Line Enders command is
used to reverse this operation. If you apply the Harden Line Enders command to a

Boxer Text Editor166

Copyright © 1991-2010 by Boxer Software

selected range of lines, these lines will be ineligible for wrapping by the Visual Wrap
command.

See also: Visual Wrap, Visual Wrap Options, Soften Line Enders

4.6.4 Soften Line Enders

Menu: Paragraph > Soften Line Enders

Default Shortcut Key: none

Macro function: SoftenLineEnders()

The Soften Line Enders command converts hard line enders to soft line enders, with
proper consideration to paragraph boundaries. If a selection is present, the operation is
restricted to the selected range of lines. If a selection is not present, the operation is
performed across the whole file. A confirmation dialog will appear before the operation
is performed:

The concept of "soft" and "hard" line enders relates to the Visual Wrap command. A
line with one or more spaces at the end is considered to have a soft line ender. Lines
without trailing spaces are considered to have hard line enders. When Visual Wrap
mode is active, lines with soft line enders are eligible to be merged with the content of
lines below, allowing text to be reformatted to fit within the window width (or whatever
other wrapping margin is chosen).

Applying the Soften Line Enders command to a file has the effect of making the file
flowable by Visual Wrap.

See also: Visual Wrap, Visual Wrap Options, Harden Line Enders

4.6.5 Reformat

Menu: Paragraph > Reformat

Command Reference (in menu order) 167

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Ctrl+F10

Macro function: Reformat()

The Reformat command can be used to reformat the paragraph at the text cursor within
the defined Text Width and according to the current Justification Style. The Reformat
operation begins on the current line and includes all lines to the end of the current
paragraph (see note below). The text cursor is advanced to the first line of the next
paragraph following Reformat, so that successive Reformat commands will move
smoothly through the document.

If a range of lines is selected, all paragraphs within the selected range will be
reformatted. Use the Select All Text command before Reformat to reformat an entire
file, but first check to be sure that the file doesn't contain tables or lists which might be
adversely affected by reformatting.

When the Reformat command reformats text, it does so by adding a newline (hard
line ender) at the end of the line. To wrap text visually, without introducing a hard
line ender into the file, see the Visual Wrap command.

Fully Indented Paragraphs
Boxer uses the amount of indent on the second line of the paragraph to determine the
indent level for the entire paragraph. A paragraph can be made fully indented by
manually indenting the first and second lines of the paragraph and then reformatting.

 This paragraph is fully indented. This
 paragraph is fully indented. This paragraph
 is fully indented. This paragraph is fully
 indented. This paragraph is fully indented.
 This paragraph is fully indented.

Hanging Indents
The indent on the first line of the paragraph is not applied to other lines in the
paragraph. A hanging indent can be achieved by placing less indent on the first line of
the paragraph than on the second line. Likewise, if the first line of a paragraph has
extra indent, it too will be preserved.

This paragraph has a hanging indent. This paragraph
 has a hanging indent. This paragraph has a
 hanging indent. This paragraph has a hanging
 indent. This paragraph has a hanging indent. This
 paragraph has a hanging indent.

Bulleted Paragraphs
If you wish to create bulleted paragraphs that will retain their layout after being
reformatted, use a Tab character to separate the bullet from the body of the paragraph.
If a series of Spaces were to be used between the bullet and the body text they would
be adjusted during Reformat. Tabs are maintained in this situation.

* This paragraph uses a bullet separated from the
 body text with a Tab character. This paragraph
 uses a bullet separate from the body text with a

Boxer Text Editor168

Copyright © 1991-2010 by Boxer Software

 Tab character.

 To have text wrap to the next line automatically as you type, use the Typing Wrap
feature. To wrap text visually, use the Visual Wrap command.

The Unformat command is essentially the opposite of Reformat: it removes line
enders from a paragraph to create a long, flowing line of text.

The end of a paragraph is signaled by the presence of one or more blank lines
between paragraphs, but not simply by the presence of additional indent on a line
which immediately follows the current paragraph. Lines which begin with a period (

.) will also be recognized as blank lines for purposes of Reformat. This is to permit

the use of text markup languages such as Flexicon for adding formatting commands
to text.

Reformat will break lines between HTML or XML tags, when appropriate, even if an
intervening space is not present.

4.6.6 Unformat

Menu: Paragraph > Unformat

Default Shortcut Key: Ctrl+Alt+F10

Macro function: Unformat()

The Unformat command can be used to convert the lines of the current paragraph into
a single, long line. The Unformat operation begins on the current line and includes all
lines to the end of the current paragraph. The text cursor is advanced to the first line
of the next paragraph following Unformat, so that successive Unformat commands will
move smoothly through the document.

If a range of lines is selected, all paragraphs within the selected range will be
processed. Use the Select All Text command before Unformat to process an entire file,
but first check to be sure that the file doesn't contain tables or lists which would be
adversely affected by the new formatting.

See also the Soften Line Enders command.

If the total length of the paragraph being unformatted is greater than the maximum
line length (see Sizes and Limits), the operation will use multiple lines.

The Unformat command is useful for preparing text that is to be imported into a
word processor, email client or other programs that perform 'soft formatting'.
Programs such as these sometimes require that extra newlines be removed before
imported text can be properly formatted.

Command Reference (in menu order) 169

Copyright © 1991-2010 by Boxer Software

4.6.7 Text Width

Menu: Paragraph > Text Width

Default Shortcut Key: Ctrl+W

Macro function: TextWidth()

The Text Width command is used to set the column at which text justification
commands will wrap words to the next line. A popup dialog box will appear to retrieve
a new value for the Text Width:

The Text Width value is used by the following commands during their operation:

Typing Wrap
Reformat
Quote and Reformat
Align Left
Align Center
Align Right
Align Smooth

The current Text Width is displayed on the Status Bar, next to the 'w' indicator which
displays Typing Wrap status. The Text Width command can also be issued by double
clicking on the Text Width value in the Status Bar.

The maximum value for the Text Width command is 9999.

4.6.8 Justification Style

Menu: Paragraph > Justification Style

Default Shortcut Key: Ctrl+J

Macro function: JustificationStyle()

The Justification Style command is used to set the justification style used by the
Reformat, Typing Wrap and Quote and Reformat commands. There are four justification

Boxer Text Editor170

Copyright © 1991-2010 by Boxer Software

styles to choose from:

The paragraphs below show examples of each justification style:

Left Justified - text will be justified flush
against the left edge, with the right edge being
left ragged.

 Center Justified - text will be centered within
 the current text width, with the left and
 right edges being ragged.

 Right Justified - text will be justified flush
 against the right edge, with the left edge being
 left ragged.

Smooth Justified - text will be flush against both
the left and right margins. Spaces are inserted
alternately in the left, center, and right
portions of a line to minimize the appearance of
'rivers and valleys' in the justified text.

4.6.9 Typing Wrap

Menu: Paragraph > Typing Wrap

Default Shortcut Key: Ctrl+F5

Macro function: TypingWrap()

The Typing Wrap command is used to toggle on and off typing wrap mode. When
Typing Wrap mode is on, text typed from the keyboard will be wrapped to the next line
when the Text Width value is exceeded. When Typing Wrap mode is off, typed text will
not be wrapped to the next line until the Enter key is pressed.

Command Reference (in menu order) 171

Copyright © 1991-2010 by Boxer Software

When Boxer wraps text to the next line in Typing Wrap mode, it does so by adding a
true newline (hard line ender) character at the end of the line. To wrap text
visually, without introducing a hard line ender into the file, see the Visual Wrap
command.

Typing Wrap mode is maintained separately for each edited file. Activating Typing
Wrap in one file does not affect the Typing Wrap mode for other edited files.

The current file's Typing Wrap mode is displayed on the Status Bar. An uppercase 'W'
indicates that Typing Wrap is on. A lowercase 'w' indicates that Typing Wrap is off. The
Typing Wrap command can also be issued by double clicking on the 'w' value in the
Status Bar.

See also the Visual Wrap command.

Typing Wrap will break lines between HTML or XML tags, when appropriate, even if
an intervening space is not present.

Prior to Boxer v14, the Typing Wrap command was called Word Wrap. When the
Visual Wrap command was added, the command was changed to Typing Wrap for
clarity.

4.6.10 Quote and Reformat

Menu: Paragraph > Quote and Reformat

Default Shortcut Key: Ctrl+Q

Macro function: QuoteAndReformat()

The Quote and Reformat command can be used to reformat a paragraph within the
defined Text Width and according to the current Justification Style, while adding a
quoting symbol to the left edge of the paragraph. This formatting style is used within
email replies and in other communications to visually identify the text which is being
replied to from the text of the reply itself.

Two quoting styles are available: one in which the first line is quoted and additional
lines are indented to match the first line:

>> A Multi-User License provides an inexpensive
 way for businesses, schools, universities or
 other work groups to supply their personnel
 with computer software in both a legal and cost
 efficient manner. By licensing Boxer for use
 on multiple computers you can standardize on a
 single editing tool that will serve the needs
 of all people within the group.

and one in which all lines within the paragraph are quoted:

>> In so doing, support and maintenance costs can

Boxer Text Editor172

Copyright © 1991-2010 by Boxer Software

>> be reduced, and users can benefit from having
>> ready access to others who are using the same
>> software. Multi-user licensing is also more
>> economical than making individual purchases,
>> because there is no need for us to supply extra
>> disks, reference literature, etc. for all users
>> within the group.

Both the quoting style, and the quoting symbol used, can be configured on the
Configure | Preferences | Editing 1 options page.

The Quote and Reformat command makes use of the Reformat command internally
during its operation. As noted in the Reformat command, lines beginning with a
period (.) are treated as blank lines in order to recognize text markup tags. As a

result, the use of a quoting string that begins with a period will not produce the
desired results, and should be avoided. All other symbols and characters are
permissible.

4.6.11 Align Left

Menu: Paragraph > Align Left

Default Shortcut Key: Ctrl+F7

Macro function: AlignLeft()

The Align Left command moves the current line flush against the left edge, removing
any indent which may have been present. The cursor is moved to the line below upon
completion.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Left command is issued when a columnar selection is in force, the effect
of the command will be to left align the selected text within the extent of the
rectangular selection.

4.6.12 Align Center

Menu: Paragraph > Align Center

Default Shortcut Key: Ctrl+F8

Macro function: AlignCenter()

The Align Center command centers the current line within the current Text Width. The
cursor is moved to the line below upon completion.

Command Reference (in menu order) 173

Copyright © 1991-2010 by Boxer Software

If text is selected, all lines within the selected range will be centered.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Center command is issued when a columnar selection is in force, the
effect of the command will be to center align the selected text within the extent of
the rectangular selection.

4.6.13 Align Right

Menu: Paragraph > Align Right

Default Shortcut Key: Ctrl+F9

Macro function: AlignRight()

The Align Right command moves the current line flush against the right margin, as
determined by the current Text Width. The cursor is moved to the line below upon
completion.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Right command is issued when a columnar selection is in force, the
effect of the command will be to right align the selected text within the extent of the
rectangular selection.

4.6.14 Align Smooth

Menu: Paragraph > Align Smooth

Default Shortcut Key: Ctrl+F11

Macro function: AlignSmooth()

The Align Smooth command adjusts the current line to be flush against both the left
and right margins. The right margin is determined according to the current Text Width.
The cursor is moved to the line below upon completion.

Spaces are inserted alternately in the left, center and right portions of each line to
minimize the appearance of rivers and valleys in the justified text.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

Boxer Text Editor174

Copyright © 1991-2010 by Boxer Software

If the Align Smooth command is issued when a columnar selection is in force, the
effect of the command will be to smooth align the selected text within the extent of
the rectangular selection.

4.7 Tools Menu

4.7.1 Macros

Menu: Tools > Macros

Default Shortcut Key: F8

Macro function: none

Boxer includes a powerful macro language than can be used to automate repetitive
editing tasks, or to perform specialized processing on the text files you edit. Macros
can be created in one of two ways: Macros can be recorded 'by example' by typing
commands and/or insertable text within the macro dialog. When this is done, the
macro code is written automatically, on-the-fly, in the editor window of the macro
dialog. For more complex macros, the edit window can be used to write a macro by
hand, or to make refinements to a macro that was recorded by example.

Boxer's macro language is similar in style to the C programming language, and will be
quickly understood by anyone who has programmed in a high-level language, or in
other macro/scripting languages. The macro dialog contains built-in lists of all the
language's keywords, functions and operators, along with instant help information for
each entry (see screen shots below). Boxer has been supplied with numerous example
macros which are meant to illustrate the use of the language, as well as to provide
genuinely useful services. For example, the ExampleApplyHTML macro will apply the

necessary HTML declarations to make a simple text file into an HTML document.

Some people will want to dive right in, so here's a quick example:

Simple Macro Example, Step One

You've got a file that needs some repetitive editing. You need to delete the first four
characters from the start of every third line. The file to be processed is open for editing,
and the text cursor is sitting on the first line that needs adjustment. Here's how to
create a macro to perform the editing required:

Issue the Tools|Macros command from the Main Menu
Click New
Press the Delete key four times
Press the Down Arrow key three times
Click Save
Enter a name for the macro
Click Run, as required

The resulting macro looks like this:

macro newmacro()

Command Reference (in menu order) 175

Copyright © 1991-2010 by Boxer Software

{
Delete;
Delete;
Delete;
Delete;
Down;
Down;
Down;
}

Simple Macro Example, Step Two

That's great, you say, but maybe your file is 300 lines long. Or 30,000 lines long. How
can we make this macro work on the whole file?

In Step One, the macro was written for you automatically, as you typed the editing
commands. To handle a file of arbitrary length, we'll need to add a little code. Edit your
macro to look like this:

macro newmacro()
{
int i;

for (i = 1; i <= LineCount(); i += 3)
 {
 Delete;
 Delete;
 Delete;
 Delete;
 Down;
 Down;
 Down;
 }
}

Click Save, and then Run. This macro loops through the file, counting by three,
performing the necessary adjustments. Because it calls the function LineCount(), it

will work for a file of any size.

See the following help topics for additional information about macros: Macro Language
Reference, Macro Function Reference and Macro Examples.

The sections below cover the Macro Dialog in further detail...

Boxer Text Editor176

Copyright © 1991-2010 by Boxer Software

List Tab

New
Use the New button to start a new macro. A new macro is created and control will
switch to the Edit Tab. You will be able to name the macro later when you select the
Save option.

Copy
The Copy button will create a copy of the selected macro. You can then use the
Rename button to rename the copy, if desired.

Rename
Use the Rename button to rename the selected macro.

Delete
Use the Delete button to delete the selected macro. A confirmation prompt will be
supplied before the macro is deleted.

Command Reference (in menu order) 177

Copyright © 1991-2010 by Boxer Software

Edit Tab

The Edit Tab contains controls that can be used when composing a macro. If the macro
is to be recorded 'by example', simply type the desired keys in the edit box at the top of
the panel. You'll notice that the code of the macro is written automatically, as you
type, in the editor window at the right. Feel free to switch to the edit window if
changes are needed to the macro code. You can resume recording 'by example' at any
time by positioning the text cursor in the editor window and returning focus to the edit
box at the top left.

When composing a macro by hand, the lists on the Edit Tab will prove useful for
recalling the macro language function names, keywords, and operators. Each time an
entry is selected in a list, the help window at the bottom of the panel displays relevant
information about the selected entry. You can insert the selected entry into the editor
window by pressing Enter or by double-clicking.

The All tab contains a list of all functions that are available in the macro language,
regardless of their logical category. The Editor, Macro, String and Math tabs display
function lists for each of those respective categories. Editor contains functions that
map to commands available within the editor proper. Macro contains functions that are
unique to the macro language. String contains functions that can be used to
manipulate strings. Math contains functions that support mathematical operations.

Boxer Text Editor178

Copyright © 1991-2010 by Boxer Software

The Language Tab contains lists of statements, keywords, constants and operators.

The editor window is used to edit the macro being composed. The macro is displayed
with color syntax highlighting, just as if it were being edited in the editor proper.
Although the macro editor window looks like a normal Boxer editing window, it is not.
You will find that the standard editing and cursor movement commands are available
within this window, but Boxer's advanced editing commands are not. If you are
composing a complex macro, you might prefer to edit your macro within a normal
editing window. For this reason, the editor offers an Open in Boxer command on its
context menu.

The macro editor window has built-in help for the macro language. You can press F1
when the cursor is sitting on a function name to view pop-up information for that
function.

Command Reference (in menu order) 179

Copyright © 1991-2010 by Boxer Software

Additional editor functionality is available on the context menu by right clicking in the
editor window when the Edit Tab is active.

Debug Tab

The Debug Tab contains Boxer's integrated macro debugger. The debugger can be used

Boxer Text Editor180

Copyright © 1991-2010 by Boxer Software

to control the execution of a macro and view a macro's variables as the macro is
executed. The Watch Window shows a macro's variables, arranged by type, in both
decimal and hexadecimal format. As the macro is executed, the Watch Window updates
to show the current value of each variable. Note that there is no need to designate a
variable as a watch variable; all variables are automatically added to the Watch Window
each time the macro is debugged.

To begin debugging a macro, click the Step button. The Step button is used to execute
a single line of code. You can click Step repeatedly to walk through the macro, line by
line. To jump ahead in the macro, position the cursor in the editor window on the line
of interest and click the Run to Cursor button. Execution will continue until the desired
line is reached. The Run to Cursor button can be thought of as a one-time breakpoint.
To ensure that execution will stop on a selected line every time, use the Set Breakpoint
button. The line of interest will be highlighted in the editor window with a 'B'. To run
the macro without single-stepping, click the Run button. Run causes the macro to run
without interruption, until a breakpoint is hit. If no breakpoints are encountered, the
macro will run to completion. Use the Halt button to terminate the execution of a
macro.

Additional debugger functionality is available on the context menu by right clicking in
the editor window when the Debug tab is active (see context menu above).

Assigning a Macro to a Key Sequence

There is theoretically no limit to the number of macros that can be created. All of the
macros in Boxer's 'Macros' directory will be displayed in the macro list that appears on
the List tab, and these macros can be run by clicking the nearby Run button. In
addition, up to 50 macros will be displayed on the Tools | Run Macro submenu, and
these macros can be executed directly from that menu. When more than 50 macros
are present, those which sort lowest alphabetically will be the first to be omitted from
the Run Macro submenu. If you want to force a certain macro to appear in the menu,
you can do so by changing its filename to one that will rank higher in an alphabetic

Command Reference (in menu order) 181

Copyright © 1991-2010 by Boxer Software

sort.

You may wish to assign commonly used macros to a key assignment to make them
easier to execute. There are 50 editor commands available for this use, named Run
Macro 1 to Run Macro 50. These commands appear in the command list on the
Configure | Keyboard dialog. In order to make a macro eligible for key
assignment, its filename must end with a value from 1 to 50. For example, if you
name a macro ProcessPayroll24.bm, that macro can later be run by the key

sequence that has been assigned to the Run Macro 24 command.

Initially, the 50 Run Macro N commands are unassigned. Assigning a macro to a given
key sequence is thus a two-step process:

1. Make sure that the filename of the macro ends with a value in the range 1-50, and
does not conflict with other numbered macros.

2. Use the Configure | Keyboard dialog to assign a key sequence to the corresponding
Run Macro N command.

If you rename a macro filename from MyMacro4.bm to MyMacro12.bm, the

associated key assignment does not move automatically. The key assignment for
the Run Macro 4 command will always run whatever macro is numbered as 4.
Therefore, you will need to visit the Configure | Keyboard dialog to make an
adjustment after changing a macro's number.

A macro cannot be run from its assigned key sequence if that macro does not
appear in the Tools | Run Macro submenu.

Running a Macro from the Command Line

A macro file can be run by naming it on the command line using the -M command line
option flag. Please see the notes in that section for full details on this capability.

Running a Macro Automatically on Startup

There may be times when you want Boxer to perform a series of commands--or react to
one or more configuration changes--every time the editor is launched. If a macro of
the name startup.bm is found in the macros directory, it will be run automatically on

startup.

Running a Series of Macros in Batch Mode

For some editing tasks it may be desirable to develop a series of macros to perform the
necessary conversions. This approach may be desirable when the overall conversion is
too complex to implement in a single macro, or when some steps of the conversion will
need to be applied selectively on a case-by-case basis. If you have developed a set of
macros, say step1.bm, step2.bm and step3.bm, these macros can be run in series

from a macro batch file -- which might be named do_it_all.bm -- and which names

these files in succession:

step1.bm

Boxer Text Editor182

Copyright © 1991-2010 by Boxer Software

step2.bm
step3.bm

Blank lines may appear within a macro batch file, but all other lines must contain the
name of an existing macro file which is to be run.

For a clever tip that tells how to make use of your old Boxer/DOS, Boxer/TKO or
Boxer/OS2 macros from within the Windows version of Boxer, see the tip near the
bottom of the User Tools topic.

Storing Macro Variables From Run to Run

After a macro has completed, its variables are no longer available for study or use. Two
macro functions can be used to store and recall macro variables so that they can be
used again at a later time:

int WriteValue(string name, char/int/string/float val)
 Writes 'val' to the macro variable storage area named 'name'.
 'name' will be visible to other macros, so be careful to choose
 a unique identifier. Returns 1 for success or -1 for error.
 See also ReadValue(), EraseValue().

int ReadValue(string name, char/int/string/float val)
 Reads a value from the macro variable storage area named 'name'
 and places it into variable 'val'. The type of 'val' must agree
 with the type used when the value was written using WriteValue().
 Returns 1 for success or -1 for error.
 See also WriteValue(), EraseValue().

4.7.2 Macro Language Reference

Data Types

Boxer's Macro Language supports the following data types:

string
char
int
float

A string can hold a series of characters up to 2,048 bytes in length. The end of a

string is marked with a Null character (ASCII 0). A string constant is enclosed within
double quotes.

The char data type is an 8-bit, unsigned data type which can hold values in the

range 0 to 255. A character constant is enclosed within single quotes.

The int data type is a 32-bit, signed data type which can hold integer values in the

range -2,147,483,648 to 2,147,483,647.

Command Reference (in menu order) 183

Copyright © 1991-2010 by Boxer Software

The float data type is a double precision, signed data type that can hold values in the

range 2.2250738585072014e-308 to 1.7976931348623158e+308.

Keywords

The following words are reserved keywords and may not be used as variable names:

break int true
continue char false
do string yes
else float no
for void on
goto off
if
macro
return
while

The keywords listed above are case sensitive, and must be entered in lowercase. The
symbolic constants in the third column (true, false, yes, no, on, off) are an

exception: they can appear in lowercase, uppercase, or even in mixed case.

Arithmetic Operators

The following arithmetic operators are supported:

Operator Meaning

 + addition

 - subtraction

 * multiplication

 / division

 % modulus

 ++ increment

 -- decrement

The modulus operator (%) returns the remainder from an integer division operation. For

example, the expression n = 7 % 4 will result in n receiving the value 3, since 7 /
4 leaves a remainder of 3.

The increment and decrement operators can be used to increase or decrease an integer
variable by 1. The expression:

i++;

is equivalent to:

i = i + 1;

Boxer Text Editor184

Copyright © 1991-2010 by Boxer Software

The ++ and -- operators can be used in either prefix or postfix location. If i has an

initial value of 3, the statement:

n = i++;

will leave n with the value of 3, while i is incremented to 4. The incrementing of i
occurs after the assignment due to the postfix location.

Assuming i again starts with a value of 3, the statement:

n = --i;

will leave n with a value of 2 and i with a value of 2. The decrementing of i occurs

before the assignment due to the prefix location.

The addition (+) operator has been overloaded to support string concatenation. The

following statements:

string s1 = "Boxer ";
string s2 = "Text Editor";
string s3 = s1 + s2;

would result in s3 having the value: "Boxer Text Editor"

Assignment Operators

The following assignment operators are supported:

Operator Meaning

 = assignment

 += addition assignment

 -= subtraction assignment

 *= multiplication assignment

 /= division assignment

 %= modulus assignment

 &= bitwise AND assignment

 |= bitwise OR assignment

 ^= bitwise XOR assignment

 <<= left shift assignment

 >>= right shift assignment

The assignment operator (=) should be familiar to all. The other operators which each

conclude with = all represent a shorthand notation. For example, the statement:

Command Reference (in menu order) 185

Copyright © 1991-2010 by Boxer Software

i += 5;

is equivalent to:

i = i + 5;

The += operator has been overloaded to support string concatenation. The following

statements:

string str = "Boxer ";
str += "Text Editor";

would result in str having the value: "Boxer Text Editor"

The last five operators listed above are bitwise assignment operators. Their function is
analogous to the += operator; see the Bitwise Operators section of this topic for some

additional detail.

Boolean Operators

The following Boolean operators are supported:

Operator Meaning

 == equal

 != not equal

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 && logical AND

 || logical OR

 ! logical NOT (unary negation)

 ~= case insensitive string comparison

The operators ==, !=, <, >, <= and >= have been overloaded to allow operations

on strings. A string is considered greater than another string if it would appear higher
in an alphabetic sort. In other words, the statement:

if ("apple" < "zebra")

evaluates to TRUE.

The first nine operators above are standard to most high-level languages. The last
operator is specific to Boxer's Macro Language, and permits strings to be compared

Boxer Text Editor186

Copyright © 1991-2010 by Boxer Software

without case sensitivity. For example, the statement:

if ("MasterCard" ~= "mastercard")

would evaluate to TRUE.

Bitwise Operators

The following bitwise operators are supported:

Operator Meaning

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 << left shift

 >> right shift

 ~ one's complement (unary)

A full discussion of bitwise arithmetic would be beyond the scope of this language
reference. For those who are interested, any introductory book on the C programming
language would be a suitable reference. The information below will be sufficient to
remind those with prior experience of the function of each operator:

& Sets a bit to 1 in the result if and only if both of the corresponding bits in its

operands are 1, and to 0 if the bits differ or both are 0. Example: 9 & 1 yields 1.

| Sets a bit to 1 in the result if one or both of the corresponding bits in its operands

are 1, and to 0 if both of the corresponding bits are 0. Example: 9 | 2 yields 11.

^ Sets a bit in the result to 1 when the corresponding bits in its operands are

different, and to 0 when they are the same. Example: 7 ^ 4 yields 3;

<< Shifts the first operand the number of bits to the left specified in the second

operand, filling with zeros from the right. Example: 2 << 3 yields 16.

>> Shifts the first operand the number of bits to the right specified in the second

operand, discarding the bits that 'fall off' at the right. Example: 34 >> 2 yields 8.

~ Inverts each bit in the operand, changing all ones to zeros and all zeros to ones.

Example: ~0xFFFF0000 yields 0x0000FFFF.

The large majority of users will never find a need for bitwise arithmetic, but it has
been included in the interest of completeness.

Operator Precedence

Command Reference (in menu order) 187

Copyright © 1991-2010 by Boxer Software

The following table summarizes operator precedence and order of evaluation for the
various operators supported by Boxer's Macro Language. Operators with the
strongest/highest precedence are listed first:

Operator Evaluates

() [] left to right

! ~ ++ -- - right to left

* / % left to right

 + - left to right

 << >> left to right

 < <= > >= left to right

 == != ~= left to right

 | left to right

 & left to right

 ^ left to right

 && left to right

 || left to right

 ? : right to left

 = += -= etc. right to left

 , left to right

Parentheses can be used when required to ensure that the order of evaluation occurs as
desired. For example:

n1 = 3 * 5 + 4;

assigns 19 to n1, while:

n1 = 3 * (5 + 4);

assigns 27 to n1.

Because the assignment operator (=) is evaluated from right to left, a construction

such as the following is possible:

int i, j, k;
i = j = k = 0;

 k is assigned the value 0, j is assigned the value of k, and i is assigned the value

of j.

Character Constants

Boxer Text Editor188

Copyright © 1991-2010 by Boxer Software

Boxer's Macro Language recognizes the standard character constants which have been
popularized by the C programming language:

Sequence Meaning Decimal Value

'\b' Backspace 8

'\f' Formfeed 12

'\n' Newline 10

'\r' Carriage Return 13

'\t' Tab 9

'\\' Backslash 92

'\'' Single Quote 39

'\"' Double Quote 34

'\0' Null 0

In addition, Boxer will recognize a backslash (\) followed by three octal digits as the

character whose ASCII value is given by the digits used. For example, '\101' could

be used to represent a capital A, since its ASCII value, in octal, is 101.

Character constants can be used in any place that a char data type is expected, or

within a double-quoted string: "this is a string with a newline at the
end.\n"

Numeric Constants

Numeric int constants can be specified in either decimal or hexadecimal format:

int n1 = 32;
int n2 = 0x20;

Each of these assignments supplies the value 32 to n1 or n2.

Numeric float constants can be specified in any of the following forms:

float x1 = 500;
float x2 = 500.0;
float x3 = 5e2;
float x4 = 5e02;
float x5 = 5.0e2;
float x6 = 5.0e02;
float x7 = 5.0e+2;
float x7 = 5.0e+02;

Each of these assignments results in the value 500 being assigned to the variable being

declared.

Command Reference (in menu order) 189

Copyright © 1991-2010 by Boxer Software

For floating point values less than 1, the minus sign can be used to designate

exponentiation. All of the following examples represent the number .05:

.05
0.05
5e-2
5e-02
5.0e-2
5.0e-02

Symbolic Constants

The following symbolic constants are recognized:

Name Value

TRUE 1

FALSE 0

YES 1

NO 0

ON 1

OFF 0

These constants can be used in place of the values 0 and 1 to make a macro more

readable. For example, you can write:

ViewBookmarks(ON);

instead of:

ViewBookmarks(1);

Declaring Variables

Variable names can be up to 32 characters in length and must not conflict with the

names of any keywords or internal functions. Variable names can use alphanumeric
characters and the underscore (_), but they must not start with a digit. All variables

must be declared before use. Initialization of variables can be done at declaration-time,
but this is not required. Uninitialized variables will be zero-filled automatically.

Boxer's Macro Language supports a flexible syntax for declaring variables. All of the
following examples are legal declarations when they appear at the top of a macro,
before other executable statements:

string s1;
string s2 = "Boxer";
string s3, s4, s5;
string s6 = "abc", s7, s8 = "def";

Boxer Text Editor190

Copyright © 1991-2010 by Boxer Software

char c1;
char c2 = 'A';
char c3, c4, c5;
char c6, c7 = 'x', c8;

int n1;
int n2 = 10;
int n3, n4, n5;
int n6, n7 = -4, n8;

float x1;
float x2 = 1.05;
float x3 = 1.2e04;
float x4, x5, x6;
float x7, x8 = 7.75, x9;

In the spirit of the C programming language, Boxer's macro language also allows a

string variable to be declared as an array of characters. The declaration:

char str[100];

is (for most purposes) functionally equivalent to the declaration:

string str;

for declaring a variable which can hold a short string of characters. See the String
Subscripting section below for details on when the former style might be required.

Conditional Statements

Boxer's Macro Language supports three different conditional statements: if, if-else
and the ternary statement. An if statement will be executed if the expression in

parentheses evaluates to a non-zero result. Below are examples of the three
conditional statements:

if (LineCount() > 10000)
{
longfile = true;
}

if (LineCount() > 10000)
{
longfile = true;
}

else
{
longfile = false;
}

longfile = (LineCount() > 10000) ? true : false;

Command Reference (in menu order) 191

Copyright © 1991-2010 by Boxer Software

In the first example, the variable longfile is set TRUE if the return from the function

LineCount() is greater than 10000. In the second example, an if-else statement

is used to additionally set longfile to FALSE if the condition is not met.

The final example illustrates the ternary statement, and its effect is identical to the

if-else example immediately above it. If the condition within parentheses evaluates

to TRUE, the expression immediately following the ? is evaluated. If not, the

expression after the : is evaluated. A ternary statement is effectively a compact

if-else statement.

The ternary statement in Boxer's Macro Language is modeled after that of the C
programming language, with one exception. In Boxer macros, the parentheses
around the conditional expression are required, in C these parentheses are optional.

When a single statement is conditional upon an if or if-else statement, as is

shown in the examples above, the use of curly braces { } is not required. Curly

braces are required when two or more statements are to be conditionally executed,
or when those statements are the subject of a looping statement.

Looping Statements

Boxer's Macro Language supports three different looping statements: for, while and

 do-while. A loop statement will continue looping so long as the 'test' expression in

parentheses evaluates to a non-zero result. Below are examples of each of these
statements:

// find the longest line in the file
for (line = 1, longest = 0; line <= LineCount(); line++)

if ((n = LineLength(line)) > longest)
longest = n;

// find the longest line in the file
line = 1;
longest = 0;
while (line <= LineCount())

{
if ((n = LineLength(line)) > longest)

longest = n;

line++;
}

// find the longest line in the file
line = 1;
longest = 0;
do

Boxer Text Editor192

Copyright © 1991-2010 by Boxer Software

{
if ((n = LineLength(line)) > longest)

longest = n;

line++;
}

while (line < LineCount());

The three loops above are functionally equivalent to one another, with one exception
that will be discussed below.

The for loop is the most compact, since it permits the three elements of a loop's

control to be specified on a single line: the initialization, the test, and the increment.
These are found within the parentheses of the for loop and are separated by

semi-colons. When a for loop is first executed, the initialization section is performed,

and the test section is evaluated. If the test evaluates to a non-zero result, the
statement(s) in the body of the loop are processed. At the end of the loop, the
increment section is processed. Control then passes again to to the test section, to the
body, and so on.

Boxer's Macro Language supports a very flexible for loop structure. The

initialization, test and increment sections are each optional. Moreover, multiple
initializations can be performed by separating the statements with the comma
operator.

The while loop is a simpler loop, in that the only required control element that must

be supplied is the test. For illustration purposes, the while loop above was written to

be identical in function to the for loop above it. In fact, every for loop can be

written as a while loop, and every while loop can be written as a for loop. A

for loop is typically used when one needs to initialize and increment a loop index. A

while loop is typically used when a single condition is sufficient to control the flow of

the loop.

A do-while loop is essentially an upside-down while loop. A do-while loop

tests at the bottom, whereas a while loop tests at the top. A do-while loop

should be used in those cases where the loop is always to be be executed at least once.
That leads us to why the do-while example above is not exactly equivalent to the

for and while loops above it. If the current file is empty, the for and while
loops above will not be executed. The LineCount() function will return 0 and the

initial test will fail. In the do-while loop, the LineCount() call isn't made until the

bottom of the loop. In the case of an empty file, the body of the loop would be
processed and the LineLength() call would fail because the line parameter would

be out of range.

Sometimes the need arises to construct a 'forever' loop; one which will run until
some condition within the body of the loop is satisfied and a break statement is

executed. Both the for and while loops can be used for this purpose. Here are

two examples:

// loop until the user enters the right answer

Command Reference (in menu order) 193

Copyright © 1991-2010 by Boxer Software

for (;;)
{
GetString("What's the capital of Arizona?", answer);

if (answer ~= "Phoenix")
break;

}

// loop until the user enters the right answer
while (TRUE)

{
GetString("What's the capital of New Hampshire?", answer);

if (answer ~= "Concord")
break;

}

Notice that these examples used the ~= operator to ensure that the user's

response was not rejected due to improper case.

Alert readers might notice that the above examples could be more neatly implemented
using a do-while loop, since this is a case where the loop always wants to be run

once, and the test can be more logically placed at the bottom of the loop:

do
GetString("What's the capital of California?", answer);

while (strcmpi(answer, "Sacramento") != 0);

This example uses the strcmpi() function to perform a case insensitive string

comparison, because the ~= operator does not have a companion

string-does-not-match operator.

The break Statement

The break statement can be used to exit from a loop prematurely. Control passes to

the next statement following the loop which has been exited. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

break;
}

// control passes to here after break
New;

The continue Statement

The continue statement can be used to jump to the bottom of a loop prematurely.

Control passes to an imaginary label at the end of the loop. For example:

Boxer Text Editor194

Copyright © 1991-2010 by Boxer Software

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

continue;

// ... other processing ...

// continue jumps to here
}

The goto Statement

The goto statement can be used to jump unconditionally to a label. Control passes to

the next statement after the label. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

goto toolong;

// ... other processing ...

toolong:
// goto jumps to here

// ... other processing ...
}

The return Statement

The return statement can be used to end a macro prematurely. If a return statement

is not encountered, a macro will run until the closing curly brace in the body of the
macro is encountered.

Function Calls

Boxer's Macro Language includes a wide variety of functions that provide access to the
editor's commands, configuration settings, and to string and math libraries. The
function set is documented in the Macro Function Reference, as well as in the Macro
Dialog itself.

When making a function call, care should be taken to ensure that the parameters
supplied to the function match the declared type(s) that the function expects to receive.
Boxer is able to trap missing and/or mismatched parameters in most cases, but
unexpected results can occur when invalid parameters are supplied.

Function names are not case sensitive; Boxer will accept function names that do not

Command Reference (in menu order) 195

Copyright © 1991-2010 by Boxer Software

match the function name with regard to character case.

If a function does not require parameters, it is not necessary to supply parentheses at
the end of the function name. For example:

LineCount();

and

LineCount;

are functionally equivalent, because the LineCount function does not require any

parameters. That said, the practice of using () on all function calls can help to

distinguish function names from variable names.

Simple expressions can be supplied to in a function call without difficulty, and they will
be evaluated as expected before being sent to the function for processing. For
example:

max(3 * 45, 4 * 90);

is a legitimate construction that might be used in calling the max() function. If you find

that you are getting unexpected results in a case like this, introduce a temporary
variable to hold the value of the expression, and then supply the variable to the
function in place of the expression.

String Subscripting

Arrays are not supported in the classical sense; it's not possible to declare an array of

int or float variables, for example. But Boxer's Macro Language does recognize a

string variable to be an array of elements of type char, and allows those elements

to be accessed individually through the use of subscripts. The first character within a
string is located at index 0, the second character is at index 1, etc. In the following

example:

string str = "BOXER";
char c1;
c1 = str[2];

the character variable c1 would be assigned the value 'X'.

Likewise, a string variable can be modified by assigning individual elements within

the string using subscripting:

string s1 = "water";
s1[0] = 'w';
s1[1] = 'i';
s1[2] = 'n';
s1[3] = 'e';
s1[4] = '\0';

Boxer Text Editor196

Copyright © 1991-2010 by Boxer Software

This code fragment has the effect of changing the content of string variable s1 from

"water" to "wine". Notice that the null character ('\0') was used to shorten the

string from five characters to four.

String subscripting makes it possible to use a string variable in the way that an
array might be used. Here's an example that totals the number of occurrences of
each letter within an input string:

macro array_example()
{
int i;
string input = "now is the time for all good men to come to the

aid of their country.";
char tally[256]; // note that all elements are initially

set to zero

// loop to process all characters in the input string
for (i = 0; input[i] != '\0'; i++)

tally[input[i]]++;

// open a new, untitled file
New;

// report the results for lowercase letters
for (i = 'a'; i <= 'z'; i++)

printf("letter %c occurred %d time(s)\n", i, tally[i]);
}

Had the tally array been declared as a string type, Boxer's built-in range

checking would have prevented the string from being used in the way that was shown
above. By declaring the string as a character array of sufficient size, the macro
processor is forewarned that the code may later index into the string beyond the
terminating null character.

Due to the capacity of the char data type (0-255), the utility of the above

technique is limited to applications in which the maximum number of occurrences
would be less than 256.

Type Conversions

Boxer's Macro Language will automatically convert between data types whenever
possible in order to resolve an expression that involves mismatched data types. Here
are some examples:

string s1 = 'A'; // result: s1 gets "A" (char to string)
string s2 = 65; // result: s2 gets "A" (int to string)
string s3 = 65.0; // result: s3 gets "A" (float to string)

char c1 = 65; // result: c1 gets 'A' (int to char)
char c2 = "A"; // result: c2 gets 'A' (string to char)
char c3 = 65.0; // result: c3 gets 'A' (float to char)

Command Reference (in menu order) 197

Copyright © 1991-2010 by Boxer Software

int n1 = 'A'; // result: n1 gets 65; (char to int)
int n2 = "123"; // result: n2 gets 123 (string to int)
int n3 = 123.45; // result: n3 gets 123 (float to int)

float x1 = 'A' // result: x1 gets 65.0 (char to float)
float x2 = 65; // result: x2 gets 65.0 (int to float)
float x3 = "123.45"; // result: x3 gets 123.45 (string to

float)

Comments

Comments can be placed throughout a macro to help document the code. Two types of
comments are supported, block comments and end-of-line comments:

/* this is a multi-line
 block comment */

int n1 = 7; // this is an end-of-line comment

4.7.3 Macro Function Reference

Function Prototype and Description

abs() int abs(int n)
Returns the absolute value of 'n'.

acos() float acos(float x)
Returns the arc cosine of 'x' in radians. 'x' must be
in the range -1 to 1.

ActiveClipboard int ActiveClipboard
Returns the number of the active clipboard. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

ActiveSpellChecking() int ActiveSpellCheck(int mode)
Enables or disables Active Spell Checking according
to 'mode'.

AlignCenter Issues the Align Center command

AlignLeft Issues the Align Left command

AlignRight Issues the Align Right command

AlignSmooth Issues the Align Smooth command

ANSIChart Issues the ANSI Chart command

ANSItoOEM Issues the ANSI to OEM command

Append
Append
Append the selected text to the current clipboard. If
no text is selected, the current line is appended to

Boxer Text Editor198

Copyright © 1991-2010 by Boxer Software

the clipboard.

AppendToClipboard() int AppendToClipboard(string str, int n)
Appends string 'str' to Clipboard 'n'. Returns the
total length of the text on the clipboard, or -1 for
error. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

See also PutClipboardText().

ApplyHighlighting Issues the Apply Highlighting command

ArrangeIcons Issues the Arrange Icons command

ASCIItoEBCDIC Issues the ASCII to EBCDIC command

asin() float asin(float x)
Returns the arc sine of 'x' in radians. 'x' must be in
the range -1 to 1.

atan() float atan(float x)
Returns the arc tangent of 'x' in radians.

atof() float atof(string str)
Returns the floating point value of the number
described by string 'str'.

atoi() int atoi(string str)
Returns the integer value of the decimal number
described by string 'str'.

AutoNumber Issues the Auto-Number command

Backspace Issues the Backspace command

Backtab Issues the Backtab command

Beep() Beep(int freq, int duration)
Makes a sound through the PC speaker using the
supplied values for frequency and duration.
Frequency is in Hz and duration is in milliseconds.
Beep(1000, 300) produces a standard beep.

BookmarkManager Issues the Bookmark Manager command

BottomOfPage Issues the Bottom of Page command

BringUserListsToTop Issues the Bring User Lists to Top command

BrowseForFilename() BrowseForFilename(string fn, int mustexist)
Browse for a filename using a standard Windows
open dialog and place the selected filename in 'fn'. If
'mustexist' is non-zero, the selected filename must
already exist. If 'mustexist' is 0, a new filename can
be selected. Returns 1 for success or -1 for error.

ByteCount int ByteCount
Returns the number of characters in the current file.

Command Reference (in menu order) 199

Copyright © 1991-2010 by Boxer Software

Calculator Issues the Calculator command

Calendar Issues the Calendar command

Cascade Issues the Cascade command

CascadeHorizontal Issues the Cascade Horizontal command

CascadeVertical Issues the Cascade Vertical command

CaseInvert Issues the Case Invert command

CaseLower Issues the Case Lower command

CaseSentences Issues the Case Sentences command

CaseTitle Issues the Case Title command

CaseUpper Issues the Case Upper command

CaseWords Issues the Case Words command

ceil() float ceil(float x)
Returns (as a float) the smallest integer not less
than 'x'. Example: ceil(1.5) returns 2.0.

ChangeString() int ChangeString(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case sensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringi() int ChangeStringi(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case insensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringRE() int ChangeStringRE(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
sensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

ChangeStringREi() int ChangeStringREi(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
insensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

Boxer Text Editor200

Copyright © 1991-2010 by Boxer Software

CheckWord Issues the Check Word command

ClearAllBookmarks Issues the Clear All Bookmarks command

ClearAllClipboards Issues the Clear All Clipboards command

ClearClipboard() ClearClipboard(int n)
Clears the content of Clipboard 'n'. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

ClearClosedTabsList Issues the Clear Closed Tabs List

ClearRecentFilesList Issues the Clear Recent Files List command

ClearRecentProjectsList Issues the Clear Recent Projects List command

ClearUndo Issues the Clear Undo command

Close Issues the Close command

CloseAll Issues the Close All command

CloseAllButActive Issues the Close All But Active command

ColorChart Issues the HTML Color Chart command

Column int Column
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is
1-based, not 0-based, and does not give
consideration to the display value of any tabs that
may appear in the line.

See also DisplayColumn().

Comment Issues the Comment command

ConfigureColors Issues the Configure Colors command

ConfigureCtagsFunctionInde
xing

Issues the Configure Ctags Function Indexing
command

ConfigureKeyboard Issues the Configure Keyboard command

ConfigurePreferences Issues the Configure Preferences command

ConfigurePrinterFont Issues the Configure Printer Font command

ConfigureScreenFont Issues the Configure Screen Font command

ConfigureSyntaxHighlightin
g

Issues the Configure Syntax Highlighting command

ConfigureTemplates Issues the Configure Templates command

ConfigureTextHighlighting Issues the Configure Text Highlighting command

ConfigureToolbar Issues the Configure Toolbar command

ConfigureUserTools Issues the Configure User Tools command

Command Reference (in menu order) 201

Copyright © 1991-2010 by Boxer Software

Copy Copy
Copy the selected text to the current clipboard. If
text is not selected, the current line is copied to the
clipboard.

CopyFile() int CopyFile(string oldname, string newname)
Copies the file 'oldname' to the file 'newname',
overwriting the output file if it already exists.
Returns 1 for success or -1 for error.

CopyFilename Issues the Copy Filename command

cos() float cos(float x)
Returns the cosine of 'x'. The angle 'x' must be in
radians.

cosh() float cosh(float x)
Returns the hyperbolic cosine of 'x'. The angle 'x'
must be in radians.

CreateDirectory() int CreateDirectory(string dir)
Creates a new directory according to the fully
qualified filepath in 'dir'. Returns 1 for success or -1
for error.

CtagsFunctionIndex Issues the Ctags Function Index command

Cut Cut
Cut the selected text to the current clipboard. If text
is not selected, the current line is cut to the
clipboard.

CutAppend CutAppend
Cut the selected text and append it to the current
clipboard. If text is not selected, the current line is
cut and appended to the clipboard.

Declaration Issues the Declaration command

Decrement() int Decrement(int n)
Subtracts 'n' from the value at the text cursor and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Decrement dialog will appear when the macro is
run.

Delete Delete
Deletes the character at the text cursor, or the
selected text.

DeleteBlankLines Issues the Delete Blank Lines command

DeleteBookmarkedLines Issues the Delete Bookmarked Lines command

DeleteDuplicateLines Issues the Delete Duplicate Lines command

DeleteFile() int DeleteFile(string name)
Deletes the fully qualified filepath 'name' from the

Boxer Text Editor202

Copyright © 1991-2010 by Boxer Software

disk, without requesting confirmation. Returns 1 for
success or -1 for error.

DeleteLine int DeleteLine(int n)
Deletes line 'n' in the current file. Returns 1 for
success or -1 for error. If 'n' is not supplied, the
current line is deleted.

DeleteLinesThatBeginWith int DeleteLinesThatBeginWith(string str)
Delete lines that begin with the string 'str'. Returns
1 for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatContain int DeleteLinesThatContain(string str)
Delete lines that contain the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatDoNotBegin
With

int DeleteLinesThatDoNotBeginWith(string str)
Delete lines that do not begin with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotConta
in

int DeleteLinesThatDoNotContain(string str)
Delete lines that do not contain the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotEndW
ith

int DeleteLinesThatDoNotEndWith(string str)
Delete lines that do not end with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatEndWith int DeleteLinesThatEndWith(string str)
Delete lines that end with the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteNextWord Issues the Delete Next Word command

DeletePreviousWord Issues the Delete Previous Word command

DeleteToEndOfLine Issues the Delete to End of Line command

DeleteToStartOfLine Issues the Delete to Start of Line command

Deselect() Deselect(int mode)
Releases the text selection, if one exists. If 'mode' is
0, the text cursor is placed at the beginning of the
selection. If 'mode' is 1, the text cursor is placed at
the end of the selection. If 'mode' is 2, the current
position of the text cursor is maintained. Returns 1
for success or -1 for error.

DisplayColumn int DisplayColumn
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is

Command Reference (in menu order) 203

Copyright © 1991-2010 by Boxer Software

1-based, not 0-based, and gives consideration to the
display value of any tabs that may appear in the
line.

See also Column().

Divide() int Multiply(int n)
Divides the value at the text cursor by 'n' and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Divide dialog will appear when the macro is run.

Down int Down(int n)
Issues the Down command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

DuplicateAndIncrement Issues the Duplicate and Increment command

DuplicateLine Issues the Duplicate Line command

e float e
Returns the value of Euler's number 'e', which is
approximately 2.7182818285.

EBCDICtoASCII Issues the EBCDIC to ASCII command

EditClipboard() EditClipboard(int n)
Opens Clipboard 'n' in a window for editing. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

EndOfFile Issues the End of File command

EndOfLine Issues the End of Line command

Enter Issues the Enter command

EraseValue() int EraseValue(string name)
Erases the variable 'name' from the macro variable
storage area. Returns 1 for success or -1 for error.

See also ReadValue(), WriteValue(), ValueExists().

ErrorChart Issues the Error Chart command

Exit Exit
Issues the File|Exit command to close the editor. If
one or more files have not been saved a prompt will
appear when the macro is run.

exp() float exp(float x)
Returns the value 'e' raised to the 'x'.

ExploreDataFolder Issues the Explore Data Folder command

ExploreProgramFolder Issues the Explore Program Folder command

Boxer Text Editor204

Copyright © 1991-2010 by Boxer Software

ExtractDrive() int ExtractDrive(string str)
Converts the string 'str' so that it contains only the
drive designation portion of itself (eg 'C:'). Returns
the length of 'str' or -1 for error.

ExtractFileExt() int ExtractFileExt(string str)
Converts the string 'str' so that it contains only the
file extension portion of itself. The leading '.' is
retained in the resulting string. Returns the length
of 'str' or -1 for error.

ExtractFileNameAndExt() int ExtractFileNameAndExt(string str)
Converts the string 'str' so that it contains the
filename.ext portion of itself. Returns the length of
'str' or -1 for error.

ExtractFileNameOnly() int ExtractFileNameOnly(string str)
Converts the string 'str' so that it contains only the
filename portion of itself. Returns the length of 'str'
or -1 for error.

ExtractFilePath() int ExtractFilePath(string str)
Converts the string 'str' so that it contains only the
filepath portion of itself. The trailing backslash is
retained in the resulting string. Returns the length
of 'str' or -1 for error.

fabs() float fabs(float x)
Returns the absolute value of 'x'.

factorial() int factorial(int x)
Returns the value of x factorial, also known as x!
Returns -1 for error or overflow.

FastFrame() int FastFrame(int style)
Surrounds the columnar selection with a frame
according to 'style'. When 'style' is in the range 1 to
11, a corresponding line style from the Fast Frame
dialog is used. If 'style' is not supplied the Fast
Frame dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

FileCount int FileCount
Returns the number of files currently open in the
editor.

FileExists() int FileExists(string filepath)
Returns 1 if 'filepath' exists, 0 if it does not exists,
or -1 for error.

FileName int FileName(string fn)
Fills 'fn' with the full path of the current file. Returns
the length of the filepath or -1 for error.

FilePicker Issues the File Picker command

FileProperties Issues the File Properties command

Command Reference (in menu order) 205

Copyright © 1991-2010 by Boxer Software

FileTabsBottom Issues the File Tabs Bottom command

FileTabsTop Issues the File Tabs Top command

FillWithString() int FillWithString(string str)
Fills the selected region with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the Fill
with String dialog will appear when the macro is
run.

Find() int Find(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Find() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Findi(), FindRE() and FindREi().

FindADiskFile Issues the Find a Disk File command

FindAndCount() int FindAndCount(string str)
Searches for occurrences of 'str' and returns the
number found. If 'str' is not supplied the Find and
Count dialog will appear when the macro is run.

FindDifferingLines int FindDifferingLines()
Issues the Find Differing Lines command and
returns 1 if a mismatch is found, or 0 if no
additional mismatches exist.

FindDistinctLines Issues the Find Distinct Lines command

FindDuplicateLines Issues the Find Duplicate Lines command

FindFast Issues the Find Fast command

Findi() int Findi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Findi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Find(), FindRE() and FindREi().

FindMate int FindMate
search for a mate to the parenthetical sequence at
the text cursor. Returns TRUE if found, FALSE if not
found.

FindNext int FindNext
Returns 1 if the string is found, 0 if not found, -1 for

Boxer Text Editor206

Copyright © 1991-2010 by Boxer Software

error.

FindPrevious int FindPrevious
Returns 1 if the string is found, 0 if not found, -1 for
error.

FindRE() int FindRE(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindRE() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option
ON.

See also Find(), Findi() and FindREi().

FindREi() int FindREi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindREi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option
OFF.

See also Find(), Findi() and FindRE().

FindTextInDiskFiles Issues the Find Text in Disk Files command

FindUniqueLines Issues the Find Unique Lines command

FlipCase Issues the Flip Case command

floor() float floor(float x)
Returns (as a float) the largest integer not greater
than 'x'. Example: floor(1.5) returns 1.0.

FormatXML Issues the Format XML command

Formfeed Issues the Formfeed command

FTPOpen() int FTPOpen(string fn)
Opens the FTP file 'fn' for editing. If 'fn' is already
open for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

GetChar() int GetChar(string prompt, char c)
Displays a message box with 'prompt' and fills 'c'
with the character entered by the user. Returns 1
for success or -1 for error.

See also PressChar().

GetClipboardText() int GetClipboardText(string str, int n)
Fills 'str' with the text of Clipboard 'n'. Returns the

Command Reference (in menu order) 207

Copyright © 1991-2010 by Boxer Software

length of the text installed or -1 for error. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

GetCurrentDirectory() int GetCurrentDirectory(string str)
Retrieves the current directory for the active process
and places it in 'str'. Returns 1 for success or -1 for
error.

See also SetCurrentDirectory().

GetDataDirectory() int GetDataDirectory(string str)
Fills 'str' with the full path of the data directory.
Returns 1 for success or -1 for error.

See also GetProgramDirectory().

GetDate() int GetDate(int y, int m, int d)
Gets the current date and fills 'y', 'm' and 'd' with
the year, month and date, respectively. Returns 1
for success or -1 for error.

GetDayName() int GetDayName(string str, int n)
Fills 'str' with the 3-character name of weekday
number 'n' (1-7). The string returned is sensitive to
the local language. Returns 1 for success or -1 for
error.

GetEditMode() int GetEditMode()
Returns the edit mode of the current file. Returns 0
if the edit mode is Insert, or 1 if the edit mode is
Typeover. Returns -1 if a file is not open.

GetEnv() int GetEnv(string str1, string str2)
Fills 'str1' with the content of the environment
variable named in 'str2'. Returns 1 for success or -1
for error.

GetFloat() int GetFloat(string prompt, float x)
Displays a message box with 'prompt' and fills 'x'
with the value entered by the user. Returns 1 for
success or -1 for error.

GetGMTDateTime() int GetGMTDateTime(int y, int m, int d, int hh, int
mm, int ss)
Gets the current date and time at GMT (Greenwich
Mean Time) and fills 'y', 'm', 'd', 'hh', 'mm' and 'ss'
with year/month/day/hour/minute/second,
respectively. Hours will be in 24-hour format.
Returns 1 for success or -1 for error.

GetInt() int GetInt(string prompt, int n)
Displays a message box with 'prompt' and fills 'n'
with the value entered by the user. Returns 1 for
success or -1 for error.

Boxer Text Editor208

Copyright © 1991-2010 by Boxer Software

GetLineText() int GetLineText(int n, string str)
Fills 'str' with the text of line 'n'. Returns the length
of line 'n' or -1 for error.

GetMonName() int GetMonName(string str, int n)
Fills 'str' with the 3-character name of month
number 'n' (1-12). The string returned is sensitive
to the local language. Returns 1 for success or -1 for
error.

GetMonthName() int GetMonthName(string str, int n)
Fills 'str' with the full name of month number 'n'
(1-12). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetProgramDirectory() int GetProgramDirectory(string str)
Fills 'str' with the full path of the program directory.
Returns 1 for success or -1 for error.

See also GetDataDirectory().

GetReadOnly int GetReadOnly
Returns the read-only state of the current file.
Returns 1 if the file is read-only, 0 if the file is not
read-only, or -1 for error.

See also: ToggleReadOnly()

GetSelection() int GetSelection(string str)
Fills 'str' with the currently selected text. Returns
the length of the selection or -1 for error.

See also: ActiveClipboard

GetSelectionBounds() int GetSelectionBounds(int l1, int c1, int l2, int c2)
Fills l1, c1, l2, c2 with the bounds of the currently
selected text. Returns 1 for success or -1 for error.

GetSelectionMode() int GetSelectionMode()
Returns 0 if the current selection mode is Stream, 1
if the current selection mode is Columnar

GetSelectionSize int GetSelectionSize
Returns the number of character currently selected,
0 if a selection is not present, or -1 for error.

GetShortName() int GetShortName(string shortname, string
fullname)
Fills 'shortname' with the 8.3/DOS format short
filename that corresponds to 'longname'. Returns 1
for success, or -1 for error.

GetString() int GetString(string prompt, string result [, string
default])
Displays a message box with 'prompt' and fills
'result' with the string entered by the user. If the

Command Reference (in menu order) 209

Copyright © 1991-2010 by Boxer Software

optional third parameter 'default' is present, it is
suggested as the default entry string. Returns the
length of 'result' or -1 for error.

GetTextWidth int GetTextWidth
Returns the current Text Width value.

GetTime12() int GetTime12(int h, int m, int s, int pm)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 12-hour format. If the time is PM, 'pm' is set
to 1, else it is set to 0. Returns 1 for success or -1
for error.

GetTime24() int GetTime24(int h, int m, int s)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 24-hour format. Returns 1 for success or -1 for
error.

GetWeekday() int GetWeekday(int y, int m, int d)
Returns the number of the weekday associated with
the date 'y', 'm', 'd'. Returns 1-7 for success or -1
for error.

GetWeekdayName() int GetWeekdayName(string str, int n)
Fills 'str' with the full name of weekday number 'n'
(1-7). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetWindowNumber() int GetWindowNumber(string fn)
Returns the window number that holds the file 'fn'.
Returns -1 for error, 0 if the named file is not open,
or a postive value if the file's window is located.

See also Filename(), SwitchToWindow().

GetWord() int GetWord(string str)
Fills 'str' with the word at the text cursor. Returns
the length of the word found or -1 for error.

See also SelectWord().

GetWordDelimiters() int GetWordDelimiters(string str)
Fills 'str' with a string that contains the characters
considered to be word delimiters for the current file.
Returns 1 for success or -1 for error.

GetYesNo() int GetYesNo(string title, string query)
Gets a Yes or No reply from the user. Displays a
message box with title 'title' and message 'query'.
Returns 1 if the user clicks Yes, 0 if the user clicks
No.

GoToByteOffset() int GoToByteOffset(int n OR string str)
Go to offset 'n' in the current file. Returns 1 for

Boxer Text Editor210

Copyright © 1991-2010 by Boxer Software

success or -1 for error. A string parameter is also
accepted. For example: "+25" will cause the cursor
to be moved ahead 25 bytes. If a parameter is not
provided the Go to Byte Offset dialog will appear
when the macro is run.

GoToColumn() int GoToColumn(int n OR string str)
Go to column 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "-12" will cause the cursor
to be moved 12 columns to the left. If a parameter
is not provided the Go to Column dialog will appear
when the macro is run.

GoToLine() int GoToLine(int n or string str)
Go to line 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "+50" will cause the cursor
to be moved ahead 50 lines. If a parameter is not
provided the Go to Line dialog will appear when the
macro is run.

GoToParagraph() int GoToParagraph(int n)
Go to paragraph 'n' in the current file. Returns 1 for
success or -1 for error. If a parameter is not
provided the Go to Paragraph dialog will appear
when the macro is run.

HardenLineEnders Issues the Harden Line Enders command.

HTMLImageTag() int HTMLImageTag(string fn)
Inserts an HTML 'IMG' tag for the image file 'fn'.
BMP, GIF and JPG images are supported. Returns 1
for success or -1 for error.

Increment() int Increment(int n)
Adds 'n' to the value at the text cursor and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Increment dialog will appear when the macro is run.

IndentOneSpace Issues the Indent One Space command

IndentOneTabstop Issues the Indent One Tabstop command

IndentWithString() int IndentWithString(string str)
Indents the selected lines with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the
Indent with String dialog will appear when the
macro is run.

InsertCharacter() int InsertCharacter(char ch)
Inserts character 'ch' into the edited text. Returns
the ASCII value of 'ch' or -1 for error. (This
command is identical to PutChar.)

Command Reference (in menu order) 211

Copyright © 1991-2010 by Boxer Software

InsertFile() int InsertFile(string str)
Insert file 'str' into the current file. Returns 1 for
success or -1 for error. If 'str' is not provided the
Insert File dialog will appear when the macro is run.

InsertFilename Issues the Insert Filename command

InsertLineAbove Issues the Insert Line Above command

InsertLineBelow Issues the Insert Line Below command

InsertLongDate Issues the Insert Long Date command

InsertLongTime Issues the Insert Long Time command

InsertMode InsertMode
Switches the edit mode to Insert in the current file.

See also ToggleEditMode().

InsertShortDate Issues the Insert Short Date command

InsertShortTime Issues the Insert Short Time command

InvertLines Issues the Invert Lines command

isalnum() int isalnum(char c)
Returns non-zero if character 'c' is alphanumeric.

isalpha() int isalpha(char c)
Returns non-zero if character 'c' is alphabetic.

isascii() int isascii(char c)
Returns non-zero if character 'c' is in the range
0-127.

IsBookmarked() int IsBookmarked(int n)
Returns 1 if line 'n' is bookmarked, 0 if not, or -1 for
error. If 'n' is not supplied, the current line is
assumed.

iscntrl() int iscntrl(char c)
Returns non-zero if character 'c' is a control
character (0-31 or 127).

isdigit() int isdigit(char c)
Returns non-zero if character 'c' is a digit.

islower() int islower(char c)
Returns non-zero if character 'c' is lowercase.

ispunct() int ispunct(char c)
Returns non-zero if character 'c' is punctuation.

isspace() int isspace(char c)
Returns non-zero if character 'c' is whitespace
(space, tab, newline, etc.).

isupper() int isupper(char c)
Returns non-zero if character 'c' is uppercase.

Boxer Text Editor212

Copyright © 1991-2010 by Boxer Software

isxdigit() int isxdigit(char c)
Returns non-zero if character 'c' is a hex digit (A-F,
a-f, 0-9).

JustificationStyle() int JustificationStyle(int n)
Sets the current text justification style according to
'n': 1=Left, 2=Center, 3=Right, 4=Smooth. If 'n' is
not supplied the Justification Style dialog will appear
when the macro runs. Returns 1 for success or -1
for error.

LastCharacter() int LastCharacter(string str)
Returns the last character in 'str' or 0 if 'str' is an
empty string.

Left int Left(int n)
Issues the Left command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

LeftWindowEdge Issues the Left Window Edge command

LineContains() int LineContains(int n, string str)
Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
sensitive. Regular expressions are not recognized.

LineContainsi() int LineContainsi(int n, string str)
Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
insensitive. Regular expressions are not recognized.

LineContainsRE() int LineContainsRE(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case sensitive.
Regular expressions ARE recognized.

LineContainsREi() int LineContainsREi(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case insensitive.
Regular expressions ARE recognized.

LineCount int LineCount
Returns the number of lines in the current file.

LineDrawing() int LineDrawing(int style)
Initiates or terminates Line Drawing mode. If 'style'
is 1 to 11, a corresponding line style from the Line
Drawing dialog is activated. The Up, Down, Left and
Right commands can then be used to draw lines and
boxes. When 'style' is 0, Line Drawing mode is
terminated. If 'style' is not supplied the Line
Drawing dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

Command Reference (in menu order) 213

Copyright © 1991-2010 by Boxer Software

LineIsEmpty() int LineIsEmpty(int n)
Returns TRUE if line 'n' is empty. Note: a line
containing only whitespace is considered empty.

LineLength() int LineLength(int n)
Returns the number of characters in line 'n'.

LineNumber int LineNumber
Returns the current line number in the current file
or -1 for error.

LineSpacing int LineSpacing(int mode)
Formats the range of selected lines, or the whole
file, according to 'mode'. 'mode' can be 1, 2 or 3,
which produces single, double or triple spacing,
respectively. Returns 1 for success or -1 for error.

log() float log(float x)
Returns the natural log of 'x'. 'x' must be a positive
value greater than 0.

log10() float log(float x)
Returns the base 10 log of 'x'. 'x' must be a positive
value greater than 0.

MakeLineBottom Issues the Make Line Bottom command

MakeLineCenter Issues the Make Line Center command

MakeLineTop Issues the Make Line Top command

max() int max(int n1, int n2)
Returns the greater of 'n1' and 'n2'.

Maximize Maximize the current editing window.

MaximizeAll Issues the Maximize All command

Message() Message(string str, ...)
Displays a pop-up message box with title 'str' and a
message that is built from all arguments that follow.
Example:
Message("Results", n, " removed;", m, " remain.");

min() int min(int n1, int n2)
Returns the lesser of 'n1' and 'n2'.

Minimize Minimize the current editing window.

MinimizeAll Issues the Minimize All command

Modified int Modified
Returns 1 if the current file has been modified, else
0. Returns -1 for error.

See also SetModified().

MoveLineDown Issues the Move Line Down command

Boxer Text Editor214

Copyright © 1991-2010 by Boxer Software

MoveLineUp Issues the Move Line Up command

Multiply() int Multiply(int n)
Multiplies the value at the text cursor by 'n' and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Multiply dialog will appear when the macro is
run.

New Issues the New command

NextBookmark Issues the Next Bookmark command

NextFunction Issues the Next Function command

NextParagraph Issues the Next Paragraph command

OEMChart Issues the OEM Chart command

OEMtoANSI Issues the OEM to ANSI command

Open() int Open(string fn)
Opens the file 'fn' for editing. If 'fn' is already open
for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

OpenEmail() int OpenEmail(string str)
Initiates an email message to the address in 'str'
using the default email client. Returns 1 for success
or -1 for error.

See also OpenEmailAtCursor.

OpenEmailAtCursor Issues the Open Email at Cursor command

OpenFileInBrowser Issues the Open File in Browser command

OpenFilenameAtCursor Issues the Open Filename at Cursor command

OpenHeaderFile Issues the Open Header File command

OpenHex() int OpenHex(string fn)
Opens the file 'fn' for hex mode viewing and editing.
Returns 1 for success or -1 for error. Remember: \\
must be used to denote \ within 'fn'.

OpenProgramAtCursor Issues the Open Program at Cursor command

OpenRecentFile() OpenRecentFile(int n)
Opens recent file number 'n'. When a sufficient file
history exists, 'n' can range from 1 to 24.

OpenRecentProject() OpenRecentProject(int n)
Opens recent project number 'n'. When a sufficient
project history exists, 'n' can range from 1 to 16.

OpenSystemFiles Issues the Open System Files command

OpenURL() int OpenURL(string str)

Command Reference (in menu order) 215

Copyright © 1991-2010 by Boxer Software

Opens the URL described in 'str' in the default
internet browser. Returns 1 for succes or -1 for
error.

See also OpenURLAtCursor.

OpenURLAtCursor Issues the Open URL at Cursor command

PageDown Issues the Page Down command

PageLeft Issues the Page Left command

PageRight Issues the Page Right command

PageSetup Issues the Page Setup command

PageUp Issues the Page Up command

Paste Issues the Paste command

PasteAs Issues the Paste As command

PasteClipboard() PasteClipboard(int n)
Pastes the content of Clipboard 'n' into the current
file. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

Pause Pause
Pauses macro execution by displaying a message
box and waiting for it to be closed.

pi float pi
Returns the value of pi, which is approximately
3.1415926536.

PlaySound() int PlaySound(string filepath)
Plays the .WAV file described in 'filepath'. Returns 1
for success or -1 for error.

pow() float pow(float x, float y)
Returns the value of 'x' raised to the power 'y'.

PressChar() int PressChar(string prompt, char c)
Displays the message 'prompt' on the status bar and
fills 'c' with the next character pressed by the user.
A popup dialog does NOT appear. A file must be
open in order for PressChar to operate. Returns 1
for success or -1 for error.

Note: PressChar will not wait for a character when
run in Debug mode.

See also GetChar().

PreviousBookmark Issues the Previous Bookmark command

PreviousFunction Issues the Previous Function command

PreviousParagraph Issues the Previous Paragraph command

Boxer Text Editor216

Copyright © 1991-2010 by Boxer Software

Print Issues the Print command

PrintAll Issues the Print All command

PrintAllColor Issues the Print All Color command

PrintAllMonochrome Issues the Print All Monochrome command

PrintColor Issues the Print Color command

printf() int printf(string format, ...)
Processes 'format' and inserts a string into the
edited text, in accordance with the formatting
commands used in 'C'. Returns the number of
characters inserted. See the online help for more
information.

PrintMonochrome Issues the Print Monochrome command

PrintPreview Issues the Print Preview command

PrintPreviewColor Issues the Print Preview Color command

PrintPreviewMonochrome Issues the Print Preview Monochrome command

PrintSetup Issues the Print Setup command

ProjectAddAll Issues the Project Add All command

ProjectAddOne Issues the Project Add One command

ProjectAutoUpdate() int ProjectAutoUpdate(int mode)
Toggles the Auto-Update feature on or off for the
active project according to 'mode'. Returns 1 for
success or -1 for error.

ProjectClose Issues the Project Close command

ProjectDelete() int ProjectDelete(string name)
Deletes the project file described by 'name'. A
confirmation prompt will be presented. Returns 1 for
success or -1 for error.

ProjectEditActive Issues the Project Edit Active command

ProjectEditOther() int ProjectEditOther(string name)
Opens the project file described by 'name' for
editing. If 'name' does not exist an empty file will be
opened. Returns 1 for success or -1 for error.

ProjectName() int ProjectName(string fn)
Fills 'fn' with the full path of the active project file.
Returns the length of the filepath or -1 for error.

ProjectNew Issues the Project New command

ProjectOpen() int ProjectOpen(string name)
Open the project file described by 'name'. Returns 1
for success or -1 for error.

ProjectRemove Issues the Project Remove command

Command Reference (in menu order) 217

Copyright © 1991-2010 by Boxer Software

ProjectUpdateAll Issues the Project Update All command

ProjectUpdateOne Issues the Project Update One command

PutChar() int PutChar(char ch)
Inserts character 'ch' into the edited text. Returns 1
for success or -1 for error.

PutClipboardText() int PutClipboardText(string str, int n)
Fills Clipboard 'n' with string 'str'. Returns the length
of the text installed or -1 for error. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

See also AppendToClipboard().

PutFloat() int PutFloat(float x)
Inserts the value of 'x' into the edited text. Two
decimal places will be used. Returns 1 for success or
-1 for error. Use printf() if special formatting is
required.

PutInt() int PutInt(int n)
Inserts the value of 'n' into the edited text. Returns
1 for success or -1 for error.

PutLineText() int PutLineText(int n, string str)
Replaces the text of line 'n' with 'str'. Returns the
length of 'str' or -1 for error.

PutMany() int PutMany(...)
Inserts the supplied argument(s) into the edited
text. Example:
PutMany(5, " is a number", '\n');

PutSelection() int PutSelection(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error. PutSelection() is the
complement to GetSelection(), and it should be used
instead of PutString to ensure proper insertion of
column-selected text.

PutString() int PutString(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error.

PutWordDelimiters() int PutWordDelimiters(string str)
Sets the word delimiters for the current file to the
characters contained in 'str'. Returns 1 for success
or -1 for error.

QuoteAndReformat Issues the Quote and Reformat command

Random() int Random(int n)
Returns a random number between 0 and n-1 or -1
for error.

Boxer Text Editor218

Copyright © 1991-2010 by Boxer Software

ReadValue() int ReadValue(string name, char/int/string/float val)
Reads a value from the macro variable storage area
named 'name' and places it into variable 'val'. The
type of 'val' must agree with the type used when the
value was written using WriteValue(). Returns 1 for
success or -1 for error.

See also WriteValue(), EraseValue(), ValueExists().

Redo Issues the Redo command

RedoAll Issues the Redo All command

Reference Issues the Reference command

Reformat Issues the Reformat command

ReloadFile Issues the Reload File command

RenameFile() int RenameFile(string oldname, string newname)
Renames the file or directory named 'oldname' to
'newname'. Files can be renamed across drives;
directories must be on the same drive. The target
'newname' must not exist. Returns 1 for success or
-1 for error.

Replace() int Replace(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replace() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Replacei().

ReplaceAgain Issues the Replace Again command

ReplaceAll() int ReplaceAll(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm
replacements. ReplaceAll() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the Match
Case option ON.

See also ReplaceAlli().

ReplaceAlli() int ReplaceAlli(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm

Command Reference (in menu order) 219

Copyright © 1991-2010 by Boxer Software

replacements. ReplaceAlli() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the the
Match Case option OFF.

See also ReplaceAll().

ReplaceAllRE() int ReplaceAllRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllREi().

ReplaceAllREi() int ReplaceAllREi(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllRE().

Replacei() int Replacei(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replacei() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Replace().

ReplaceLineEnders() int ReplaceLineEnders(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'. 'str1'
and 'str2' may use the sequence \n (if within a
quoted string) to represent a line ender. Returns the
number of replacements made or -1 for error. The

Boxer Text Editor220

Copyright © 1991-2010 by Boxer Software

user will be NOT prompted to confirm replacements.
If 'str1' and 'str2' are not supplied the Replace Line
Enders dialog will appear when the macro is run.
ReplaceLineEnders() will use the current settings on
the Replace Line Enders dialog.

ReplaceRE() int ReplaceRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also Replace(), Replacei() and ReplaceREi().

ReplaceREi() int ReplaceREi(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also Replace(), Replacei() and ReplaceRE().

Restore Restore the current window from a minimized or
maximized state.

RestoreAll Issues the Restore All command

RestoreSettings RestoreSettings
Restores a variety of editor settings which were
earlier noted using SaveSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
restored: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active
Clipboard and Word Delimiters.

Right int Right(int n)
Issues the Right command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

RightWindowEdge Issues the Right Window Edge command

ROT5 Applies a ROT5 (rotation 5) conversion to the

Command Reference (in menu order) 221

Copyright © 1991-2010 by Boxer Software

selected text

ROT13 Applies a ROT13 (rotation 13) conversion to the
selected text

ROT18 Applies a ROT18 (rotation 18) conversion to the
selected text

ROT47 Applies a ROT47 (rotation 47) conversion to the
selected text

Round() float Round(float x, int n)
Returns the value of 'x' rounded to 'n' decimal
places.

RunProgram() int RunProgram(string fn, string params, string
workdir, int wait)
Runs the named program, document or folder in 'fn'
by passing it to the ShellExecuteEx Windows API
call. Command line parameters can be passed in
'params'. The program's working directory can be
passed in 'workdir'. If 'wait' is 1, macro execution
will be suspended until the program has been
closed. Returns the completion code of
ShellExecuteEx: non-zero for success, zero for error.

See also OpenProgramAtCursor().

Save Issues the Save command

SaveACopyAs() int SaveACopyAs(string fn)
Saves a copy of the current file to the file 'fn'. The
name of the current file is not changed. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveAll Issues the Save All command

SaveAs() int SaveAs(string fn)
Saves the current file to the file 'fn'. The name of
the current file is changed to 'fn'. Returns 1 for
success or -1 for error. Remember: \\ must be used
to denote \ within 'fn'.

SaveSelectionAs() int SaveSelectionAs(string fn)
Saves the current selection to the file 'fn'. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveSettings SaveSettings
Records a variety of editor settings for later
restoration using RestoreSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
saved: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active

Boxer Text Editor222

Copyright © 1991-2010 by Boxer Software

Clipboard and Word Delimiters.

ScrollDown Issues the Scroll Down command

ScrollLeft Issues the Scroll Left command

ScrollRight Issues the Scroll Right command

ScrollUp Issues the Scroll Up command

SelectAllText Issues the Select All Text command

SelectColumnar Issues the Select Columnar command

SelectDown Issues the Select Down command

SelectLeft Issues the Select Left command

SelectPageDown Issues the Select Page Down command

SelectPageLeft Issues the Select Page Left command

SelectPageRight Issues the Select Page Right command

SelectPageUp Issues the Select Page Up command

SelectRight Issues the Select Right command

SelectStream Issues the Select Stream command

SelectToBottomOfPage Issues the Select to Bottom of Page command

SelectToEndOfFile Issues the Select to End of File command

SelectToEndOfLine Issues the Select to End of Line command

SelectToStartOfFile Issues the Select to Start of File command

SelectToStartOfLine Issues the Select to Start of Line command

SelectToTopOfPage Issues the Select to Top of Page command

SelectUp Issues the Select Up command

SelectWithoutShift Issues the Select without Shift command

SelectWord int SelectWord(string str)
Selects the word at the text cursor and places it in
'str'. Returns the length of the word selected or 0 if
no word could be found to select.

See also GetWord().

SelectWordLeft Issues the Select Word Left command

SelectWordRight Issues the Select Word Right command

SetClipboard() SetClipboard(int n)
Sets the active clipboard to Clipboard 'n'. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

SetClipboardNext Issues the Set Clipboard Next command

Command Reference (in menu order) 223

Copyright © 1991-2010 by Boxer Software

SetClipboardPrevious Issues the Set Clipboard Previous command

SetCurrentDirectory int SetCurrentDirectory(string str)
Sets the current directory for the active process to
'str'. Returns 1 for success or -1 for error.

See also GetCurrentDirectory().

SetModified SetModified
Sets the modifed state of the current to true. This
might be used to force a Save operation even when
a file has not been modified. Returns 1 for success
or -1 for error.

See also Modified().

ShadedTabZones() int ShadedTabZones(int mode)
Enables or disables the Shaded Tab Zones display
mode according to 'mode'.

sin() float sin(float x)
Returns the sine of 'x'. The angle 'x' must be in
radians.

sinh() float sinh(float x)
Returns the hyperbolic sine of 'x'. The angle 'x' must
be in radians.

SoftenLineEnders Issues the Soften Line Enders command.

SortFileTabsByExt() int SortFileTabsByExt(int mode)
Enables or disables the sorting of File Tabs by
extension according to 'mode'. If 'mode' is 1 the
feature is enabled. If 'mode' is 0 the feature is
disabled.

SortFileTabsByName() int SortFileTabsByName(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortFileTabsByUse() int SortFileTabsByUse(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortLines Issues the Sort Lines command

Space Issues the Space command. If a range of lines is
selected, the range will be indented.

SpacesToTabs Issues the Spaces to Tabs command

SpellChecker Issues the Spell Checker command

SplitHorizontal Issues the Split Horizontal command

SplitVertical Issues the Split Vertical command

Boxer Text Editor224

Copyright © 1991-2010 by Boxer Software

sprintf() int sprintf(string str1, string format, ...)
Processes 'format' and builds an output string in
'str1', in accordance with the formatting commands
used in 'C'. Returns the length of 'str1' or -1 for
error. See the online help for more information.

sqrt() float sqrt(float x)
Returns the positive square root of 'x'.

StartOfFile Issues the Start of File command

StartOfLine Issues the Start of Line command

StatusMessage() StatusMessage(...)
Displays a message in the status bar that is built
from all arguments that follow. Example:
StatusMessage(n, " were removed;", m, " remain.");

strcat() int strcat(string str1, string str2)
Concatenates 'str2' to 'str1'. Returns the length of
'str1' or -1 for error.

strchr() int strchr(string str, char c)
Returns the offset at which the character 'c' appears
in 'str' or -1 if 'c' does not appear.

See also strrchr().

strcmp() int strcmp(string str1, string str2)
Compares 'str1' to 'str2' with case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcmpi() int strcmpi(string str1, string str2)
Compares 'str1' to 'str2' without case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcpy() int strcpy(string str1, string str2)
Copies 'str2' to 'str1'. Returns the length of 'str1' or
-1 for error.

StripHTMLTags Issues the Strip HTML/XML Tags command

StripLeadingSpaces Issues the Strip Leading Spaces command

StripTrailingSpaces Issues the Strip Trailing Spaces command

strlen() int strlen(string str)
Returns the length of 'str'.

strlwr() int strlwr(string str)
Converts the string 'str' to lowercase. Returns the
length of 'str'.

strncat() int strncat(string str1, string str2, int n)

Command Reference (in menu order) 225

Copyright © 1991-2010 by Boxer Software

Concatenates up to 'n' characters from 'str2' to
'str1'. Returns the length of 'str1' or -1 for error. A
NULL byte is added after the characters added.

strncmp() int strncmp(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2' with
case sensitivity. Returns 0 if the strings are equal.
Returns < 0 if 'str1' is less than 'str2'. Returns > 0 if
'str1' is greater than 'str2'.

strncmpi() int strncmpi(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2'
without case sensitivity. Returns 0 if the strings are
equal. Returns < 0 if 'str1' is less than 'str2'.
Returns > 0 if 'str1' is greater than 'str2'.

strncpy() int strncpy(string str1, string str2, int n)
Copies up to 'n' characters from 'str2' to 'str1'.
Returns the length of 'str1' or -1 for error. A NULL
byte is added after the characters copied.

strrchr() int strrchr(string str, char c)
Returns the offset at which the character 'c' last
appears in 'str' or -1 if 'c' does not appear.

See also strchr().

strrev() int strrev(string str)
Reverses the string 'str' in place. Example:
The string 'Boxer' would be converted to 'rexoB'.

strstr() int strstr(string str1, string str2)
Searches string 'str1' for the substring 'str2' with
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strstri() int strstri(string str1, string str2)
Searches string 'str1' for the substring 'str2' without
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strupr() int strupr(string str)
Converts the string 'str' to uppercase. Returns the
length of 'str'.

SubString() int SubString(string str1, string str2, int index, int
len)
Fills 'str1' with up to 'len' characters from 'str2',
starting at offset 'index'. The first character in a
string is referred to by offset 0. Returns the new
length of 'str1' or -1 for error.

If 'index' is negative, and 'len' is positive, 'str1' will
be filled with 'len' characters starting 'index'
characters in from the end of 'str2'.

Boxer Text Editor226

Copyright © 1991-2010 by Boxer Software

If 'len' is negative, the value of 'index' is ignored,
and 'str1' is filled with the rightmost 'len' characters
from 'str2'.

SwapLines Issues the Swap Lines command

SwapWords Issues the Swap Words command

SwitchToWindow() SwitchToWindow(int n)
Makes window 'n' active. Windows are numbered
from 1 to the number of open files.

See also FileCount.

See also GetWindowNumber().

SyntaxHighlightAs Issues the Syntax Highlight As command

Tab Issues the Tab command. If a range of lines is
selected, the range will be indented.

TabDisplaySize() int TabDisplaySize(string str)
Sets the Tab Display Size for the current file
according to 'str'. If a single value appears in 'str',
tabs are set to fixed width with the value in 'str'. If a
series of comma-separated values are found in 'str',
variable width tab stops will be used. Returns TRUE
for success, -1 for error. If 'str' is not supplied the
Tab Display Size dialog will appear when the macro
is run.

TabsToSpaces Issues the Tabs to Spaces command

tan() float tan(float x)
Returns the tangent of 'x'. The angle 'x' must be in
radians.

tanh() float tanh(float x)
Returns the hyperbolic tangent of 'x'. The angle 'x'
must be in radians.

Templates Issues the Templates command

TextIsSelected int TextIsSelected
Returns 1 if a stream selection is present, 2 if a
columnar selection is present, or 0 if no selection is
present. Returns -1 for error.

TextWidth() int TextWidth(int n)
Sets the Text Width to 'n'. Returns TRUE for success
or -1 for error. If 'n' is not supplied the Text Width
dialog will appear when the macro is run.

TileAcross Issues the Tile Across command

TileDown Issues the Tile Down command

Command Reference (in menu order) 227

Copyright © 1991-2010 by Boxer Software

ToggleBookmark() int ToggleBookmark(int n, int state)
Sets bookmark 'n' according to 'state'. Returns TRUE
for success, -1 for error. If 'state' is ON, bookmark
'n' is placed on the current line. If 'state' is OFF
bookmark 'n' is cleared, where ever it is.

ToggleEditMode() ToggleEditMode(int state)
Toggles the edit mode according to 'state'. If 'state'
is 1, Insert mode is used. If 'state' is 0, Typeover
mode is used.

See also the functions InsertMode() and
TypeoverMode().

ToggleReadOnly() ToggleReadOnly(int state)
Toggle read-only mode according to 'state'. If 'state'
is 1, read-only mode is set. If 'state' is 0, read-only
mode is released.

tolower() int tolower(char c)
Returns the lowercase mate to character 'c'.

ToolbarBottom Issues the Toolbar Bottom command

ToolbarLeft Issues the Toolbar Left command

ToolbarRight Issues the Toolbar Right command

ToolbarTop Issues the Toolbar Top command

TopLine int TopLine
Returns the line number of the first line in the editor
window. Returns -1 for error.

TopOfPage Issues the Top of Page command

TotalAndAverage Issues the Total and Average command

TouchFile() int TouchFile(string name)
Touch (ie, update the timestamp of) the file named
'name'. Returns 1 for success or -1 for error.

toupper() int toupper(char c)
Returns the uppercase mate to character 'c'.

Trim() int Trim(string str)
Removes leading and trailing blanks from 'str'.
Returns the new length of 'str'.

TrimLeft() int TrimLeft(string str)
Removes leading blanks from 'str'. Returns the new
length of 'str'.

TrimRight() int TrimRight(string str)
Removes trailing blanks from 'str'. Returns the new
length of 'str'.

Trunc()
float Trunc(float x, int n)

Boxer Text Editor228

Copyright © 1991-2010 by Boxer Software

Returns the value of 'x' truncated to 'n' decimal
places.

TypeoverMode TypeoverMode
Switches the edit mode to Typeover in the current
file.

See also ToggleEditMode().

Uncomment Issues the Uncomment command.

Undo Issues the Undo command.

UndoAll Issues the Undo All command.

UndoAllClosedTabs Issues the Undo All Closed Tabs command.

UndoClosedTab() UndoClosedTab(int n)
Reopens recently closed file tab number 'n'. When a
sufficient closed tab list exists, 'n' can range from 1
to 10.

UndoCloseTab Issues the Undo Close Tab command.

Unformat Issues the Unformat command.

UnformatXML Issues the Unformat XML command.

UnhighlightMatches Issues the Unhighlight Matches command.

Unindent Issues the Unindent command.

Up int Up(int n)
Issues the Up command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

UserList() UserList(int n)
Opens User List window 'n'.

UserTool() UserTool(int n)
Runs User Tool number 'n'.

UserToolWait() UserTool(int n)
Runs User Tool number 'n' and waits for it to
complete execution.

ValueAtCursor int ValueAtCursor
Returns the ASCII value of the character at the
cursor, or -1 if a character is not available at the
cursor.

ValueExists() int ValueExists(string name)
Looks for the variable 'name' in the macro variable
storage area. Returns 1 if it exists, 0 if it does not
exists, or -1 for error.

See also ReadValue(), WriteValue(), EraseValue().

Command Reference (in menu order) 229

Copyright © 1991-2010 by Boxer Software

ViewBookmarks() int ViewBookmarks(int mode)
Enables or disables the viewing of Bookmarks
according to 'mode'.

ViewFileTabs() int ViewFileTabs(int mode)
Enables or disables the viewing of File Tabs
according to 'mode'.

ViewHexMode() int ViewHexMode(int mode)
Enables or disables read-only hex mode viewing
according to 'mode'.

ViewHexRuler() int ViewHexRuler(int mode)
Enables or disables the viewing of the Hex Ruler
according to 'mode'.

ViewTextRuler() int ViewTextRuler(int mode)
Enables or disables the viewing of the Text Ruler
according to 'mode'.

ViewHScrollBar() int ViewHScrollBar(int mode)
Enables or disables the viewing of Horizontal Scroll
Bars according to 'mode'.

ViewLineNumbers() int ViewLineNumbers(int mode)
Enables or disables the viewing of Line Numbers
according to 'mode'.

ViewRightMarginRule() int ViewRightMarginRule(int mode)
Enables or disables the viewing of the Right Margin
Rule according to 'mode'.

ViewStatusBar() int ViewStatusBar(int mode)
Enables or disables the viewing of the Status Bar
according to 'mode'.

ViewSyntaxHighlighting() int ViewSyntaxHighlighting(int mode)
Enables or disables the Syntax Highlighting feature
according to 'mode'.

ViewTextHighlighting() int ViewTextHighlighting(int mode)
Enables or disables the Text Highlighting feature
according to 'mode'.

ViewToolbar() int ViewToolbar(int mode)
Enables or disables the viewing of the Toolbar
according to 'mode'.

ViewVisibleSpaces() int ViewVisibleSpaces(int mode)
Enables or disables the viewing of Visible Spaces
according to 'mode'.

ViewVScrollBar() int ViewVScrollBar(int mode)
Enables or disables the viewing of Vertical Scroll
Bars according to 'mode'.

VisualWrap() int VisualWrap(int mode)
Enables or disables Visual Wrap according to 'mode'.

Boxer Text Editor230

Copyright © 1991-2010 by Boxer Software

VisualWrapOptions Issues the Visual Wrap Options command.

Wait() int Wait(int n)
Delays macro execution for 'n' milliseconds. 1000
milliseconds equals 1 second. Returns 1 for success
or -1 for error.

WindowHeight int WindowHeight
Returns the number of lines that can be displayed in
the current window.

WindowLastVisited Issues the Window Last Visited command

WindowList Issues the Window List command

WindowNext Issues the Window Next command

WindowPrevious Issues the Window Previous command

WindowSkip int WindowSkip(int mode)
If 'mode' is 1, sets the skip status for the current
window to on. If mode is 0, skip status is turned off.
Returns 1 for success or -1 for error.

WindowWidth int WindowWidth
Returns the number of columns that can be
displayed in the current window.

WordCount() int WordCount(int lines, int words, int chars)
Fills the supplied variables with the count of lines,
words and characters, respectively. Returns 1 for
success or -1 for error.

WordLeft int WordLeft(int n)
Issues the Word Left command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordRight int WordRight(int n)
Issues the Word Right command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordWrap() int WordWrap(int mode)
Enables or disables Typing Wrap according to
'mode'. Deprecated: see TypingWrap().

WriteValue() int WriteValue(string name, char/int/string/float val)
Writes 'val' to the macro variable storage area
named 'name'. 'name' will be visible to other
macros, so be careful to choose a unique identifier.
Returns 1 for success or -1 for error.

See also ReadValue(), EraseValue(), ValueExists().

Command Reference (in menu order) 231

Copyright © 1991-2010 by Boxer Software

xtoi() int xtoi(string str)
Returns the integer value of the hexadecimal
number described by string 'str'. Returns -1 for
error.

4.7.4 Macro Examples

The following example macros show the syntax of Boxer's macro language, while also
suggesting useful methods of attack for common programming tasks:

Move cursor to bottom of paragraph

// move the cursor to the bottom line of the current paragraph

macro BottomOfParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber+1))
 Down;
}

Move cursor to top of previous paragraph

// move the cursor to the top line of the previous paragraph

macro TopOfPreviousParagraph()
{
Up;

while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))
 Up;

StartOfLine;
}

Move cursor to top of current paragraph

// move the cursor to the top line of the current paragraph

macro TopOfCurrentParagraph()
{
while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))

Boxer Text Editor232

Copyright © 1991-2010 by Boxer Software

 Up;
}

Move cursor to top of next paragraph

// move the cursor to the first line of the next paragraph

macro TopOfNextParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber))
 Down;

Down;
StartOfLine;
}

Add a newline after every closing angle bracket

// add a newline after each closing angle (>) character
// unless the angle already appears at end of line

macro AddNewlineAfterCloseAngle()
{
int line, i, j;
string str;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // get the index of the closing angle
 j = strchr(str, '>');

 // if the character was found and was not at end-of-line...
 if (j != -1 && str[j+1] != '\0')
 {
 GotoLine(line);
 GotoColumn(1);

 // advance the cursor to the character
 while (ValueAtCursor() != '>')

Command Reference (in menu order) 233

Copyright © 1991-2010 by Boxer Software

 Right;

 // and past the character
 Right;

 // insert a newline
 Enter;

 // process this line again in case other tags exist
 line--;
 }
 }
}

Apply HTML markup to a simple text file

// apply HTML markup to a simple text file
// also converts double quote, ampersand, and
// angle brackets to HTML equivalents

macro ApplyHTMLMarkup()
{
int prevlen, len, i;
string str;
int numchanges;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the text of line 'i' into 'str'
 GetLineText(i, str);

 // reset the change counter
 numchanges = 0;

 // convert sensitive characters to HTML codes
 numchanges += ChangeString(str, "&", "&");
 numchanges += ChangeString(str, "<", "<");
 numchanges += ChangeString(str, ">", ">");
 numchanges += ChangeString(str, "\"", """);

 // if changes were made, replace the line's text
 if (numchanges > 0)
 PutLineText(i, str);

Boxer Text Editor234

Copyright © 1991-2010 by Boxer Software

 }

// move to top of file
StartOfFile;
Down;

// loop on all lines in the file, starting on line 2
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

 // get the length of this line
 len = LineLength(i);

 // if this line is empty, and the previous line isn't...
 // apply
 markers to the end of the line
 if (len == 0 && prevlen != 0)
 {
 Up;
 EndOfLine;
 PutString("

");
 StartofLine;
 Down;
 }

 Down; // move down to the next line
 }

StartOfFile;

PutString("<html>\n");
PutString("<head>\n");
PutString("<title></title>\n");
PutString("</head>\n\n");
PutString("<body>\n");

EndOfFile;
EndOfLine;
PutString("\n");
PutString("</body>\n");
PutString("</html>\n");

// place cursor between title and /title
GotoLine(3);

Command Reference (in menu order) 235

Copyright © 1991-2010 by Boxer Software

GotoColumn(8);
}

Display an ASCII chart in a new file

// ASCII chart example

macro ASCIIchart(void)
{
char i;

// open a new file
New;

// loop from space to 255 to show all chars
for (i = ' '; i <= 255; i++)
 printf("The ASCII value of '%c' is %d\n", i, i);
}

Convert comma-separated-value (CSV) data

// convert comma-separated-value (CSV) data on the current
// line so that each field is placed on its own line

macro ConvertCSV()
{
string str;
int numquotes, numcommas;

// get the count of quotes/commas on this line
numquotes = LineContains(linenumber, "\"");

numcommas = LineContains(linenumber, ",");

// if this appears to be CSV data...
if (numcommas+1 == numquotes / 2)
 {
 // get the text of the current line
 GetLineText(linenumber, str);

 // remove any empty data fields
 ChangeString(str, "\"\",", "");

Boxer Text Editor236

Copyright © 1991-2010 by Boxer Software

 // convert "," to a newline
 ChangeString(str, "\",\"", "\n");

 // remove the first and last quotes
 ChangeString(str, "\"", "");

 // select the line
 GoToColumn(1);
 SelectToEndOfLine;

 // replace the selection
 PutString(str);
 }

// position for next line
Down;
StartOfLine;
}

Cut lines containing a user-defined string

// cut lines containing a user-defined string to the Windows clipboard

macro CutLinesContaining();
{
int line;
int len;
string str;
int numcut = 0;

// get the string from the user
len = GetString("Cut lines containing this string:", str);

if (len == 0)
 return;

// make the Windows clipboard the active clipboard
SetClipboard(0);

// clear the Windows clipboard
ClearClipboard(0);

// move cursor to start of file
StartOfFile();

Command Reference (in menu order) 237

Copyright © 1991-2010 by Boxer Software

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 GotoLine(line);
 CutAppend();
 numcut++; // tally the cut
 line--; // stay here for next line
 }
 }

// report the results
if (numcut == 1)
 message("Results", "1 line was cut to the Windows clipboard");
else
 message("Results", numcut,
 " lines were cut to the Windows clipboard");
}

Delete blank lines

// delete blank lines in the current file

macro DeleteBlankLines(void)
{
int i, len;

// start at the top of the file
StartOfFile;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the length of this line
 len = LineLength(i);

 // is this line empty?
 if (len == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #

Boxer Text Editor238

Copyright © 1991-2010 by Boxer Software

 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Delete lines containing a user-defined string

// deletes lines containing a user-defined string

macro DeleteLinesContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines containing this string:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Command Reference (in menu order) 239

Copyright © 1991-2010 by Boxer Software

Delete lines NOT containing a user-defined string

// deletes lines NOT containing a user-defined string

macro DeleteLinesNotContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that do NOT contain this string:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (!LineContains(line, str))
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Compute return on a deposited amount

// Compute result of amount left on deposit with continuous
// compounding. Uses the formula: P = pe^rt

macro ComputeDeposit()

Boxer Text Editor240

Copyright © 1991-2010 by Boxer Software

{
float amt, newamt, rate, years;
string str;

GetFloat("Enter the amount on deposit:", amt);

GetFloat("Enter the interest rate:", rate);

// if user entered 5, make it .05, for example
if (rate > 1.0)
 rate /= 100.0;

GetFloat("Enter the number of years on deposit:", years);

newamt = amt * pow(e, rate * years);

sprintf(str, "The amount with interest applied is: %.2f", newamt);
Message("Result", str);
}

Add blank lines after lines ending with !.?

// add a blank line after any line that ends with !.?

macro AddBlankLines(void)
{
char ch;
int i;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // make sure this line is not empty
 if (LineLength(i) > 1)
 {
 // move the cursor to this line
 GotoLine(i);

 // move to the end of the line
 EndOfLine;

 // backup off newline and onto last char
 Left;

Command Reference (in menu order) 241

Copyright © 1991-2010 by Boxer Software

 // get the value of char at the cursor
 ch = ValueAtCursor();

 // if it's a line ender, add Enter
 if (ch == '.' || ch == '?' || ch == '!')
 {
 EndOfLine;
 Enter;
 }
 }
 }
}

Double space and reformat

// double space and reformat the text on the clipboard
// prepares a web document for printing

macro DoubleSpaceAndReformat(void)
{
int i;
int numlines;

// save various editor settings
SaveSettings;

// open a new file and paste from clipboard
New;
Paste;

// set Text Width to 96
TextWidth(96);

// delete all blank lines
DeleteBlankLines;

// record the number of lines BEFORE we start adding lines
numlines = LineCount - 1;

// go to the top
StartOfFile;

// double space the file
for (i = 1; i <= numlines; i++)

Boxer Text Editor242

Copyright © 1991-2010 by Boxer Software

 {
 Down;
 PutString("\n");
 }

// reformat the whole file
SelectAllText;
Reformat;

// remove any small indents that might be present
SelectAllText;
for (i = 1; i <= 12; i++)
Unindent;

// release the selection
Deselect;

// restore various editor settings
RestoreSettings;
}

Extract email addresses

// extract email addresses from all lines within the current file
// and append them to the end of the file

macro ExtractEmailAddresses()
{
int i, line, origlinecount;
int inword, isdelim;
int atsigns, dots;
int startword, endword;
string linetext, email;
char c;

// note the linecount before we start adding more lines
origlinecount = LineCount;

// loop on all lines in the file
for (line = 1; line <= origlinecount; line++)
 {
 // get the text of the whole line into the string 'linetext'
 GetLineText(line, linetext);

 // add a space to make end-of-line handling smoother

Command Reference (in menu order) 243

Copyright © 1991-2010 by Boxer Software

 strcat(linetext, " ");

 // loop on all characters in 'linetext'
 for (inword = FALSE, i = 0; linetext[i] != 0; i++)
 {
 c = linetext[i];

 // set a flag if this character is one that delimits words
 if (isalnum(c) || (strchr("_@.-", c) != -1))
 isdelim = FALSE;
 else
 isdelim = TRUE;

 // decide whether this character starts a new word,
 // or ends an existing word
 if (inword && isdelim)
 {
 inword = FALSE;
 endword = i-1;

 // we've just left a word: see if it had both
 // the required characters
 if (atsigns == 1 && dots >= 1)
 {
 // get the linetext address into a string
 SubString(email, linetext, startword, endword-startword+1);

 // add it to the end of the file
 EndOfFile;
 EndOfLine;
 Enter;
 PutString(email);
 }
 }
 else if (!inword && !isdelim)
 {
 inword = TRUE;
 startword = i;
 atsigns = 0;
 dots = 0;
 }

 // tally whether or not we see the required chars while we're in a
 if (inword)
 {
 if (linetext[i] == '@')

Boxer Text Editor244

Copyright © 1991-2010 by Boxer Software

 atsigns++;

 if (linetext[i] == '.')
 dots++;
 }
 }
 }
}

Hex to Decimal

// shows hex to decimal conversion technique

macro HexToDecimal()
{
string str;
int x = 0;
int i, val;
char ch;

GetString("Enter a hexadecimal string", str);

for (i = 0; str[i] != '\0'; i++)
 {
 ch = str[i];

 if (!isxdigit(ch))
 {
 message("Error", "Invalid character encountered: ", ch);
 return;
 }

 ch = toupper(ch);

 if (isalpha(ch))
 val = ch - 'A' + 10;
 else
 val = ch - '0';

 x = x * 16;
 x = x + val;
 }

message("Result", "The decimal value is ", x);

Command Reference (in menu order) 245

Copyright © 1991-2010 by Boxer Software

}

Obfuscate the selected text with HTML codes

// convert the word selected into its HTML coded format

// this can be used to convert phone numbers and email addresses
// in web pages to frustrate automated crawlers from harvesting
// your information for spam lists

macro Obfuscate()
{
int i;
string str;
string result;
string tmp;

if (!TextIsSelected)
 {
 Message("Error",
 "Please select a word before\nrunning the macro.\n");
 return;
 }

GetSelection(str);

// loop on all characters in 'str'
for (i = 0; str[i] != '\0'; i++)
 {
 sprintf(tmp, "&#%03d;", str[i]);
 strcat(result, tmp);
 }

PutSelection(result);
}

Display 24-hour time

// display the current time in 24-hour time format

macro Print24HourTime()
{
int h, m, s;

Boxer Text Editor246

Copyright © 1991-2010 by Boxer Software

GetTime24(h, m, s);
printf("%d:%02d:%02d", h, m, s);
}

Reduce blank lines

// reduce multiple blank lines to one blank line

macro ReduceBlankLines(void)
{
int thislen, prevlen, i;

// position cursor to line 2
StartOfFile;
Down;

// loop on all lines in the file (starting with line 2)
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

 // get the length of this line
 thislen = LineLength(i);

 // are both previous and this line empty?
 if (prevlen == 0 && thislen == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #
 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Reformat to an alternative text width

// Reformat the current paragraph to 70 characters, regardless

Command Reference (in menu order) 247

Copyright © 1991-2010 by Boxer Software

// of what the current Text Width setting is

macro ReformatAlternative()
{
SaveSettings;
TextWidth(70);
Reformat;
RestoreSettings;
}

Extract double quoted strings

// extract double quoted strings from the current file
// and append them at the bottom of the file

macro ExtractStrings()
{
string s, s1, s2, s3;
int i, j, k;
int found = 0;
int original_linecount = LineCount();

// loop on all lines in the current file
for (i = 1; i <= original_linecount; i++)
 {
 // does this line have two or more double quotes?
 while (LineContains(i, "\"") >= 2)
 {
 // tally number of strings found
 found++;

 // get the text of line 'i' into string 's'
 GetLineText(i, s);

 // get the offset of the first double quote
 j = strchr(s, '\"');

 // get the index of the second double quote
 for (k = j + 1; s[k] != '\"'; k++)
 ;

 // get the first portion into 's1'
 SubString(s1, s, 0, j);

Boxer Text Editor248

Copyright © 1991-2010 by Boxer Software

 // get the second portion (the string) into 's2'
 SubString(s2, s, j, k-j+1);

 // get the third portion into 's3'
 SubString(s3, s, k+1, 2048);

 // build the new line and replace it
 s = s1;
 s += s3;
 PutLineText(i, s);

 // gather the strings at the bottom of the current file
 EndOfFile();
 EndOfLine();
 printf("\n%s", s2);
 }
 }

// report the results
if (found == 1)
 printf("\n\n%d string was found and removed\n", found);
else
 printf("\n\n%d strings were found and removed\n", found);
}

Reverse the text of each line

// reverse the text on every line in the file
// "abcdefg" becomes "gfedcba"

macro ReverseLineText()
{
int i, len, line;
string str;
char tmp;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 len = linelength(line);

 // ignore lines too short/long
 if (len >= 2 && len < 2000)
 {

Command Reference (in menu order) 249

Copyright © 1991-2010 by Boxer Software

 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // loop through half this line
 for (i = 0; i < len/2; i++)
 {
 // swap the characters...
 tmp = str[i];
 str[i] = str[len-1-i];
 str[len-1-i] = tmp;
 }

 // replace line with reversed line
 PutLineText(line, str);
 }
 }
}

Reverse names: Smith.Bob to Bob.Smith

// changes a list of "Smith.Bob" entries to "Bob.Smith"

macro ReverseNames()
{
int line, i;
string str;
string first, last;
string newstring;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // look for a '.' within 'str'
 i = strstr(str, ".");

 if (i != -1)
 {
 // 'last' gets 'i' chars from 'str' starting at index 0
 SubString(last, str, 0, i);

 // 'first' gets up to 100 chars from 'str' starting at index i+1

Boxer Text Editor250

Copyright © 1991-2010 by Boxer Software

 SubString(first, str, i+1, 100);

 // build a new string from 'first' and 'last'
 sprintf(newstring, "%s.%s", first, last);

 // replace the text of the line
 PutLineText(line, newstring);
 }
 }
}

Truncate lines after a user-defined string

// truncate lines after a user-defined string

macro TruncateLineAfterString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user
len = GetString("Truncate lines after this string:", str);

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j+len);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;

Command Reference (in menu order) 251

Copyright © 1991-2010 by Boxer Software

 }
 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Truncate lines at a user-defined string

// truncate lines at a user-defined string

macro TruncateLineAtString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user
len = GetString("Truncate lines at this string:", str);

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;
 }

Boxer Text Editor252

Copyright © 1991-2010 by Boxer Software

 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Delete lines that begin with a user-defined string

// deletes lines that begin with a user-defined string

macro DeleteLinesThatBeginWith()
{
int line, len;
string str, linestr;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that begin with:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {

// get the text of line 'line' into 'linestr'
GetLineText(line, linestr);
 // does this line start with 'str'?
if (strncmp(linestr, str, len) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
}

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");

Command Reference (in menu order) 253

Copyright © 1991-2010 by Boxer Software

}

Delete lines that end with a user-defined string

// deletes lines that end with a user-defined string

macro DeleteLinesThatEndWith()
{
int line, len, linelen;
string str, linestr, str2;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that end with:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into 'linestr'
 linelen = GetLineText(line, linestr);

 // if the line is too short, do nothing
 if (linelen < len)
 {
 ;
 }
 // does this line end with 'str' ?
 else
 {
 // isolate the tail of the line into a string
 SubString(str2, linestr, linelen - len, len);

 if (strcmp(str2, str) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }
 }

Boxer Text Editor254

Copyright © 1991-2010 by Boxer Software

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Call MapQuest to show a map

// get an address from the user and call it up on MapQuest

macro CallMapQuest()
{
string city, state, address, country, url;
int zoom = 7;

// get information from the user
GetString("Enter street address:", address);
GetString("Enter city/town:", city);
GetString("Enter state/province:", state);
GetString("Enter country:", country);

// state level maps are better at zoom level 3
if (city == "")
 zoom = 3;

// country level maps are better at zoom level 1
if (state == "")
 zoom = 1;

// convert embedded spaces to plus signs
ChangeString(address, " ", "+");
ChangeString(city," ", "+");
ChangeString(state, " ", "+");
ChangeString(country, " ", "+");

// build the URL that will be used
sprintf(url,
"http://www.mapquest.com/maps/map.adp?city=%s&state=%s&address=%s&c
ountry=%s&zoom=%d" , city, state, address, country, zoom);

// send the URL to Windows so the default browser is run
OpenURL(url);
}

Command Reference (in menu order) 255

Copyright © 1991-2010 by Boxer Software

Convert British English punctuation to American English punctuation

// Convert British English punctuation to American English punctuation
// (in Britain, periods and commas are placed outside double quotes)

macro BritishPunctuation()
{
// notice that the double quote character must be escaped with a
// backslash when it appears within a string

// change ". to ."
ReplaceAll("\".", ".\"");

// change ", to ,"
ReplaceAll("\"\,", ",\"");
}

4.7.5 Record Keys

Menu: Tools > Record Keys

Default Shortcut Key: Shift+F5

Macro function: none

Use the Record Keys command to begin recording a series of keystrokes for later
playback with the Playback Keys command. This command provides a
'macro-by-example' or 'on-the-fly' keystroke recording facility. While recording is in
process, all keystrokes entered from within the editor window will be stored. Mouse
motion is not recorded per se, but if the mouse is used to select a command from the
main menu, that command will be recorded just as though its shortcut key had been
used instead. To stop recording, simply issue this command again: its name in the
main menu changes to Stop Recording while recording is in process.

Mouse and/or keystroke interaction with popup dialogs is not stored in a key recording.
If a confirmation dialog appears during keystroke recording, the response to that dialog
is not recorded. The dialog will appear during playback, and will need to be dismissed
manually at run-time.

If you need to pause in the middle of a keystroke recording, use the Pause
Recording command. This will allow you to perform operations in the editor that will
not appear in the key recording. Issue the command again to resume recording.

Command key assignments are not used in the files created by Save Key Recording,

Boxer Text Editor256

Copyright © 1991-2010 by Boxer Software

so there's no chance that changing key assignments might disturb an existing key
recording. Likewise, key recording files can be freely shared with other Boxer users
without concern that playback might be influenced by differing key assignments on
the target machine. However, depending on the nature of the key recording, default
settings on the target machine (autoindent, typing wrap, etc) could influence how a
key recording performs upon playback.

 There are several system-reserved key sequences that cannot be used within a
keystroke recording. These key sequences all relate to moving among or closing
document windows. The operating system traps these key sequences before they're
ever seen by the application. Boxer provides its own key assignments for these
commands, and they're available from the main menu as well, so it's not the
functionality that need not be avoided. Rather, the method of activating these
functions might need to be altered when making a recording. The key sequences to
be avoided are the following: Ctrl+Tab, Shift+Ctrl+Tab, Ctrl+F4, Shift+Ctrl+F4,
Ctrl+F6, Shift+Ctrl+F6.

The Auto-Complete feature is disabled during keystroke recording. Since the entries
that are presented in the pop-up Auto-Complete suggestion list are sensitive to the
file being edited, and to text that has been previously typed, it's not safe to assume
that the order of the list will be the same at playback time.

If you need to automate a repetitive task in which logic must be applied to the
recording, use Boxer's full-powered Macro language.

4.7.6 Pause Recording

Menu: Tools > Pause Recording

Default Shortcut Key: none

Macro function: none

Use the Pause Recording command to temporarily stop a keystroke recording that's
already in process. Once paused, editor commands are not stored in the active
recording. To resume recording, simply issue this command again: its name in the
main menu changes to Resume Recording when recording is paused.

4.7.7 Playback Keys

Menu: Tools > Playback Keys

Default Shortcut Key: F5

Macro function: none

Issue the Playback Keys command to playback the most recent key recording.
Execution begins immediately, so make sure that the text cursor is positioned as
desired before proceeding.

Command Reference (in menu order) 257

Copyright © 1991-2010 by Boxer Software

4.7.8 Save Key Recording

Menu: Tools > Save Key Recording

Default Shortcut Key: none

Macro function: none

Use the Save Key Recording command to save a key recording to a disk file. A dialog
will appear that allows a name to be entered. By default, key recordings are stored in
Boxer's 'Key Recordings' subdirectory.

Command key assignments are not used in the files created by Save Key Recording,
so there's no chance that changing key assignments might disturb an existing key
recording. Likewise, key recording files can be freely shared with other Boxer users
without concern that playback might be influenced by differing key assignments on
the target machine. However, depending on the nature of the key recording, default
settings on the target machine (autoindent, typing wrap, etc) could influence how a
key recording performs upon playback.

4.7.9 Load Key Recording

Menu: Tools > Load Key Recording

Default Shortcut Key: none

Macro function: none

The Load Key Recording command can be used to load an existing key recording from
disk. A dialog will appear that allows a name to be selected. By default, key recordings

Boxer Text Editor258

Copyright © 1991-2010 by Boxer Software

are loaded from Boxer's 'Key Recordings' subdirectory.

Once a key recording has been loaded, use the Playback Keys command to playback the
recording.

4.7.10 Auto-Complete

Menu: Tools > Auto-Complete

Default Shortcut Key: Ctrl+Space

Macro function: none

Boxer's Auto-Complete feature will display a popup list of matching words that can be
used to complete a partially typed word at the text cursor. The popup list will appear
after a (user-configurable) number of characters have been entered, and contains only
those words that match the characters just typed. There is no need to interact with the
list: if you prefer to keep typing, the list will simply disappear when it becomes
irrelevant.

To select a word from the popup list, simply press the number displayed to its left, or
use the down arrow to cursor into the list and press Enter at the desired entry.

Command Reference (in menu order) 259

Copyright © 1991-2010 by Boxer Software

The display (and recognition) of the hot numbers within the popup list is optional.
It can be controlled on the Configure | Auto-Complete | Popup List dialog page.

 If the suggestions within the popup list contain digits, the hot numbers feature will
be automatically disabled. Otherwise, the entry of alphanumeric text strings would
become confusing and error prone.

Discussion

Much of the utility of the Auto-Complete feature derives from the relevance of the
words that are presented in the popup list.
Auto-Complete builds its list of matching words from four sources:

· user-defined phrases

· the existing text of the current document

· the reserved word list for the current file type (when applicable)

· an external, user-editable dictionary of 37,000 long words

User-defined phrases are those words and phrases that have been pre-defined on the
Configure Auto-Complete - User-Defined dialog page. These might include common
text strings that you use in your work, your mailing address, email address, etc. These
phrases are given highest priority and will appear first in the completion list.
User-defined phrases can also be set to expand 1) as soon as they're typed (bte could
auto-expand to 'Boxer Text Editor'), 2) only when a delimiter is typed, or 3) only when
the Trigger Key is pressed. See Configure Auto-Complete - User-Defined for full details.

Auto-Complete also analyzes the content of the current file to find potential matches for
the completion list. This means that words and phrases that are particular to your
document are automatically suggested as matching words. If you're editing a
document that contains the term 'diethylthiocarbamate', that word will appear in the

Boxer Text Editor260

Copyright © 1991-2010 by Boxer Software

completion list, even though it doesn't appear in the dictionary proper. Auto-Complete
also intelligently harvests phrases from program source code, making the feature useful
for programmers as well.

When editing a file for which Syntax Highlighting has been defined, the reserved words
for that language will be used as completion words.

Finally, Auto-Complete uses a large dictionary of English* words from which all shorter
words have been removed. This dictionary is maintained in simple, uncompressed
ASCII text format, and is therefore user-editable. The dictionary can be viewed and/or
edited from the Configure Auto-Complete - Dictionary dialog page.

* Dictionaries for other languages are not available at this time, but if you can
locate a large word list for the language of interest, you can use that list to replace
the AC_Words.txt file provided with Boxer. The Sort Lines command has an

option to sort lines by line length, making it easy to locate and remove smaller
words from the list. If you assemble your list from multiple sources, use the Delete
Duplicate Lines to remove duplicates. The final word list should contain one
word/phrase per line, and be ASCII-sorted, case insensitive.

Customization

Auto-Complete is the type of feature that some users will have very strong feelings
about. Users are sure to have different ideas about when the popup list should appear,
where it should appear, whether it should appear at all, how many entries it should
have, which words should appear in the list, etc. Auto-Complete has an extensive
collection of configuration options to control every aspect of its operation. The following
help topics cover the configuration of the Auto-Complete feature:

General Settings
Popup List Settings
User-Defined Phrases
Harvested Words
Dictionary Words
Excluded Words

If the default Auto-Complete settings don't feel perfect to you, you are encouraged to
spend a few minutes experimenting with the various options to make sure it feels just
right.

Manual Operation

Some users may find the popup list distracting, and opt to disable it. When
Auto-Complete is configured not to display a popup list, the Trigger Key can be used to
complete the partially typed word at the text cursor. Pressing the Trigger Key
repeatedly cycles through the available matches. By default, the Trigger Key for
Auto-Compete is Ctrl+Space.

The popup list can be displayed at any time by using the Auto-Complete List command.
This command is useful when the popup list has been disabled, or when you want to
force the list to appear in a situation where it would not naturally appear (for example,
when you haven't typed enough characters for it to appear).

Command Reference (in menu order) 261

Copyright © 1991-2010 by Boxer Software

4.7.11 Auto-Complete List

Menu: Tools > Auto-Complete List

Default Shortcut Key: Ctrl+Alt+Down

Macro function: none

The Auto-Complete List command can be used to force the popup list of matching words
to appear in situations when it wouldn't appear naturally on its own. One such case is
when an insufficient number of characters has been typed to cause the list to appear.
Another case is when the popup list has been configured not to appear at all.

For more complete information about Auto-Complete, see the Auto-Complete topic.

4.7.12 Command Multiplier

Menu: Tools > Command Multiplier

Default Shortcut Key: Alt+Y

Macro function: none (Boxer's macro language provides far more powerful methods to
multiply the execution of commands)

The Command Multiplier can be used to multiply the execution of a keystroke or
command key sequence. A popup box appears to retrieve the multiplier to be used.
After clicking OK, Boxer awaits the next keystroke or command key sequence. Once
issued it will be performed repeatedly, according to the value entered.

This command might be used to multiply the execution of an insertable character so as

Boxer Text Editor262

Copyright © 1991-2010 by Boxer Software

to create a divider bar containing a known number of characters. Or it might be used
with the Delete Current Line command to quickly delete 100 lines.

To simply repeat the last command issued, one or more times, use the Repeat Last
Command command.

4.7.13 Repeat Last Command

Menu: Tools > Repeat Last Command

Default Shortcut Key: F10

Macro function: none

Repeat Last Command can be used to repeat the most recently issued command. This
command is especially convenient when the command last issued does not have a
shortcut key, and must be executed from the pull-down menus. Repeat Last Command
is assigned to the F10 key, by default, to ensure it can be easily executed.

 Repeat Last Command cannot be used to repeat cursor movement commands such
as Up, Down, Left, Right, etc.

 Repeat Last Command can also be used to repeat the insertion of single characters.
When a character is not readily typed from the keyboard (think high-ASCII characters),
Repeat Last Command can be a real time saver.

4.7.14 Format XML / XHTML

Menu: Tools > Format XML / XHTML

Default Shortcut Key: none

Macro function: FormatXML()

The Format XML / XHTML command can be used to apply formatting to XML-compliant
files. If you've ever worked with XML files, you may have noticed that these files often
lack line enders and indenting. When these files are opened in Boxer, the text appears
as a single long line, and flows off-screen and out of sight at the right edge of the
window. The absence of formatting presumably provides some efficiency to the software
programs that process these files, but does so at the expense of human readability.
The Format XML / XHTML command can neatly format these files with line enders and
proper indentation.

The Unformat XML / XHTML command can be used to remove formatting.

By default, the formatting operation is applied to the whole file. If a range of lines is
selected, formatting will be performed on the range of lines selected.

Command Reference (in menu order) 263

Copyright © 1991-2010 by Boxer Software

A variety of options are provided on the Format XML dialog to control the formatting
process:

Formatting

Indentation
Three options are provided: indent with tabs, indent with n spaces, don't indent at all.
If tabs are used, the display value of a tab is governed by the Tab Display Size
command. A large indent value can make it easier to see the structure of the data file.
But if a document contains deeply nested data blocks, a more modest indent value may
need to be used to preserve space.

Right Margin
This option controls the nominal margin at which lines will be split in order to maintain
the width of the document. Please note that double-quoted strings will not be split in
an attempt to stay within the margin. Lines will be split only at legal break points
between or within tags.

Boxer Text Editor264

Copyright © 1991-2010 by Boxer Software

Split text that exceed right margin
This options controls whether or not text data will be split/wrapped in order to maintain
the right margin.

Split tags that exceed right margin
This options controls whether or not tags (with spaces) will be split/wrapped in order to
maintain the right margin.

Insert a blank line before comments
This option can be used to force an empty line to appear before a comment line, or a
group of comment lines.

Inline tags
This option can be used to list those tags which will be treated as inline tags. When an
inline tags is closed, a newline is not added to the output. Inline tags are typically
those tags that might be used to apply formatting to a word or phrases, and are not
those tags that begin a block of data which will include other tags.

Automation

A variety of options are offered to control when and whether XML formatting should be
applied automatically.

Apply formatting automatically to all XML files
If this option is checked, formatting will be applied to all XML files as they are opened,
whether formatted or not, without asking.

Apply formatting automatically to unformatted XML files
If this option is checked, formatting will be applied to unformatted XML files as they are
opened, without asking. Formatted XML files with be opened without modification.

Ask whether to format when opening all XML files
If this option is checked, Boxer will ask whether formatting should be applied each time
an XML file of any kind is opened.

Ask whether to format unformatted XML files
If this option is checked, Boxer will ask whether formatting should be applied each time
an unformatted XML file is opened. Formatted XML files with be opened without
modification.

Never format automatically and never ask
If this option is checked, Boxer will never ask about formatting XML files, and will never
format them. In this case, the Format XML could be invoked manually in order to
initiate formatting.

When formatting is applied due to the options above, perform Unformat
automatically before the file is saved
Use this option to ensure that any formatting that is applied due to the automation
options is removed before a file is saved. Please note: if the Format XML dialog is
summoned manually to add formatting, you'll need to manually remove formatting
with Unformat XML, if desired.

Command Reference (in menu order) 265

Copyright © 1991-2010 by Boxer Software

XML file types
This option lists the file extensions of those files which are consider XML files, for
purpose of automated formatting.

Statistics

When formatting is applied manually (ie, not via automation), a statistics dialog is
displayed upon completion:

The dialog can be helpful in locating mismatched or unclosed tags. In particular, the
task of converting HTML files to XHTML (XML-compliant HTML) can be aided
considerably by using the Format XML command. By using the statistics dialog, and
watching for inconsistent indenting, you'll be able to locate which tags are preventing
your HTML file from being XML-compliant. A proper XHTML file should start and end at
zero indent. If the indent level grows over the course of the document, this is probably
an indication that one or more self-closing tags have not been closed. For example,

 needs to be changed to
.

 Text found within <script> and </script> tags (or within <? and ?>) will not be

formatted by this command. Embedded scripting code may be sensitive to indentation
and wrapping, so Format XML will not process such text during its operation.

4.7.15 Unformat XML / XHTML

Menu: Tools > Unformat XML / XHTML

Default Shortcut Key: none

Macro function: UnformatXML()

Boxer Text Editor266

Copyright © 1991-2010 by Boxer Software

The Unformat XML / XHTML command can be used to remove formatting (newline and
indentation) from an XML or XHTML file. This command can be used to remove
formatting that was added by the Format XML / XHTML command, or to remove
formatting from a file from some other source. After formatting is removed, the file will
reside on one long line (subject to Boxer's limitation on line length).

By default, the unformat operation is applied to the whole file. If a range of lines is
selected, unformat will be performed on the range of lines selected.

Please see the Format XML / XHTML command for a lengthy discussion of this topic.

4.7.16 Spell Checker

Menu: Tools > Spell Checker

Default Shortcut Key: F7

Macro function: SpellChecker()

The Spell Checker command provides access to the built-in spell checking facility.
Boxer's spell checker provides several options to control the scope of the spell check
operation, and some unique options which permit spell checking to be performed within
program source code files.

For information about Boxer's on-the-fly spell checking feature, which checks text as
you type, see the Active Spell Checking command.

Scope

Current Word
Use this option if only the word at the text cursor is to be checked.

Command Reference (in menu order) 267

Copyright © 1991-2010 by Boxer Software

Current Paragraph
Use this option to spell check the current paragraph only.

Selected lines
Use this option to constrain the spell check to the selected text. When text is not
selected, this option will be disabled.

Cursor to bottom
Use this option to spell check from the cursor to the end of file.

Top to bottom
Use this option to spell check the entire file.

All open files
Use this option to spell check all open files.

Active project
Use this option to limit the scope of the spell check to those files within the active
project.

Options

Ignore HTML markup tags
When an HTML file is being edited, this option can be used to tell the Spell Checker to
ignore HTML markup tags, thereby avoiding the false errors which would occur if the
entire file were checked.

Syntax Spell Checking
When editing a file for which Boxer has Syntax Highlighting information, this option can
be used to tell the Spell Checker to check only that text which matches a designated
syntax. This makes it possible to spell check program code without getting false hits
for reserved words, variable names, and other text which naturally cannot appear
within a dictionary. When this box is checked, the options below become available for
selection.

Strings only
Use this option to spell check only that text which appears in String context. Boxer
uses its Syntax Highlighting information to determine the syntax of the text being
checked.

Comments only
Use this option to spell check only that text which appears in Comment context.
Both block comment text and end-of-line comment text will be checked. Boxer uses
its Syntax Highlighting information to determine the syntax of the text being
checked.

Strings and Comments
Use this option to spell check only that text which appears in either String or
Comment context. Both block comment text and end-of-line comment text will be
checked. Boxer uses its Syntax Highlighting information to determine the syntax of
the text being checked.

Boxer Text Editor268

Copyright © 1991-2010 by Boxer Software

Language
Use this option to select the dictionary to be used by the Spell Checker. Dictionaries
are available for the following languages: American English, British English, Dutch,
French, German, Italian, Czech and Spanish. Three specialty dictionaries are also
available: Legal, Medical and 'Moby', an extra large American English dictionary. If
Boxer was not supplied with the dictionary you prefer to use, please visit our website
at www.boxersoftware.com to obtain our other dictionaries. The dictionaries are located
in the Downloads area.

More Options...
The More Options button provides a quick way to summon the Configure | Preferences
| Other dialog page, which contains additional Spell Checker options.

After specifying the scope and other options, the Spell Check operation begins. When a
word is encountered which is not found in the dictionary, a popup dialog box is
presented:

The position of the popup box is selected so as not to overlap the offending word within
the editor window. The word that was not found is displayed in bold, and is also
highlighted in the editor window to show its context. Several options are available:

Change to
The Change to edit box displays a suggested word which the offending word might be
replaced with. The text in this box can be edited as may be needed.

To ensure that special characters are displayed in the Change to box as they will
appear when inserted into the editor, the Change to box uses the same font as is
used in the editor itself.

http://www.boxersoftware.com

Command Reference (in menu order) 269

Copyright © 1991-2010 by Boxer Software

Suggestions
The Suggestions listbox displays a list of other words which might be used to replace
the offending word. Click on a word to select it and move it into the Change to edit
box.

Change
Use the Change button to replace the offending word with the word in the Change to
box.

Change All
Use the Change All button to replace the offending word with the word in the Change to
box, and to indicate that all future occurrences of the word should also be changed.

Ignore
Use the Ignore button to skip the offending word. Future occurrences of the word will
be presented when they occur.

Ignore All
Use the Ignore All button to skip the offending word, and to indicate that all future
occurrences should also be ignored.

Add
Use the Add button to add the offending word to the dictionary. Words which are added
to the dictionary are saved within the file userdict.txt in Boxer's data folder. This

file can also be edited within Boxer to add other words, or to remove words which may
have been added mistakenly.

Words which are added to the user dictionary will be accepted as correctly spelled
words in any case configuration in which they may occur. For example, if the word

ebay is added to the dictionary, it will be accepted in any of the following forms:

eBay, ebAy, and ebaY. This liberal processing was necessary because the

third-party dictionary that Boxer uses is not processed in a case sensitive manner.
Before this handling was put in place, the word eBay would always be reported as

misspelled, even when eBay (or any variant) had been added to the user dictionary.

Mark Word
Use the Mark Word button to surround the offending word with pound signs (###).
This makes it easy to locate the word later on to make manual adjustments. When the
Spell Check operation is complete, the cursor will be placed on the first marked word.

Suggest
Once a change has been made to the word in the Change to box, the Suggest button
can be used to fill the Suggestions listbox with other words which may be related to the
word.

Reset Ignored
Use the Reset Ignored button to clear the list of ignored words which has been built
during the current edit session.

Next File

Boxer Text Editor270

Copyright © 1991-2010 by Boxer Software

Use the Next File button to skip the rest of the current file and move to the next file to
be checked.

By default, Boxer is configured to use the American English dictionary. Dictionaries are
also available for British English, Dutch, French, German, Italian, Czech and Spanish.
Three specialty dictionaries are also available: Legal, Medical and 'Moby', an extra large
American English dictionary. The active dictionary can be set on the dialog that
appears when the Spell Checker is first run. If Boxer was not supplied with the
dictionary you prefer to use, please visit our website at www.boxersoftware.com to
obtain our other dictionaries. The dictionaries are located in the Downloads area.

Several options which can be used to further control the Spell Checking process are
available on the Configure | Preferences | Other options page.

4.7.17 Check Word

Menu: Tools > Check Word

Default Shortcut Key: Shift+F7

Macro function: CheckWord()

Use the Check Word command to check the spelling of the word at the text cursor. If
the word is spelled correctly, a message will appear to confirm this fact. If the word is
spelled incorrectly, a dialog will appear providing options to make a correction:

The Check Word command can also be accessed by right-clicking on a suspect word and
selecting the command from the context menu.

http://www.boxersoftware.com

Command Reference (in menu order) 271

Copyright © 1991-2010 by Boxer Software

4.7.18 Calculator

Menu: Tools > Calculator

Default Shortcut Key: F11

Macro function: Calculator()

The Calculator command provides access to Boxer's multi-function, multi-base
calculator:

Boxer's Calculator works just like a conventional calculator, and it has all the scientific
and trigonometric functions one would expect to find on a full-featured calculator.
Values can be entered by clicking keys with the mouse, or by using the keyboard. A list
of shortcut keys can be found below.

If a numeric value appears beneath the text cursor when the Calculator is summoned,
that value will be placed into the calculator display automatically. The Calculator is also

Boxer Text Editor272

Copyright © 1991-2010 by Boxer Software

able to interact with the clipboard. The Copy button can be used to copy the value in
the Calculator's display to the Windows clipboard. The Paste button can be used to
paste a value from the clipboard into the Calculator's display. The Insert button will
insert the value in Calculator display at the current text cursor location.

Selecting the Hints checkbox reveals a small panel at the bottom of the Calculator that
displays information about the key below the mouse cursor.

Calculator Shortcut Keys

Degrees Mode F2
Radians Mode F3
Grads Mode F4

Hexadecimal Mode F5
Decimal Mode F6
Octal Mode F7
Binary Mode F8
Precision F10

Pi P
Euler's Constant E
1 Kilobyte K
16 Kilobytes Ctrl+K
Square Root Q
Log - natural N
Log - base 10 L
Reciprocal R
Square @
Cube #
Y-th Power Y
e to the X X
Factorial !
NOT ~
AND &
OR |
XOR ^
Shift Left <
Shift Right >
Sine S
Cosine O
Tangent T

Add +
Subtract -
Multiply *
Divide /
Modulus %

Memory Add Ctrl+P
Memory Subtract Ctrl+S
Memory Store Ctrl+M
Memory Recall Ctrl+R

Command Reference (in menu order) 273

Copyright © 1991-2010 by Boxer Software

Memory Clear Ctrl+L

Copy to Clipboard Ctrl+C
Paste to Display Ctrl+V
Insert into File Ctrl+I

Clear Esc
Clear C (unless in hex mode)
Clear Entry Del
Back Backspace
Help F1

Close Alt+F4

The Calculator uses 64-bit arithmetic so that very large values can be entered and
computed. Special thanks are due to Jonas Hammarberg for his help in this area.

The Calculator uses the Algebraic Operating System (AOS), not Reverse Polish
Notation (RPN).

4.7.19 Calendar

Menu: Tools > Calendar

Default Shortcut Key: none

Macro function: Calendar()

The Calendar command provides access to Boxer's popup calendar:

When first summoned, the Calendar displays the current month and year and highlights

Boxer Text Editor274

Copyright © 1991-2010 by Boxer Software

the current date. The arrow buttons at the top of the display can be used to move
forward or backward, by months or by years. The button with the curved arrow can be
used to return the display to the current month and year.

Clicking on any date within the display highlights that date. The Insert button can be
used to insert a text string describing the highlighted date at the text cursor location.
The Short Format and Long Format options control the format that will be used. The
short and long formats used to display the date are in accordance with the regional
settings for date display as defined on your computer. To change these settings, see
Start Menu | Settings | Control Panel | Regional Settings | Date.

The Calendar recognizes various characters to speed movement from date to date:

 Y = first day of year
 R = last day of year
 M = first day of month
 H = last day of month
 T = Today

The following keys are also recognized:

 Space = +1 month
 - = -1 day
 + = +1 day
 Shift+Left = -1 month
 Shift+Right = +1 month
 Ctrl+Left = -1 year
 Ctrl+Right = +1 year

The day on which a calendar week starts can be configured on the Configure |
Preferences | Other options page. The option is titled: Calendar week starts on.

If you prefer that the Calendar always remain on top of other windows, the Stay on top
option can be used. The Calendar is a non-modal window, which allows it to remain
on-screen after focus has been returned to another editing window.

If the Calendar is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

4.7.20 User Tools

Menu: Configure > User Tools

Default Shortcut Key: none

Macro function: ConfigureUserTools()

The Configure User Tools command is used to define and configure up to 24 external
programs which can be run from the User Tools submenu on the Tools menu. A variety
of Tools Macros is available which makes it possible to control the information which is
passed to the program being run.

Command Reference (in menu order) 275

Copyright © 1991-2010 by Boxer Software

A common use for a User Tool would be to send the name of the current file to an
external program which processes the file in some way. Examples of such programs
are assemblers, compilers, grammar checkers, parsers, etc.

Use of the Configure User Tools dialog box is described below:

Details

Name of this tool
Use this edit box to supply the name for the User Tool being defined. The name
supplied will appear in the User Tools submenu when definition is complete. Up to 20
characters can be used.

Description
Use this edit box to supply an optional description for the tool being defined. This
description will appear as a menu hint for the Tools | User Tools menu entry that
corresponds to this tool.

Program, document, folder or URL
Use this edit box to supply the full filepath of the program which is to be run. The
button with the ellipsis (...) can be used to browse for and select the desired program.

If the program selected has an associated icon, it will be displayed to the right of the
Name edit box.

Boxer Text Editor276

Copyright © 1991-2010 by Boxer Software

Tools Macros can be placed into the Program field by clicking on the '$' button. For
example, you might use the $SelWord directive to pass the word at the cursor--or a
short text selection--to a web-based resource that performs a search for that term. The
URL:

 http://www.google.com/search?hl=en&q=$SelWord

would cause the word at the cursor to be sent to Google for search results.

The $Sel and $SelWord directives are processed specially when used in a URL: any
embedded spaces that might result from expansion are automatically converted to
plus signs (+) to create a web-friendly URL.

Working Directory
Use this edit box to supply the working directory for the program being defined. The
working directory will become the current directory for the program being run. The
button with the ellipsis (...) can be used to browse for and select the working

directory.

The $Path Tools Macro (among others) can also be used in the Working Directory
field as a means of specifying the working directory.

Command Line Parameters
The Command Line Parameters edit box is used to supply command line parameters to
the program being defined. These parameters might be option flags required by the
program or any other such information.

Boxer will recognize several different Tools Macros in the Command Line Parameters
edit box to pass information to the defined program. When a macro appears in the
Command Line Parameters field, it will be expanded to its equivalent text at the time
the User Tool is run.

Clicking the ellipsis (...) button to the right of the edit box presents the Tools Macros

list:

Command Reference (in menu order) 277

Copyright © 1991-2010 by Boxer Software

Macros are available to pass the current filepath, filename, extension and other portions
of the filename. The line and column number can also be passed, as can the word
beneath the text cursor. Selected text (or the first line of a multi-line selection) can
also be passed. If needed, two or more macros can be placed in the Command Line
Parameters edit box.

If it is anticipated that the file and/or path being passed to the User Tool might
contain an embedded space, be sure to enclose the $Filepath directive in double
quotes to ensure proper handling.

Before running this program...

Save current file
Use this option to save any changes in the current file before running the defined User
Tool. Be sure to use this option when defining a User Tool which will operate on the
current file, so the program has access to the most recent changes you've made.

Save all modified files
Use this option to save any changes within all edited files before running the defined
User Tool.

Minimize Boxer
Use this option to request that Boxer be minimized to the task bar while the User Tool
is running.

Prompt for parameters
Use this option to request that Boxer prompt for parameters before running the defined
program. This option is useful when running a program whose command line
parameter(s) must be determined according to other conditions and cannot be specified

Boxer Text Editor278

Copyright © 1991-2010 by Boxer Software

programmatically.

Convert '\'s in Parameters to '/'s
Use this option to request that any backslashes (\) within the Command Line

Parameters edit box be converted to forward slashes (/) before running the defined

program.

Pass short filename to program
Use this option to request that any Tools Macros used in the Command Line Parameters
edit box be converted to short filenames before running the defined program. This
option is needed when defining a User Tool which passes a filename to a DOS program,
or to a 16-bit Windows program, since these programs are typically unable to process
long filenames.

Buttons

Save Tool button
Use the Save Tool button to save the current tool definition. Note that the current tool
will also be saved automatically when moving to a new tool in the Tools list.

Clear Tool button
Use the Clear Tool button to clear the definition for the current tool. No confirmation is
required before the tool is erased.

Test Tool Button
Use the Test Tool button to simulate running the current tool, without actually
executing the defined program or resource. A dialog will appear showing the various
fields, after the expansion of any Tools Macros and other requested conversions have
been made.

Move up in list / Move down in list
Use these buttons to change the order in which tools appear in the User Tools submenu
on the Tools menu. Clicking on a button moves the currently selected User Tool up or
down in the list. Moving a User Tool up or down in the list does not cause a change in
the shortcut key assignments, if any are in use. For example: a shortcut key assigned
to User Tool 2 remains assigned to the second tool in the list and does not travel with a
tool which is moved through that position.

Tips and Notes

The method by which Boxer runs a User Tool program makes it possible to define
User Tools which are mapped to documents, rather than programs. For example, if
the 'program' to be run is defined to be an HTML document, then your Internet
browser will be launched to display that file. If a .DOC file is defined as the

'program' to be run, then Microsoft Word will be launched to display the document.
The browse button will present a file selection dialog box which defaults to showing

.EXE and .COM files, so in order to locate documents it will need to be changed to

show files of all types.

The method described in the above Tip can also be used to create User Tools which
map to your favorite directories. If a directory name is defined as the 'program' to

Command Reference (in menu order) 279

Copyright © 1991-2010 by Boxer Software

be run, then Explorer will be launched with that directory in its view. The browse
button cannot be used to select a directory name, so in order to define a User Tool
in this way, the directory name will need to be typed manually into the Program edit
box.

Some DOS programs issue an on-screen report but do not pause for user interaction
or confirmation before terminating. When such programs are run as User Tools,
they will execute and terminate so quickly that their results cannot be studied. You
can remedy this behavior by making a change to the Properties of the program
being executed. Locate the program in Explorer, right-click on its icon, and select
Properties. Click the Program tab and uncheck the option titled Close on exit. Click
OK to save the change. Thereafter, when the program is run, its window will not
close until its close button is clicked.

By default, Boxer is configured to present a warning message when a file it is
editing is changed by another program or process. This capability is especially
useful when running User Tools since it confirms that a change was made and
provides the opportunity to Reload the file from disk to get the latest copy. If you
will be running a User Tool which operates on the current file, this option should be
kept in force. The option is located on the Configure | Preferences | Messages
option page, and is titled Warn when an edited file is changed by another program.

If you are a user of one of the JP Software command processors and wish to specify
a .BTM file as a User Tool, you may need to make a system configuration change

before doing so. To see if a change is required, create a .BTM file which performs

some passive operation (such as DIR), and try to execute it by double clicking from

within Explorer. If the file executes properly, then the Windows shell is aware that

.BTM files can be executed, and no changes are needed. If the file does not run,

then a change will be needed before a .BTM file can be run as a program in one of

Boxer's User Tools. JP Software has documented this configuration procedure in an
information file on their website. At the time of writing, this file could be found at:
www.jpsoft.com/help/index.htm?deskobjs.htm If the file is not found there, look in
the Support section at www.jpsoft.com.

Here's a tip for users of JP Software's 4DOS and/or 4NT command processors: If you
would like to direct the error output from a DOS program to the Windows clipboard,
you can make use of the clip: logical device to achieve this. At the end of any

Command Line Parameters which might be defined for a given User Tool, add the
following: >&>! clip: This directive causes the standard error stream to be

placed on the Windows clipboard, overwriting the current clipboard content. The
clipboard can later be reviewed in Boxer or manipulated as required.

4.7.21 User Lists

Menu: Tools > User Lists

Default Shortcut Key: none

Macro function: UserList()

http://www.jpsoft.com/help/index.htm?deskobjs.htm
http://www.jpsoft.com

Boxer Text Editor280

Copyright © 1991-2010 by Boxer Software

The User Lists command provides access to a submenu of user-defined lists. Several
example User Lists have been supplied with Boxer to suggest ways in which this feature
might be used. You will no doubt think of many other ways.

Selecting a list from the User Lists submenu results in a popup window which displays
the items in the list:

User Lists can be used for reference or to insert text strings into the file being edited.
To insert a list item at the text cursor, double-click on the entry, highlight it and press
Enter, or click the Insert Item button. If you would like a line ender to be added after
inserting the item, use the Add line ender option.

Right-clicking on a selected item summons the User List context menu. The context
menu provides options to insert the selected item, or to copy it to the current clipboard.

To advance quickly to an item in the list, enter its first letter from the keyboard.

To edit an existing list, click the Edit List button. To edit an empty list, simply select it
from the User Lists submenu. In either case, the file which defines the list will be
loaded into an editor window and can be edited in the usual way. The title of the list
appears on the first line of the file and will be placed in the title bar of the popup
window. The list items are placed one item per line, beginning on line two.

Command Reference (in menu order) 281

Copyright © 1991-2010 by Boxer Software

The maximum length of a User List item is 256 characters. The maximum length of a
User List title is 40 characters.

The files which define User Lists are kept in Boxer's data folder in a subdirectory called
'User Lists' and are named userlist.001, userlist.002, etc.

If you prefer that the User List window remain atop other windows, select the Stay on
top option. The User List windows are non-modal windows, which allows them to
remain on-screen after focus has been returned to another editing window. Multiple
User List windows can be opened simultaneously.

Email and URL Addresses
If a User List entry contains either an email or internet address, Boxer will launch the
default email client or internet browser when the entry is double-clicked. This makes it
possible for a User List to be used to create a list of email contacts or favorite websites.
Email addresses can be entered in any of the following formats.

Boxer Software <sales@boxersoftware.com>
<sales@boxersoftware.com>
sales@boxersoftware.com

Mailto extensions can be used within an email address. They are appended to the email
address following a question mark (?). Here are some examples:

sales@boxersoftware.com?cc=joe@mycompany.com
sales@boxersoftware.com?bcc=bill@mycompany.com
sales@boxersoftware.com?subject=Order a Site License for Boxer
sales@boxersoftware.com?body=this text will appear in the
message body

Multiple mailto extensions can be combined with the ampersand (&) symbol:

sales@boxersoftware.com?subject=Order Boxer&cc=joe@mycompany.com

Note: Mailto extensions are not supported by all email clients. Experiment with your
email client to learn its capabilities.

Sin Since an address can be launched with a double-click, the Enter key retains the
function of inserting the text of the entry into the current file.

To ensure that special characters are displayed in the User List window as they will
appear when inserted into the editor, the User List uses the same font as is used in
the editor itself.

If a User List is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

4.7.22 User Lists -> Bring User Lists to Top

Menu: Tools > User Lists > Bring User Lists to Top

Boxer Text Editor282

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: BringUserListsToTop()

Use this command to bring all open User List windows to the top of the desktop.

4.7.23 Reference Charts -> ANSI Chart

Menu: Tools > ANSI Chart

Default Shortcut Key: none

Macro function: ANSIChart()

The ANSI Chart command provides access to a popup chart which displays characters 0
to 255 in the ANSI character set. The character's visual representation is shown in the
leftmost column, followed by the character value in decimal, hexadecimal, octal and
binary formats. The active code page is also displayed at the top of the dialog:

Command Reference (in menu order) 283

Copyright © 1991-2010 by Boxer Software

To jump directly to a character of interest, simply press that character on the keyboard.

The ANSI Chart can be used to insert a character into the file being edited. Simply
double click on the entry for the desired character or highlight the character in the
chart and press Enter. When the need to insert a special character or symbol arises
frequently, consider using the Insert Symbols feature rather than the ANSI Chart
command. The Insert Symbols feature permits a defined character to be entered using
a single keystroke.

Right-clicking on a selected item summons the ANSI Chart context menu. The context
menu provides an option to copy the selected character to the current clipboard.

The ANSI Chart can also be used to convert between bases for values in the range 0 to
255. Simply locate the value to be converted in its proper column and read the
converted value from the column of the new base.

If you prefer that the ANSI Chart remain atop other windows, select the Stay on top
option. The ANSI Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

The ANSI Chart uses the same font and code page as the current screen font.

If the ANSI Chart left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

4.7.24 Reference Charts -> OEM Chart

Menu: Tools > OEM Chart

Default Shortcut Key: none

Macro function: OEMChart()

The OEM Chart command provides access to a popup chart which displays characters 0
to 255 in the OEM (ASCII) character set. The character's visual representation is
shown in the leftmost column, followed by the character value in decimal, hexadecimal,
 octaland binary formats. In the two rightmost columns, the equivalent control letter
sequence and mnemonic expression are shown for values in the range 0 to 31. The
active code page is also displayed at the top of the dialog:

Boxer Text Editor284

Copyright © 1991-2010 by Boxer Software

To jump directly to a character of interest simply press that character on the keyboard.

The OEM Chart can be used to insert a character into the file being edited. Simply
double click on the entry for the desired character, or highlight the character in the
chart and press Enter. When the need to insert a special character or symbol arises
frequently, consider using the Insert Symbols feature rather than the OEM Chart
command. The Insert Symbols feature permits a defined character to be entered using
a single keystroke.

Right-clicking on a selected item summons the OEM Chart context menu. The context
menu provides an option to copy the selected character to the current clipboard.

The OEM Chart can also be used to convert between bases for values in the range 0 to
255. Simply locate the value to be converted in its proper column and read the
converted value from the column of the new base.

If you prefer that the OEM Chart remain atop other windows, select the Stay on top
option. The OEM Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

If the OEM Chart is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

Command Reference (in menu order) 285

Copyright © 1991-2010 by Boxer Software

4.7.25 Reference Charts -> Value at Cursor

Menu: Tools > Value at Cursor

Default Shortcut Key: none

Macro function: ValueAtCursor()

The Value at Cursor command can be used to display information about the character at
the text cursor. A popup window displays the character's ANSI representation and its
character value in decimal, hexadecimal, octal and binary formats. The character's
Unicode code point is also displayed. If the character has a named HTML entity, that
name is displayed. Otherwise, the numeric HTML symbol is displayed.

A report for the less than symbol ('<') looks like this:

The dialog box will remain open until dismissed, and will continue to report on the
character at the text cursor each time it changes.

This command can be especially useful for determining the value of characters which do
not have a unique representation in the character set of the current Screen Font. For
example, many ANSI fonts use an open box to represent all characters below the value
32 (Space), making it impossible to determine a character's value simply by looking at
it.

The ANSI Chart and OEM Chart commands can be used to see a full listing of character
values for each of these character encoding schemes.

4.7.26 Reference Charts -> Error Chart

Menu: Tools > Error Chart

Default Shortcut Key: none

Boxer Text Editor286

Copyright © 1991-2010 by Boxer Software

Macro function: ErrorChart()

The Error Chart command displays a popup list of Windows error codes and their
associated messages. When errors are reported by the operating system--or by an
application program--they will often reference a numeric error code. These reports
frequently have insufficient information about the error which occurred. Boxer's Error
Chart can be used by programmers--or by any users--to decode the meaning of
Windows error codes.

The Error Chart can be searched by value or by any text which appears within the
listing. Type the search string into the edit box provided and click Find. The Find
button is also used to find the next occurrence of a string which has just been found.

Right-clicking on a selected item summons the Error Chart context menu. The context
menu provides an option to copy the selected message to the current clipboard.

If you prefer that the Error Chart remain atop other windows, select the Stay on top
option. The Error Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

If the Error Chart is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

4.7.27 Reference Charts -> HTML Color Chart

Menu: Tools > HTML Color Chart

Default Shortcut Key: none

Macro function: ColorChart()

Command Reference (in menu order) 287

Copyright © 1991-2010 by Boxer Software

The HTML Color Chart command presents a pop-up dialog that allows color values to be
viewed and adjusted by varying the Red, Green and Blue components. RGB values are
shown in both hexadecimal and decimal format..

The current color is displayed in a rectangle at the left, along with sample text in black
and white to show the contrast that would result for those color combinations. The
value required to display the current color is shown in the box labeled HTML Code. The
drop-down list holds a history list of recently used color codes. You can type an HTML
color value directly into the HTML Code combobox, if you wish.

The Use Chart button can be used to summon the standard Windows color dialog so
that a selection can be made from a color palette. The Insert Code button is used to
insert the HTML Code into the current text file.

If the HTML Color Chart is left on screen when Boxer is closed, it will be
automatically reopened if the edit session is later restored.

4.7.28 Templates

Menu: Tools > Templates

Default Shortcut Key: Ctrl+T

Macro function: Templates()

The Templates command is used to select a Template for insertion at the text cursor.
Boxer's Templates are an excellent way to save and recall small pieces of text such as
address blocks, copyright notices, programming language constructs, email addresses
and any other text block which is used frequently during editing.

When the Insert Template command is issued, the Templates menu appears in a popup
window:

Boxer Text Editor288

Copyright © 1991-2010 by Boxer Software

The active Template Set is displayed at the bottom of the window, and the Templates
within that set are displayed in the main listing area. Press the first letter of the
Template name or cursor with the arrow keys to select the desired Template. Press
Enter (or double click with the mouse) to insert the selected Template into the file.

Right-clicking on a selected item summons the Template context menu. The context
menu provides options to insert the selected item, or to copy it to the current clipboard.

Template Sets and Templates are defined using the Configure | Templates command.

Text Cursor Placement
The Vertical Rule character (|) can be placed within a Template to dictate where the

text cursor should be placed within the Template following its insertion. This allows, for
example, programming code blocks to be defined in which the text cursor is placed
between a pair of parentheses, ready for additional code to be typed.

Operating on Selected Text
The caret or circumflex character (^) can be placed within a Template to indicate that

the template should operate on a text selection. A pair of examples will help to
illustrate the power of this feature:

Example 1:
The template ^| would cause the current text selection to be surrounded with

HTML bold tags. The text cursor would be placed at the right of the closing bold tag.

Example 2:
The following Template:

<html>
<head>
|
</head>

Command Reference (in menu order) 289

Copyright © 1991-2010 by Boxer Software

<body>
^
</body>
</html>

could be run after using the Select All Text command to select the entire file. The
effect would be to add the required HTML tags that help make an ordinary text file
ready for viewing on the Internet. The text cursor would be place between the <head>
and </head> tags, awaiting a title for the document.

Unindenting within a Template
If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force (see Configure | Templates).

If you need to insert one of the special characters (~, | or ^) into a template in its

textual form, use either ~~, || or ^^.

To ensure that special characters are displayed in the Template window as they will
appear when inserted into the editor, the Template window uses the same font as is
used in the editor itself.

If the need arises to insert a single character which is not easily typed from the
keyboard, consider using the Insert Symbols feature rather than defining a single
character Template. The Insert Symbols feature permits a defined character to be
entered using a single keystroke.

If the Template window is left on-screen when Boxer is closed, it will be
automatically reopened if the edit session is later restored.

4.7.29 Line Drawing

Menu: Tools > Line Drawing

Default Shortcut Key: Ctrl+F12

Macro function: LineDrawing()

The Line Drawing command can be used to enter a mode in which the arrow keys are
used to draw lines in a selected frame style, or with a specified character. A dialog box
appears from which the drawing style is selected:

Boxer Text Editor290

Copyright © 1991-2010 by Boxer Software

A drawing style is selected by checking the radio button which corresponds to the
desired style. Options are also provided to draw with some other character, and either
the ANSI Chart or OEM Chartcan be summoned to assist in character selection.

When using an OEM Screen Font, several additional drawing styles may be used. The
bottom eight styles offered in the dialog box require the use of an OEM screen font for
proper display. The ANSI character set does not contain these characters, so using
these styles with an ANSI Screen Font will produce undesirable results.

Once OK is clicked, Line Drawing mode is active. Use the arrow keys to create lines or
boxes as desired. Use Esc to cancel Line Drawing mode.

When drawing atop lines which contain Tab characters, the Tabs will be automatically
converted to Spaces to ensure proper display. When Line Drawing occurs past the end
of a line, the line will be automatically extended with Spaces. If the end of file is
encountered, additional blank lines will be added automatically so that Line Drawing can
proceed.

When printing files which contain drawing characters from the OEM character set, be
sure to use a Printer Font which also uses the OEM character set.

4.7.30 Fast Frame

Menu: Tools > Fast Frame

Default Shortcut Key: Alt+F12

Macro function: FastFrame()

Command Reference (in menu order) 291

Copyright © 1991-2010 by Boxer Software

The Fast Frame command can be used to frame a columnar-selected rectangle with a
chosen frame style, or with a specified character. A dialog box appears from which the
frame style is selected:

A frame style is selected by checking the radio button which corresponds to the desired
style. Options are also provided to frame the selected area with some other character,
and either the ANSI Chart or OEM Chart can be summoned to assist in character
selection.

When using an OEM Screen Font, several additional frame styles may be used. The
bottom eight styles offered in the dialog box require the use of an OEM screen font for
proper display. The ANSI character set does not contain these characters, so using
these styles with an ANSI Screen Font will produce undesirable results.

Once OK is clicked, the selected area is automatically framed with the chosen frame
style. The frame is applied to the outside of the selected area. If the left edge of the
selection lies in column one, the lines in the selected range will be pushed right by one
column to make room for the frame. If Tab characters appear within the selection, they
will be automatically converted to Spaces to ensure proper display after framing.

When printing files which contain drawing characters from the OEM character set, be
sure to use a Printer Font which also uses the OEM character set.

Boxer Text Editor292

Copyright © 1991-2010 by Boxer Software

4.8 Project Menu

4.8.1 New

Menu: Project > New

Default Shortcut Key: none

Macro function: ProjectNew()

Boxer's Project feature provides a means of simultaneously loading a collection of files,
and restoring those files to their previous editing states. The Project | New command
creates a project file containing the names and editing options of all files that are
currently open.

The following editing options are maintained within a project file:

· window sizes and positions

· cursor location

· active file

· bookmarks

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

Once a project is open, the Add One, Add All and Remove commands can be used to
add and remove files from the active project. The Update One and Update All
commands can be used keep the project file up-to-date with the current editing options.
To keep the editing options up-to-date automatically, use the Auto-Update command.

When a project file is named on Boxer's command line, or when the icon of a project file
is dragged and dropped onto the Boxer window (or its icon), all of the files named
within that file will be loaded for editing. If you need to edit the content of the project
file itself, use the Edit Active or Edit Other command, as may be appropriate.

The project file is a text file that contains an informative series of comments that
explains the use of project files:

Command Reference (in menu order) 293

Copyright © 1991-2010 by Boxer Software

In its simplest form, a project file is simply a text file whose file extension is .BP and

whose content consists of a list of filenames, one per line. Empty lines can be used
freely within a project file to separate filenames as may be appropriate. Lines
beginning with an asterisk (*) will be considered comment lines, and will not be

processed.

A project file can be used to maintain a list of filenames that relates to a given project
or document set, and to open those files quickly. For best results, the full
pathname--including the drive designator and directory path--should be used. This will
ensure that the project file functions properly regardless of the default directory in force
at the time it is used.

FTP filepaths can be placed within project files. See the FTP Open command for
more information.

Project files cannot be nested; if a project file is named within another project file an
error will occur.

If a file is open for read-only editing, that file's entry in the project file will be
automatically created with the -R command line option flag that designates

read-only status. Likewise, if a file is open for hex mode viewing, its entry will be
created with the -H command line option flag.

Within a project file, filepaths can be preceded with "exec:" to indicate that they be
opened using their default application. This allows other files that are associated
with a project to be opened when the project opens in Boxer. For example, a project
file's entries might be:

c:\myproject\source\main.cpp
exec:c:\myproject\docs\updates.doc
exec:http://www.mysite.com/index.htm
exec:c:\myproject\bitmaps\project_logo.bmp

Boxer Text Editor294

Copyright © 1991-2010 by Boxer Software

The first file would open in Boxer, while the next three files would be opened by the
applications that are associated with their respective file types: DOC/HTM/BMP. If the
filepath to be opened contains embedded spaces, the entire line must be surrounded in
double quotes:

"exec:c:\my project\docs\monthly updates.doc"

A project file can be designated on Boxer's command line using the -P command

line option flag.

4.8.2 Open

Menu: Project > Open

Default Shortcut Key: none

Macro function: ProjectOpen()

The Open Project Command is used to open an existing project file. When a project file
is opened, all of the files named therein are open for editing. If you need to edit the
content of the project file itself, use the Edit Active or Edit Other command, as may be
appropriate.

See the Project | New command for full details about Boxer's project file feature.

4.8.3 Close

Menu: Project > Close

Default Shortcut Key: none

Command Reference (in menu order) 295

Copyright © 1991-2010 by Boxer Software

Macro function: ProjectClose()

Use the Project | Close command to close the current project. All files associated with
the active project will be closed.

See the Project | New command for full details about Boxer's project file feature.

4.8.4 Delete

Menu: Project > Delete

Default Shortcut Key: none

Macro function: ProjectDelete()

Use the Project | Delete command to delete a selected project file. This command
deletes a project file. It does not delete the files named within that file.

See the Project | New command for full details about Boxer's project file feature.

4.8.5 Add One

Menu: Project > Add One

Default Shortcut Key: none

Macro function: ProjectAddOne()

Use the Add One command to add the current file to the active project.

See the Project | New command for full details about Boxer's project file feature.

4.8.6 Add All

Menu: Project > Add All

Default Shortcut Key: none

Macro function: ProjectAddAll()

Use the Add All command to add all open files to the active project.

This command can be used safely even when some of the open files are known to
already reside within the active project. Duplicate entries will not result.

See the Project | New command for full details about Boxer's project file feature.

Boxer Text Editor296

Copyright © 1991-2010 by Boxer Software

4.8.7 Remove

Menu: Project > Remove

Default Shortcut Key: none

Macro function: ProjectRemove()

Use the Remove command to remove the current file from the active project.

See the Project | New command for full details about Boxer's project file feature.

4.8.8 Update One

Menu: Project > Update One

Default Shortcut Key: none

Macro function: ProjectUpdateOne()

Use the Update One command to update the active project file with the current editing
options for the active file.

The project file stores the following information about the files contained in the project:

· window sizes and positions

· cursor location

· active file

· bookmarks

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

If you would like the project file to be updated automatically for all member files,
use the Project | Auto-Update feature.

4.8.9 Update All

Menu: Project > Update All

Default Shortcut Key: none

Macro function: ProjectUpdateAll()

Use the Update All command to update the active project file with the current editing
options for all files within the project.

The project file stores the following information about the files contained in the project:

Command Reference (in menu order) 297

Copyright © 1991-2010 by Boxer Software

· window sizes and positions

· cursor location

· active file

· bookmarks

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

If you would like the project file to be updated automatically for all member files,
use the Project | Auto-Update feature.

4.8.10 Auto-Update

Menu: Project > Auto-Update

Default Shortcut Key: none

Macro function: ProjectAutoUpdatel()

This option can be used to keep the editing options of the active project updated
automatically. As windows sizes, window locations, bookmarks, cursor locations and
other file-specific options change, the project file will be updated automatically. Each
project is permitted to have a different Auto-Update setting, if desired.

If you prefer to maintain project settings manually, the Update One and/or Update All
commands can be used to manually update the editing options for the current file, or all
open files, on an as-needed basis.

4.8.11 Edit Active

Menu: Project > Edit Active

Default Shortcut Key: none

Macro function: ProjectEditActive()

Use the Edit Active command to open the active project file for editing. This command
opens a project file as a text file; it does not open the files named within that project
file. To open the files within a project file, use the Project | Open command.

See the Project | New command for full details about Boxer's project file feature.

4.8.12 Edit Other

Menu: Project > Edit Other

Boxer Text Editor298

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: ProjectEditOther()

Use the Edit Other command to open a selected project file for editing. This command
opens a project file as a text file; it does not open the files named within that project
file. To open the files within a project file, use the Project | Open command.

See the Project | New command for full details about Boxer's project file feature.

4.8.13 Recent Projects

Menu: Project

Default Shortcut Key: not applicable

Macro function: OpenRecentProject()

The Recent Projects list appears near the bottom of the Projects menu. Each time a
projects is opened, its name is added to the list. If necessary, the eldest entry is
bumped from the list. This list makes it easy to recall projects which were recently
opened without the need to use the Project | Open command. The projects are
displayed with a 'hot' number to their left, so that Alt+P, P, followed by the number, will
load the named project.

Up to 16 recent projects can appear on the Recent Projects list.

Long project names will be shortened for display if the relevant option on the Configure
| Preferences | Display options page is checked.

4.8.14 Clear Recent Projects List

Menu: Project > Clear Recent Projects List

Default Shortcut Key: none

Command Reference (in menu order) 299

Copyright © 1991-2010 by Boxer Software

Macro function: ClearRecentProjectsList()

Use this command to clear the record of recently accessed projects from the Recent
Project submenu.

See the Project | New command for full details about Boxer's project file feature.

4.9 Configure Menu

4.9.1 Preferences - Display

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Display page of the Configure Preferences dialog box contains options related to the
appearance of Boxer's screen and the display of edited files:

Display Options

Boxer Text Editor300

Copyright © 1991-2010 by Boxer Software

Display icons in menus
Use this option to control the display of icons within the main menus.

Display leading zeros on line numbers
This option controls whether or not leading zeros will be used when the View | Line
Numbers command is in use.

Display HTML Color Code pop-up hints
This option controls whether or not Boxer will display a pop-up HTML Color Code Hint
when the mouse cursor hovers atop an HTML Color Code (such as color="#FF3B80"
or color="DarkSlateBlue"). The pop-up box shows the color associated with the

color sequence below the mouse cursor.

Hide the mouse cursor while typing
Use this option to control whether or not the mouse cursor will be hidden while text is
being entered from the keyboard. If hidden, the mouse cursor will be redisplayed when
it is moved.

Stream selection extends past end-of-line
This option controls the way in which a multi-line Stream selection is displayed
on-screen. When this option is active, selected lines will be highlighted all the way to
the right edge of the window, even when lines are shorter than the window's width.
When this option is inactive, selected lines will be highlighted only up to the end of each
line. This option has no effect on the text included within a selection. It is simply a
display option.

Auto-maximize new windows when created
Use this option to cause new windows created with File | New or File | Open to be
opened in maximized form.

Syntax highlight even when fast-scrolling
This option controls whether or not Boxer will perform Syntax Highlighting while a file is
scrolling rapidly, due to a keyboard key being held down. Scrolling will be faster if
Boxer is allowed to suspend Syntax Highlighting in this situation. The screen will be
updated instantly when the scrolling key is released.

Highlight background of current line
Use this option to control whether or not the background of the current will be displayed
in a different color. Doing so can make it easier to locate the current line. The
Configure Colors command can be used to select the background color used.

Highlight URLs and email addresses
This option controls whether or not Boxer will apply coloration to URLs and email
addresses when they are encountered within ordinary text files. The color and font
style used to highlight an address can be controlled with the Configure | Colors
command. Disabling highlighting also disables the ability to double-click on these
addresses in order to launch an internet browser or email client. In such case, the
Open File in Browser and Open Email at Cursor commands could be used instead.

Show right margin rule at column...
Use this option to control the display of the Right Margin Rule, and to set the column at

Command Reference (in menu order) 301

Copyright © 1991-2010 by Boxer Software

which the rule is displayed.

Scroll Left/Right jump value
This option controls the number of columns that the Scroll Left and Scroll Right
commands will jump by when panning the screen left of right..

Shorten long filenames in File/Project/Window menus
Use this option to control whether or not long filenames will be shortened when they
appear in the either the Recent Files, Recent Projects or Window menus. If this option
is active, long file names will be shortened whenever they exceed 60 characters in
length.

Shorten File Tab names to n characters
Use this option to control whether or not the filenames displayed in Boxer's File Tabs
will be shortened when they exceed a specified length. When filename shortening is
required, as many as four characters will be retained from the file extension, with the
balance of characters being retained from the left side of the filename. Missing
characters in the middle of the filename will be replaced by three dots (...).

Visible characters - ANSI fonts

Space value
Tab value
Newline value
These options can be used to designate the characters which will be used for Visible
Spaces display when an ANSI Screen Font is in use. Use the button with the ellipsis
(...) to select a character from the ANSI Chart.

Visible characters - OEM fonts

Space value
Tab value
Newline value
These options can be used to designate the characters which will be used for Visible
Spaces display when an OEM Screen Font is in use. Use the button with the ellipsis (...)
to select a character from the OEM Chart.

4.9.2 Preferences - Cursor

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Cursor page of the Configure Preferences dialog box contains options which can be
used to control cursor movement within the file:

Boxer Text Editor302

Copyright © 1991-2010 by Boxer Software

Cursor Travel Options

Use Home-Home-Home cursor motion logic
When this option is active the function of the Home key becomes dependent on the
number of times Home has been pressed. When Home is first pressed, the text cursor
is moved to the beginning of the current line. When Home is pressed again, the cursor
is moved to the first line in the window. When Home is pressed a third time, the cursor
is moved to the first line in the file.

If the Home key is not assigned to Start of Line, Home-Home-Home functionality
becomes unavailable. Its function is tied directly to the Home key, and not to other
keys which might be assigned to Start of Line.

Use End-End-End cursor motion logic
When this option is active the function of the End key becomes dependent on the
number of times End has been pressed. When End is first pressed, the text cursor is
moved to the end of the current line. When End is pressed again, the cursor is moved
to the last line in the window. When End is pressed a third time, the cursor is moved to
the last line in the file.

If the End key is not assigned to End of Line, End-End-End functionality becomes
unavailable. Its function is tied directly to the End key, and not to other keys which
might be assigned to End of Line.

Command Reference (in menu order) 303

Copyright © 1991-2010 by Boxer Software

Move from start of line to end of previous line
Use this option to permit the text cursor to move from the start of the current line to
the end of the previous line when the Left Arrow is pressed. When this option is
inactive, pressing the Left Arrow in column one will result in no cursor movement.

Move from end of line to start of next line
Use this option to force the text cursor to move from the end of the current line to the
start of the next line when the Right Arrow is pressed. When this option is inactive, the
cursor is allowed to travel rightward past the end of a line.

This option also affects the way Boxer behaves when the Up Arrow and Down Arrow are
used to cursor across lines of varying lengths. If this option is active, the column of the
text cursor will be adjusted when moving onto a line that is shorter than the current
column. If this option is inactive, the text cursor column will be maintained when
moving from line to line.

Keep cursor on-screen during Scroll Up/Down
Use this option to control how the position of the text cursor is treated when using the
Scroll Up and/or Scroll Down commands. When this option is checked, the text cursor
will be moved (if necessary) to keep it on-screen while scrolling. When this option is
not checked the cursor position will be maintained even when the line containing the
text cursor is scrolled outside the view of the window.

Allow last line of file to scroll up to mid-screen
When this option is on, using the Down arrow to scroll to end of file will cause the last
line of the file to appear as high as mid-screen. When this option is off, the last line of
the file will not scroll up past the bottom of the window.

Word delimiters

These characters will delimit words
This option can be used to designate the characters which are considered to be word
delimiters. Word delimiters are those characters which serve to separate one word
from another. It may be desirable to add or remove symbols from the default delimiter
list in order to improve the behavior of the Word Left and Word Right commands within
certain types of file.

The word delimiter list is used by various commands to determine the extent of their
operation. Among these commands are Word Left, Word Right, Delete Previous Word,
Delete Next Word, Swap Words, Open Filename at Cursor, Open URL at Cursor and
Open Email at Cursor.

Window Travel

Window Previous/Next command obey File Tab order
Window Previous/Next command obey window 'Z-order'
Use these options to control how Boxer responds to the Window Previous and Window
Next commands. When File Tab order is selected, the window commands will use the
ordering of the File Tabs to determine which window to move to. When the Z-order
option is selected, window movement will be determined according to an order

Boxer Text Editor304

Copyright © 1991-2010 by Boxer Software

maintained by Windows. A window is promoted in the Z-order when it is made current.
Less frequently used windows will gradually fall to the bottom of the z-order.

Reset a window's skip status when its file tab is clicked
When this option is on, clicking on a file tab will cause its skip status to be reset to
normal.

Insert cursor and Typeover cursor

The shape and flash rate can be set independently for the Insert and Typeover cursors.

Vertical Line
Use this option to set the text cursor to a thin vertical line which sits at the left edge of
the character cell.

Horizontal Line
Use this option to set the text cursor to a horizontal line which sits at the base of the
character cell.

Half Block
Use this option to set the text cursor to a block which occupies the lower half of the
character cell.

Full Block
Use this option to set the text cursor to a block which occupies the full character cell.

Flash cursor at a custom rate
Use this option to set the rate at which the cursor flashes. A millisecond is one
thousandth of a second.

Test here
Use this edit box to test the new shape and flash rate.

Changes made to the text cursor apply only to Boxer, and do not affect other
applications.

4.9.3 Preferences - Editing 1

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Editing 1 page of the Configure Preferences dialog box contains options which
relate to the editing of text files:

Command Reference (in menu order) 305

Copyright © 1991-2010 by Boxer Software

Editing options

Default edit mode is Insert
Use this option to set the default edit mode to Insert. In Insert mode, existing text is
pushed rightward to make room for characters which are typed from the keyboard.
Note that this option causes newly created windows to begin in Insert mode, but it does
not change the edit mode of any editor windows that may already be open.

Default edit mode is Typeover
Use this option to set the default edit mode to Typeover. In Typeover mode, characters
which are typed from the keyboard replace existing text. Note that this option causes
newly created windows to begin in Typeover mode, but it does not change the edit
mode of any editor windows that may already be open.

Default mode for Visual Wrap mode is On
Use this option to change the default Visual Wrap setting to on. Note that this option
causes newly created windows to begin with Visual Wrap on, but it does not change the
Visual Wrap mode of any editor windows that may already be open. The Visual Wrap
command can always be used to change the setting for the current editor window,
independent of this option.

Default mode for Typing Wrap mode is On
Use this option to change the default Typing Wrap setting to on. Note that this option
causes newly created windows to begin with Typing Wrap on, but it does not change the

Boxer Text Editor306

Copyright © 1991-2010 by Boxer Software

Typing Wrap mode of any editor windows that may already be open. The Typing Wrap
command can always be used to change the setting for the current editor window,
independent of this option.

Set active clipboard to Windows on startup
When checked, this options ensures that the active clipboard will be restored to the
Windows clipboard each time Boxer is started.

Auto-indent to match indent of previous line
Use this option to enable Auto-indent. When Auto-Indent is active, pressing Enter at
the end of a line will place the text cursor on a new line below with an indent level
equal to that of the line above.

Stay at insertion point when Pasting
Use this option to cause the text cursor to remain at the point of insertion following a
Paste operation. If inactive, the text cursor is placed at the end of the text which was
pasted.

Cut/Copy/Append commands use text of current line when text is not selected
This option permits the Cut, Copy, Append and Cut Append commands to operate on
the current line as though it were selected. Simply issue the desired command from
any point on the line and the operation will be performed as though the whole line were
selected.

Release selection after Cut, Copy, Append, Delete
When selected, this options causes a text selection to be automatically released after a
clipboard operation is performed.

Backspace preserves text alignment when used in Typeover mode
Use this option to make the Backspace key overwrite with spaces when used in
Typeover mode.

Allow Reformat to break lines after hyphens and em-dashes
When selected, this option allows the Paragraph | Reformat command to break a line
after a hyphen (-) or an em-dash (--).

Allow Reformat to break lines after ellipses
When selected, this option allows the Paragraph | Reformat command to break a line
after an ellipsis (...).

Find, Replace dialogs suggest word at text cursor as the initial search string
When selected, this option controls whether the Find, Replace, Find Text in Disk Files
and Replace Line Enders dialogs will insert the word at the text cursor into the find edit
box.

Undo Options

Undo buffer size
Use this command to set the buffer size used by the Undo command. Values between
2048 and 65535 are permitted. This value represents the amount of memory (in bytes)
which is reserved for tracking undo information.

Command Reference (in menu order) 307

Copyright © 1991-2010 by Boxer Software

The default value is 65535, which is also the maximum value. There is little reason to
select smaller values, as the memory cost is small compared to the utility that Undo
provides.

Allow undo after File Save
Use this option to indicate that the Undo command should remain operable after the
Save command is used, thereby allowing changes which occurred before Save to be
undone. If this option is inactive, the Save command has the effect of the Clear Undo
command, since Undo information is lost for changes made before the save.

Quoting Options

Quoting String
Use this option to specify the symbol (or symbols) which are to be used by the Quote
and Reformat command during its operation.

The Quote and Reformat command makes use of the Reformat command internally
during its operation. As is noted in the Reformat command, lines beginning with a
period (.) are treated as blank lines in order to recognize text markup tags. As a

result, the use of a quoting string that begins with a period will not produce the
desired results, and should be avoided. All other symbols and characters are
permissible.

Apply quoting string only to line one
Use this option to designate that the Quote and Reformat command apply the Quoting
String to the first line of the paragraph quoted.

Apply quoting string to all lines
Use this option to designate that the Quote and Reformat command apply the Quoting
String to all lines within the paragraph quoted.

Miscellaneous

Set mating pairs for Find Mate
This option can be used to edit the mating pairs which are used by the Find Mate
command. The Find Mate command is used to jump quickly from a parenthetical
element at the text cursor to its mate.

When the ellipsis (...) button is clicked, a small edit window appears which contains the
currently defined pairs:

Boxer Text Editor308

Copyright © 1991-2010 by Boxer Software

Each mating pair resides on a single line, with the equal sign (=) being used to separate

the opening string from the closing string. Pairs can be removed from the list, or new
pairs can be added. Click OK to save the changes.

Line ender for new files
This option can be used to set the default line ender type for newly created files.
Choose from PC, Macintosh or Unix style line enders. A file's line ender can also be
changed from the File | Properties dialog.

Encoding for new files
This option can be used to set the default file encoding format for newly created files.
Choose from ASCII, UTF-8, UTF-16 little endian or UTF-16 big endian. A file's encoding
format can also be changed from the File | Properties dialog.

4.9.4 Preferences - Editing 2

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Editing 2 page of the Configure Preferences dialog box contains options which
relate to the editing of text files:

Command Reference (in menu order) 309

Copyright © 1991-2010 by Boxer Software

Auto close options

Auto Close HTML, XML tags
This option can be used to enable or disable Boxer's Auto Tag Close feature. When
enabled, and when an eligible file type is being edited, Boxer will automatically create
the closing tag and place the cursor between the tags. For example, when you type

<center>, Boxer automatically completes the tag with </center> and places the text

cursor between the tags.

Auto Tag Close file extensions

Use this option to control which file types are eligible for the Auto Tag Close feature.
When the ellipsis (...) button is clicked, a small edit window appears which contains the
eligible file extensions.

Automatically close parenthetical characters when typed
When this option is active, parenthetical characters will be automatically closed when
they are typed from the keyboard. The text cursor is then placed between the mated
characters. An edit box is provided to control which characters will be automatically
closed. This option is off by default.

By necessity, if < and > are designated among the list of mating characters, the

auto-close feature for HTML and XML tags will be disabled.

Boxer Text Editor310

Copyright © 1991-2010 by Boxer Software

Editing options

Open files containing nulls in hex editing mode
Display a dialog with options for handling null characters
These options control how Boxer reacts when a request is made to open a file that
contains null characters. If the first option is selected, Boxer will automatically open
the file in hex editing mode. If the second option is selected, the Null Character
Handling dialog will appear before the file is opened, providing additional options for
how the file can be handled:

Word/Sentence/Title case commands will convert text to lowercase before
operation

This option causes the Word, Sentence and Title case commands to automatically
convert the selected text to lowercase before performing their function. When
operating on uppercase text, this mode of operation allows the desired conversion to be
performed in one step.

Command Reference (in menu order) 311

Copyright © 1991-2010 by Boxer Software

But take note: if the Word case command is applied to the following text:

IBM, eBay, MasterCard Report Record Profits

the result may not be as expected:

Ibm, Ebay, Mastercard Report Record Profits

Insert Symbols

The edit boxes within this section permit the definition of up to eight character values
for use with the Insert Symbols feature. The values for the characters are entered in
decimal format, and must reside in the range 1 to 255. The defined character is
displayed to the right of each edit box using the same character set (ANSI or OEM) that
is in use in the editor itself. This should help ensure that the characters are displayed
as expected. If a character does not display within the dialog with the expected
representation, this should not be cause for alarm. Simply verify that the character has
the expected appearance when inserted into the text file.

4.9.5 Preferences -Tabs

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Tabs page of the Configure Preferences dialog contains options which relate to
function of the Tab key, and to the display size of a tab:

Boxer Text Editor312

Copyright © 1991-2010 by Boxer Software

Tab mode

Tab key inserts real tabs
When this option is used the Tab key will insert tabs (character value 9) into the file.

Tab key inserts spaces
When this option is used the Tab key will insert an equivalent number of Spaces, in
accordance with the current Tab Display Size.

Tab key inserts spaces, with tabstops determined from line above
When this option is used, the Tab key will advance the text cursor to the next field of
data as determined from the line above the current line.

Tab Size

Fixed with tabs of size n
Use this option to set the default display size for fixed width tabs.

This option sets the display size to be used for tabs in newly created windows, but it
does not alter the tab display size of any editor windows that may already be open.
The Tab Display Size command on the View menu can be used to set the tab display
size for the current file, independent of this default value.

Variable width tabs, with tab stops at columns...

Command Reference (in menu order) 313

Copyright © 1991-2010 by Boxer Software

Use this option to designate the columns at which variable width tab stops should
occur.

This option sets the tab stops to be used for tabs in newly created windows, but it
does not alter the tab stop settings any editor windows that may already be open.
The Tab Display Size command on the View menu can be used to set the tab stops
for the current file, independent of this default value.

Other

Tab key is non-destructive when used in typeover mode
When this option is checked, the Tab key will not overwrite text when used in Typeover
mode. For a similar option that affects the function of the Backspace key, see the
Configure | Preferences | Tabs dialog page.

Tab key inserts tab in the edit boxes of various Find, Replace and Find & Count
dialog boxes
When this option is checked, the Tab key with insert an actual tab character into the
edit boxes of the Find, Replace, Replace Line Enders and Find & Count dialog boxes.
Ordinarily, when the Tab key is pressed in a dialog box, focus shifts to the next control
in the dialog box. This option can be used to override that behavior, making it easier to
create search or replace strings that include the tab character.

4.9.6 Preferences - File I/O

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The File I/O page of the Configure Preferences dialog box contains options which deal
with the loading and saving of files:

Boxer Text Editor314

Copyright © 1991-2010 by Boxer Software

File Open options

Strip trailing blanks when Loading a file
Use this option to request that trailing Spaces and/or Tabs be removed from the ends of
lines as a file is loaded from disk. See also the option titled Strip trailing blanks when
saving a file.

Use standard File Open dialog box
Use this option to specify that the standard Windows File Open dialog box should be
used by the File | Open command. Boxer's custom dialog provides many features that
are lacking in the standard dialog. Some users may be more comfortable with the
standard dialog, and may wish to select this option.

Start in directory of current file
When this option is selected, the File | Open dialog, File | Picker, and Find Text in Disk
Files commands will start in the directory of the current file.

Custom File Open dialog font
Use this option to select the font that will be used in Boxer's custom File | Open dialog.

File Open filters for dialog
This option can be used to configure the list of file filters which are available from within
the File | Open dialog box. File Open filters make it easy to display a group of files: the
name of the group can be selected from the drop-down list of file types in the File Open

Command Reference (in menu order) 315

Copyright © 1991-2010 by Boxer Software

dialog box.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined filters:

A file filter definition consists of two parts: the filter name and the wildcard file
specification. The filter name contains the text string which will appear in the
drop-down list of file types in the File Open dialog box. The wildcard file specification is
the expression which is used to match the class of files being defined by the filter.

The filter name is separated from the wildcard file specification with the vertical rule (|)

character. When more than one wildcard expression is used, the semi-colon (;) is used
to separate the expressions.

File Open preferred extensions
This option can be used to configure Boxer's list of preferred file extensions. The list of
preferred file extensions is consulted whenever Boxer is asked to open a filename which
lacks a file extension.

Before opening a file each extension in the list is added to the supplied filename to see
if a file by that name already exists. If so, the file is opened using the extension from
the list. If no matching files can be found, the file is opened using the name as
originally supplied. In a case where multiple matches might be found, the first
matching extension will be used.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined extensions:

Boxer Text Editor316

Copyright © 1991-2010 by Boxer Software

The list can be edited by entering desired extensions into the list, one-per-line. The
period (.) should not be included in the extension.

You may need to open a new file named TEST when TXT is a preferred extension,

and the file TEST.TXT already exists. In this case, simply specify TEST., with the

trailing period, in order to defeat the Preferred File Extension feature.

Open Header File extensions
This option can be used to configure the list of header file extension pairs which are
used by the Open Header File command.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined pairs:

Command Reference (in menu order) 317

Copyright © 1991-2010 by Boxer Software

Extension pairs are listed one-per-line, with the equal sign (=) being used to separate

the extensions. In a case where a file extension has multiple mates, the mate which
occurs first in the list will be given priority when attempting to locate the file to be
opened.

Open File in Browser extensions
This option can be used to configure the list of file extensions which is used by the
Open File in Browser command to determine whether a file is eligible to be opened in an
Internet browser.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined extensions:

Boxer Text Editor318

Copyright © 1991-2010 by Boxer Software

Eligible file extensions are listed one per line. As the HTML standard changes, and as
Internet browsers evolve, additional file types will likely become eligible for inclusion in
the list.

File Save options

Strip trailing blanks when saving a file
Use this option to request that trailing Spaces and/or Tabs be removed from the ends of
lines as a file is saved to disk. See also the option titled Strip trailing blanks when
loading a file.

Add Ctrl-Z character at end-of-file
This option can be used to request that a Ctrl-Z character--ASCII 26, also known as the
end-of-file (EOF) character--be added to a file when saving. Some older programs may
require that a file be terminated in this way, but very few modern software packages
do.

This option is only applicable when the File Encoding format is set to ASCII; see File
Properties for details.

File Save performs Save Selection As, when text is selected
When this option is active and a text selection is present, the Save command will
perform the function of the Save Selection As command, saving the selection to a
specified disk file rather than saving the file itself.

Perform Save All upon loss of focus
This option causes Boxer to perform the Save All command whenever focus shifts to
another application.

Command Reference (in menu order) 319

Copyright © 1991-2010 by Boxer Software

Startup options

Always start with a new file (when no files are named)
Use this option if you prefer that Boxer open a new, untitled file whenever it is launched
and another filename is not supplied. This option is not available when the Restore
previous sessions option is active.

Restore previous sessions (when no files are named)
Use this option if you prefer that Boxer restore the previous edit session whenever it is
launched and another filename is not supplied. The restored session will maintain the
sizes and positions of all windows, the cursor position in each file, split windows status,
and much more. This option is not available when the Always start with a new file
option is active.

Add newly named files to a restored session
Use this option if you prefer that newly named files be added to the edit session which
is being restored. This option is not available unless the Restore previous sessions
option is also active.

Miscellaneous

Number of recent files on the File Menu (0-24)
Use this option to control the number of files which are displayed in the Recent Files
list. Up to 24 files can be displayed in this list.

When using Boxer on screens with 800 x 600 resolution it will be necessary to set
the number of recent files to four (4) or fewer to prevent the File menu from
exceeding the screen height.

Add edited files to 'My Documents' on the Windows Start menu
Use this option to control whether or not files edited by Boxer are added to the
Documents menu available from the Windows Start menu. The Documents menu is
preferred by some users as a means to recall previously edited files.

Successful use of this technique requires that the file extension of the file being recalled
is 'owned' by the application which last opened the file. This type of 'ownership' is
achieved by the use of file associations. By its very nature, a text editor is likely to be
called upon to edit many different file types (file extensions). It is probably not
desirable for a text editor to own the file associations for all the file types it will be
asked to edit. Therefore, using the Document menu to launch Boxer will be successful
only for file types with which Boxer has been associated.

Disallow reads by other programs
Use this option to request that files which are opened for editing within Boxer be
'locked' so that they cannot be read by other programs. Use of this option will prevent
a file from being viewed passively by another program so long as the file is open within
Boxer.

Disallow writes by other programs
Use this option to request that files which are opened for editing within Boxer be
'locked' so that they cannot be written to by other programs. Use of this option will

Boxer Text Editor320

Copyright © 1991-2010 by Boxer Software

prevent a file from being modified by another program so long as the file is open within
Boxer.

A file which is being edited within Boxer could be modified by another program or
process. If this condition occurs it will be reported by Boxer as soon as Boxer
regains focus, and an option will be provided to reload the modified file from disk.
An option to disable this option appears on the Configure | Preferences | Messages
option page.

File I/O dialogs preserve current directory, ignore prior travel
This option can be used to prevent the various File I/O dialogs (Open, Save, etc.) from
changing the record of the current directory due to any directory travel performed from
within those dialogs. Ordinarily, the directory last visited within a dialog box is
recorded so that it can be used when the dialog next becomes active. This option
ensures that directory travel within a dialog box does not change the record of the
current directory.

4.9.7 Preferences - Backups

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Backups page of the Configure Preferences dialog box contains options which deal
with file backups and the Autosave feature:

Command Reference (in menu order) 321

Copyright © 1991-2010 by Boxer Software

File backup Options

Create a backup file when first saving a file
Use this option to request that a backup file be created the first time a file is saved.
Subsequent Save operations will not disturb the backup file. If this option is
unchecked, all other backup options are disabled.

Overwrite backup file on each file save
Use this option to request that a new backup file be written every time File | Save is
performed. When this option is not selected, the backup file will be written the first
time a file is saved, but not thereafter.

Extension to use for backups
Use this option to specify the extension which is to be used for file backups. The
extension can be 1 to 3 characters long.

Add backup extension to filename (name.ext.bak)
Use this option if you prefer that the backup file extension be added to the filename
without removing any existing file extension.

Replace extension with backup extension (name.bak)
Use this option if you prefer that the backup file extension replace any existing file
extension.

Boxer Text Editor322

Copyright © 1991-2010 by Boxer Software

Location of backup files

Place backup file in the directory of the file being edited
Use this option to specify that backup files be placed in the same directory as the file
being edited. The ellipsis (...) button can be used to browse for a directory using a
standard dialog.

Place all backup files in Boxer's "Backup" directory
Use this option to specify that all backup files be placed in the "Backup" directory
(folder) which appears in Boxer's home (installation) directory.

Place all backup files in the directory named below
Use this option to specify that all backup files be placed in the directory name which is
provided in the associated edit box.

If you frequently edit files of the same name which exist in different directories, you
may wish to choose that backup files be kept in the directory of the file being
edited. Otherwise, if a common backup directory is used, it's possible that a backup
file could be overwritten when later editing a file of the same name from within a
different directory. For example, when editing the files c:\east\sales.txt and

c:\west\sales.txt, the file which is saved second would be the one for which

the backup file c:\boxer\Backup\sales.txt.bak applies.

Autosave

Perform Autosave
This option can be used to indicate that edited files be saved automatically after the
supplied time interval has elapsed.

When editing a new, untitled file (see File | New), the Autosave feature will be not
be active until the file is saved for the first time, and a filename has been assigned.

 When using Autosave on a file that resides on a USB flash drive, it's worth
considering the lifetime write limitation of the device. Some USB drives advertise
that their lifetime write limitation runs between 10,000 and 1,000,000 uses, so if
Autosave were used excessively, it could diminish the life of a USB drive.

Seconds to wait before saving

Use this option to specify the number of seconds after which Autosave should be
performed. Caution: using a value which is too small could interfere with data entry
when a very large file is being edited, or on very slow PCs.

4.9.8 Preferences - Messages

Menu: Configure > Preferences

Default Shortcut Key: none

Command Reference (in menu order) 323

Copyright © 1991-2010 by Boxer Software

Macro function: ConfigurePreferences()

The Messages page of the Configure Preferences dialog box contains options which
relate warning messages and sounds.

Message Options

Warn before loading binary files
Use this option if you prefer to be warned before a binary file is loaded. Binary files
contain the Null character (value 0) and cannot be reliably edited with Boxer. You may
wish to use the Open Hex Mode command to view such files in a hex format viewing
mode. Boxer will automatically use Open Hex Mode when asked to open files with the
extension .COM, .EXE or .DLL.

Warn when an edited file is changed by another program
Use this option if you would like to be notified by Boxer when one of the files you are
editing is modified by another program or process. If this option is checked, a dialog
box will appear offering a chance to reload the file from disk. If this option is
unchecked, notice will NOT be provided when an edited file is modified by another
process, and the file will NOT be reloaded..

Proceed carefully in a situation such as this: changes you have made to the file may

Boxer Text Editor324

Copyright © 1991-2010 by Boxer Software

be lost when you reload, or saving your file again could overwrite changes which
were made by another user.

Auto-reload when an edited file is changed by another program
Use this option if you would like Boxer to automatically reload a file (without issuing a
warning) when it senses that it has been changed by another program or process.

Consider carefully the effect of this option: if changes have been made to a file
within Boxer and have not been saved, they will be lost if the file is reloaded.

Warn on exit if size of text on clipboard exceeds n KB
This option is used to present a warning on exit when the size of the text on the
clipboard exceeds the designated threshold. When excessive amounts of text are left
on the clipboard, system performance can be impacted.

Confirm before opening non-existent files
This option controls how Boxer reacts when asked to open a file which does not yet
exist. If this option is active, a dialog box will be presented to confirm that a new file is
to be created. An option is provided to correct a typing error, in case that was the
cause for the file not being found. If this option is inactive, Boxer will create a new file
using the name provided.

Report failed searches in a pop-up message box
This option controls how Boxer will report a failed search. If this option is active, a
popup dialog box will be used to report the failure. Otherwise a message will appear on
the Status Bar.

Report when search has wrapped around in a pop-up message box
When Find Next or Find Previous are used in wrap around mode, a message appears on
the status bar when the search has wrapped back to the location of the first match.
Use this option if you prefer that this event be reported in a message box instead.

Show splash screen on startup
This option controls whether or not Boxer's splash screen graphic will be displayed
on-screen while the program initializes. Display of the splash screen graphic can also
be controlled using the -G command line option flag.

Halt and display a message when a macro tries to execute a disabled command
This option is intended for advanced users. By default, Boxer will prevent macro
functions from being executed when the underlying command being run is disabled
within the menus. Commands are disabled when the environment is unsuitable for
them to be run. Advanced users may wish to override this behavior, if they think they
have reason to disregard Boxer's disabling of a given command.

Sound Options

Play sounds for editor error messages
Use of this option causes the system sound for Default Beep to be played for editor
errors.

Play sounds for system sound events

Command Reference (in menu order) 325

Copyright © 1991-2010 by Boxer Software

Use of this option causes the system sounds for Minimize, Maximize, Restore Up and
Restore Down to be played when these events occur.

The sounds which are used for various system sounds can be defined from Start
Menu | Settings | Control Panel | Sounds.

Play bell sound at the start of a round of editing
Use of this option causes Boxer to play its two-bell sound to signal the beginning of a
new round of editing.

Play bell sound at the end of a round of editing
Use of this option causes Boxer to play its one-bell sound to signal the end of a round of
editing.

If your computer is not equipped with a sound card, Boxer will not be able to play
the sounds described above.

4.9.9 Preferences - Other

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Other page of the Configure Preferences dialog box contains options which do not
logically group with its other pages. Among these are startup options, Spell Checker
options and miscellaneous options:

Boxer Text Editor326

Copyright © 1991-2010 by Boxer Software

Other options

Allow multiple instances of Boxer
Use this option to control whether or not multiple instances of Boxer are allowed to run
concurrently. When multiple instances are allowed, a new Boxer session will be
launched each time the program is run. When multiple instances are disallowed, each
would-be instance of Boxer will pass the files named for editing to the session which is
already running. If files are not named for editing the existing session will simply
become current.

Caution: when multiple instances of Boxer are run concurrently confusion can arise
regarding the editor's configuration settings. Boxer writes its configuration
information to the Windows registry each time it exits. When multiple instances of
Boxer are run the configuration settings from the first sessions that are exited will
be overwritten by any sessions which exit later on. In essence, the configuration
settings from the last exited Boxer session will be the settings which are ultimately
recorded in the registry.

Enable support for Intellimouse
Use this option to enable support for the Microsoft Intellimouse device. The
Intellimouse has a mousewheel which permits a document to be scrolled without the
use of the Vertical Scroll Bar. The mousewheel also doubles as a center mouse button,
and can therefore be used to perform columnar text selections.

Command Reference (in menu order) 327

Copyright © 1991-2010 by Boxer Software

Minimize Boxer when closing last file
When this option is active, Boxer will minimize itself to the task bar when its last file is
closed. Click on the Boxer button in the task bar to restore the application.

Find Differing Lines will ignore spaces
Use this option to force the Find Differing Lines command to ignore leading and trailing
Spaces and Tabs when comparing lines. Lines which differ only in their indent, or due
to trailing whitespace, will be considered equal.

Find Differing Lines will search the current line for additional differences
Use this option to instruct the Find Differing Lines command to continue search along
the current line for differences after the first difference has been reported. A manual
re-syncing of the text cursor position may be required.

Word/Sentence/Title case commands will convert text to lowercase before
operation
When applying Word, Sentence or Title case to a text selection, the question arises
whether or not the text should first be forced to lowercase before the operation is
performed. When this checkbox is checked, the case of the selected text will be
adjusted before applying the requested conversion. You may wish to review the text
after conversion to ensure that proper nouns, acronyms, and other capitalized words
have been properly converted.

Calendar week starts on
Use this option to designate the day of week which should be used to start a week in
the pop-up Calendar. The default setting is Sunday, but users in some countries will
prefer a different setting.

Preferences Storage

Save preferences to an INI file in Boxer's data folder
When this option is selected, Boxer will save its preferences to a disk-based file named

BOXER.INI which is located in its data folder. For more information, see Portable

Editing.

Save preferences to the Windows registry
When this option is selected, Boxer will save its preferences to the Windows registry.
The location used is:

HKEY_CURRENT_USER/Software/Boxer Software/Boxer Text Editor
NN

where 'NN' represents the current major version number.

Spell Checker

Ignore words in all UPPERCASE
Use this option to indicate that the Spell Checker should ignore words which appear in
uppercase during its operation. This helps prevent false reports when spell checking
files which contain acronyms or filenames.

Boxer Text Editor328

Copyright © 1991-2010 by Boxer Software

Ignore Email and URL addresses
Use this option to indicate that the Spell Checker should ignore email and URL
addresses during its operation.

Recheck word before replacing
Use of this option causes the Spell Checker to recheck a replacement word before
making the change. This provides a double check when you elect to type a replacement
word rather than using one from the supplied list.

Move dialog to prevent overlap
Use this option to request that the Spell Checker position its dialog box so as not to
obscure the context of the suspect word which is being reported. The position of the
mouse cursor is moved along with the dialog, so you won't need to 'chase' the dialog
around the screen throughout a spell checking session.

Check Repeated Words
Use this option to request that the Spell Checker watch for repeated words, such as 'the
'the'. When an offending sequence is found, an option will be provided to delete the
duplicated word.

Check Mixed Case Words
Use this option to request that the Spell Checker check the spelling of mixed case
words. Mixed case words can occur due to a typographical error, or when an acronym
(GmbH) or company name (SoftSeek) is being used.

Due to a limitation in the way the dictionary vendor stores entries in its user
dictionary, it is not possible to add a legitimate mixed case word (such as eBay) so
that future alerts for that word will not occur.

Put suspect word in Change box
Use this option if you prefer that the suspect word be placed in the Change edit box.

Put suggested word in Change box
Use this option if you prefer that the suggested correction be placed in the Change edit

box.

4.9.10 Colors

Menu: Configure > Colors

Default Shortcut Key: none

Macro function: ConfigureColors()

The Configure Colors command allows you to customize the colors that are used to
display and print text files. Buttons are provided for the standard 16 colors. Use the
Custom button to select from a palette of 16 million colors.

Command Reference (in menu order) 329

Copyright © 1991-2010 by Boxer Software

Configure
The Configure Colors dialog box operates in three different modes: Screen Colors, Color
Syntax Printing, and Monochrome Syntax Printing. The active mode is selected from
the Configure drop-down list at the upper left of the dialog box. Screen Colors mode
allows you to set the colors used to display text files on-screen. Color Syntax Printing
mode is used to set the colors used for printing program files on color printers.
Monochrome Syntax Printing mode is used to set the colors used for printing program
files on non-color printers.

Scheme
A set of pre-defined color schemes has been provided to speed the process of color
configuration. You can start with the pre-defined scheme that is closest to your liking,
and then make other changes as desired. Once a change has been made to a
pre-defined color scheme you will be asked where to save the custom layout; four
custom positions are available.

Maintain a single background color
This option can be used to ensure that all elements will use a single background color.
When selected, Boxer ensures that all elements are updated when the background color
is changed. Turn this option off if you would like to create a color scheme in which some
elements use different background colors.

Disallow invisible color combinations
This option can be used to prevent any color selection which would cause the
foreground and background colors of one or more elements to be the same.

Boxer Text Editor330

Copyright © 1991-2010 by Boxer Software

System selected text colors
This button can be used to quickly apply the default text selection colors of the
operating system to the current color scheme.

This option will be of particular use to blind users who are using Boxer with a screen
reader such as JAWS. Screen reader software sometimes requires that the text
selection colors used by an application match those that are used system wide.

HTML Color Code
As a convenience, the current color is displayed in HTML Color Code format to make it
easy to duplicate a color used in Boxer in your HTML code. The HTML Color Chart
command can also be used for selecting colors and getting an HTML Color Code value.

The process of changing colors is quite simple, and includes three steps:

1. Click to select an element
Click with the left mouse button in the miniature screen display on the element which is
to be changed. You can click on the text of an element to select its foreground
element, or on the background of an element to select its background element. After
clicking, you'll see that the Elements by name listbox is updated to reflect the selected
element. You'll also see that the color and font style buttons will be displayed in a
depressed state to reflect the current settings for the selected element. If the element
uses a color other than those appearing on the standard buttons, the Custom button
will appear depressed. Some elements, such as the Right Margin Vertical Rule, cannot
be easily selected by mouse in the miniature screen display. These elements can be
selected from the Elements by name listbox instead.

2. Click to select a color
Click on the new color for the selected element. The miniature screen display will be
updated to reflect the new color. When configuring for Monochrome Syntax Printing,
the available colors will be reduced to those which can be achieved on non-color
printers.

3. Click to select font style(s)
Click on one or more font styles for the selected element. The miniature screen display
will be updated to reflect the new style. To remove a font style, click again on its
button to clear the style.

When configuring screen colors, the Apply button can be used to update the screen
below the dialog box to reflect the changes made.

4.9.11 Screen Font

Menu: Configure > Screen Font

Default Shortcut Key: none

Macro function: ConfigureScreenFont()

Command Reference (in menu order) 331

Copyright © 1991-2010 by Boxer Software

The Screen Font command is used to select the font that is used to display edited files
on-screen. The standard Windows font dialog is presented for selecting the screen font:

Boxer requires that fixed width fonts be used, so the Screen Font dialog box does
not display proportionally spaced fonts. This is required, in part, to ensure that
columnar selections can be highlighted neatly in rectangular blocks, and so that the
Column Ruler can be used. These features would not be possible if the use of
proportional fonts were permitted.

The Font listbox at the left of the dialog displays the fixed width fonts which are
available for selection.

The Font Style listbox display the styles which are available for the selected font.
Typically these are Regular, Italic, Bold and Bold Italic, although some fonts may not
offer all styles.

The Size listbox displays the sizes which are available for the selected font.

The Script drop-down list displays the various character mappings which are available
for the selected font.

The color that will be used to display the font selected is controlled via the Configure
Colors command.

Tips and Notes

You may have need to display files which were created using a DOS program and

Boxer Text Editor332

Copyright © 1991-2010 by Boxer Software

which contain characters from the upper half of the ASCII character set. To display
these files properly select a font which offers an OEM/DOS script style. One such
font that is available on most systems is the Terminal font.

At the time of this writing, the Internet site
http://keithdevens.com/wiki/ProgrammerFonts contained good information about
fixed width fonts, along with links to several screen fonts which could be
downloaded free of charge. The Dina Programming Font is a very nice, free, fixed
width font.

Changing the Font Style selection from this dialog will cause the font style of 'Normal'
text to be changed to the selected style. It will not alter the font styles of other screen
syntax elements such as Comments, Reserved Words, Strings, etc. The Configure
Colors command can be used to select the font style(s) for these elements, as well as
for Normal text. For maximum flexibility it may be advisable to let the font style
remain as 'Regular' in the Screen Font dialog and select the font styles to be used for
Color Syntax Highlighting from the Configure | Colors dialog.

The Screen Font is not used to print files; see the Printer Font command to select a
font for that purpose.

When selecting a True Type font, the standard Windows font dialog box may display
a message at the bottom indicating that the selected font will be used for both
screen display and printing. This message does not apply to the use of fonts within
Boxer, since Boxer permits the Screen Font and Printer Font to be selected
separately. The message intends to convey the idea that the font is capable of
being used for both the screen and the printer.

4.9.12 Printer Font

Menu: Configure > Printer Font

Default Shortcut Key: none

Macro function: ConfigurePrinterFont()

The Printer Font command is used to select the font that is used to print files from
within Boxer. The standard Windows font dialog is presented for selecting the screen
font:

http://keithdevens.com/wiki/ProgrammerFonts
http://www.donationcoder.com/Software/Jibz/Dina/index.html

Command Reference (in menu order) 333

Copyright © 1991-2010 by Boxer Software

Boxer requires that fixed width fonts be used, so the Printer Font dialog box does
not display proportionally spaced fonts. This is required, in part, to ensure that
columnar selections can be highlighted neatly in rectangular blocks, and so that the
Column Ruler can be used. These features would not be possible if the use of
proportional fonts were permitted.

The Font listbox at the left of the dialog displays the fixed width fonts which are
available for selection.

The Font Style listbox display the styles which are available for the selected font.
Typically these are Regular, Italic, Bold and Bold Italic, although some fonts may not
offer all styles.

The Size listbox displays the sizes which are available for the selected font.

The Script drop-down list displays the various character mappings which are available
for the selected font.

The colors which are used when using Color Syntax Printing are controlled via the
Configure Colors command.

When selecting a True Type font, the standard Windows font dialog box may display
a message at the bottom indicating that the selected font will be used for both
screen display and printing. This message does not apply to the use of fonts within
Boxer, since Boxer permits the Screen Font and Printer Font to be selected
separately. The message intends to convey the idea that the font is capable of
being used for both the screen and the printer.

Boxer Text Editor334

Copyright © 1991-2010 by Boxer Software

4.9.13 Keyboard

Menu: Configure > Keyboard

Default Shortcut Key: none

Macro function: ConfigureKeyboard()

The Configure Keyboard command provides the ability to assign key sequences to any
of Boxer's commands. With over 450 editor commands, and over 400 key sequences,
it's easy to think that keyboard configuration might be a complex undertaking. Not so.
Boxer's Configure Keyboard dialog automates the process by providing lists from which
Commands, Assigned keys and Unassigned keys can be selected, and by allowing key
assignments to be typed directly from the keyboard.

A thorough coverage of the features of the Configure Keyboard dialog box is presented
further below. In the paragraphs that immediately follow, a sample configuration
session is presented which illustrates how several common changes can be made to the
default keyboard layout.

Goal
Create a new keyboard layout which duplicates the default layout, but with a few
selected changes.

Command Reference (in menu order) 335

Copyright © 1991-2010 by Boxer Software

Discussion
Rather than making changes to a pre-defined keyboard layout, it's always advisable to
create a new layout with the Copy or New button. Future upgrades to Boxer will
overwrite the default keyboard layout BOXERWIN.KBD and other pre-defined layouts.

Custom changes should not be made to these files. The New button will create a nearly
empty layout, but that's not what we want now. Instead, click Copy to create a copy of
the active keyboard layout, and then click Rename to provide the new layout with a
name of your choice. You might choose to simply use your first name.

Change One
The Auto-Number command has no key assignment in the default keyboard layout, and
you'd like it to have one. Click on the Auto-Number entry in the Commands listbox.
The Assigned keys listbox is updated to show 'No Assignment'. Find a suitable key
sequence in the Unassigned keys listbox, and click on it. The name of the key
sequence selected appears in the edit box beneath the Commands listbox. Click the
Change button to change the assignment for Auto-Number from 'No Assignment' to the
selected key sequence.

Change Two
The Align Right command is assigned to Ctrl+F9, but you'd like to use that key for
another command instead. Click on the Align Right entry in the Commands listbox.
Click on the Clear button to relieve the command of its key assignment. The Assigned
keys listbox is updated to show 'No Assignment', and the Ctrl+F9 key is added to the
Unassigned keys listbox.

Change Three
The Calculator command is assigned to F11, but you'd like it to also be available using
the Ctrl+F9 sequence, which was just freed by Change Two above. Click on the
Calculator entry in the Commands listbox. Its current assignment of F11 is displayed in
the Assigned keys listbox. Click in the edit box beneath the Commands listbox to give
it focus. Press the Ctrl+F9 key sequence from the keyboard, and watch its name
appear in the edit box. (Whenever you prefer, a key can be pressed in the edit box as
an alternative to locating it in the Unassigned keys listbox.) Finally, click the Add
button to create this additional assignment for the Calculator command. A duplicate
entry is created for Calculator in the Commands listbox, reflecting the fact that there
are now two distinct key assignments for this command.

Active Layout listbox

The Active Layout listbox displays a list of the available keyboard layouts, and
highlights the active layout. Boxer comes with several pre-defined layouts which can
make Boxer more closely match the key assignments of another editor or word
processor.

If you develop a keyboard layout that matches the key assignments of another popular
program, please consider sending it to us at info@boxersoftware.com so that we can
make it available to other Boxer users. Keyboard layout files are kept in Boxer's data
folder, and are given a .KBD file extension.

New button

mailto:info@boxersoftware.com

Boxer Text Editor336

Copyright © 1991-2010 by Boxer Software

Use the New button to create a new keyboard layout. The new layout will contain only
the most fundamental key assignments, such as Up, Down, Left, Right, etc. The new
layout is created with the name 'New'; use the Rename button to supply the name of
your choice.

Rename button
Use the Rename button to change the name of the selected layout to a name of your
choice.

Copy button
Use the Copy button to make a copy of the active keyboard layout. The new layout will
be given the name 'Copy of', prefixed to the name of the active layout. Use the
Rename button to supply a new name, if desired. Use of the Copy button is
recommended when you will be making a small number of changes to an existing
layout.

Delete button
Use the Delete button to delete the selected keyboard layout. A confirmation is
required before the layout will be deleted. Once a layout is deleted it cannot be
recovered, even if Cancel is later selected.

Make List button
The Make List button creates a file in a new editor window which lists all of the
command key assignments in the selected layout. This file could be printed to create a
command chart, or saved to disk for later reference.

Commands listbox

The Command listbox displays an alphabetical list of all commands which can be
reassigned. Clicking on an entry in the Commands listbox displays its current
assignment in the Assigned keys listbox. When the listbox has focus, pressing the first
letter of a command will jump the selection bar to that command.

When a command has multiple key assignments, an entry will appear in the Commands
listbox for each such assignment.

The number of commands displayed in the listbox is shown in parentheses at the top of
the list.

Assigned Keys listbox

The Assigned Keys listbox displays an alphabetical list of all key sequences which are
currently in use. Clicking on an entry in the Assigned Keys listbox displays the
associated command in the Commands listbox. The 'No Assignment' entry does not
normally map to a single command, and therefore will not display its associations.

When the listbox has focus, pressing the first letter of a command will jump the
selection bar to that command.

The number of key sequences displayed in the listbox is shown in parentheses at the
top of the list.

Command Reference (in menu order) 337

Copyright © 1991-2010 by Boxer Software

Type new key in this box

This is the edit box where a new key sequence is entered. The edit box can be filled by
clicking on an available key sequence from the Unassigned Keys listbox, or by pressing
a key sequence from the keyboard while the edit box has focus. When a key sequence
is entered, its disposition is reported in a message just above the edit box. It might be
reported as available, not available, in use, or as being used by the System.

Change button
The Change button is used to change the key assignment for the currently selected
command to the key sequence displayed in the edit box. The Change button will
remain disabled until a key which is eligible for assignment has been entered into the
edit box.

Force button
The Force button is used to change the key assignment for the currently selected
command and simultaneously remove its assignment from another command.

Add button
The Add button is used to create an additional assignment for the selected command.
The Add button will remain disabled until a key which is eligible for assignment has
been entered into the edit box. There is no limit to the number of duplicate key
assignments that a command may have.

Clear button
The Clear button is used to release a key assignment from the currently selected
command. The Clear button will be disabled when the current command has no
assignment.

Disable hot letters in main menu bar to gain extra keys
This option can be used gain access to the Alt+letter key sequences which would
otherwise be used to activate the main menu entries. When this option is selected the
key sequences Alt+F, Alt+E, Alt+B, etc. become available for assignment to other
commands. When the Configure Keyboard dialog is dismissed, the main menu will be
redrawn without its hot letters underlined.

Alt+letter sequences which are not otherwise assigned will remain assigned to their
respective menus. For example: if this option is selected, but Alt+F is not otherwise
assigned, it will remain as the key assignment for dropping the File menu.

Regardless of the state of this option, the main menu hot letters will remain functional
when the main menu has been activated by tapping the Alt key.

When loading a keyboard layout file, Boxer will look for key assignments which
conflict with the main menu hot letters in order to determine if this option needs to
be checked. If you select this option, but fail to assign any of the Alt+letter
sequences to other commands, Boxer will sense this when the layout is next loaded,
and the option will revert to unchecked. Conversely, if you load a layout which
contains one or more key assignments which conflict with the main menu hot
letters, Boxer will force this option to checked.

Boxer Text Editor338

Copyright © 1991-2010 by Boxer Software

Unassigned Keys listbox

The Unassigned Keys listbox displays those key sequences which are available for
assignment. Clicking on a key within this listbox causes the key to be displayed in the
edit box beneath the Commands listbox.

The keys which are to be shown in the listbox can be controlled with various
checkboxes:

Show alphabetic keys
Use this option to include the A-Z keys, in all their various shift states.

Show numeric keys
Use this option to include the 0-9 keys, in all their various shift states.

Show F1 to F12 keys
Use this option to include the F1-F12 keys, in all their various shift states.

Show F13 to F24 keys
Use this option to include the F13-F24 keys, in all their various shift states. Some new
keyboards are now offering these additional functional keys.

Show cursor pad keys
Use this option to include the keys from the cursor motion pad, in all their various shift
states.

Show other keys
Use this option to include keys which do not group into the categories above.

Show multi-shift keys
Use this option to control whether or not key sequences with multiple shifts should
appear in the list.

Notes

You might notice that the controls in this dialog box do not have hot letters, as do
other dialog boxes. This is because the edit box into which key sequences are typed
must be able to receive all possible key sequences without losing focus to another
control.

Assigning a key sequence to run a macro is a two-step process. One step is to make
the desired assignment to the Run Macro n command using the Configure Keyboard
dialog. The other step is ensure that the macro itself is numbered accordingly. See
the Macros topic for further information.

It is not possible to use multi-key sequences, such as Ctrl+K, Ctrl+B in a key
assignment.

When a given command has more than one key assignment it will have multiple

Command Reference (in menu order) 339

Copyright © 1991-2010 by Boxer Software

entries in the Commands listbox. The first assignment that appears in the
Commands listbox is called the primary command assignment. Additional entries
for that command are referred to as secondary command assignments. The key
sequence associated with the primary command assignment is the one which will be
displayed in the main menu next to the command.

When an Alt+Letter sequence is used as a secondary command assignment, you will
likely notice a beep when that key sequence is pressed. The beep occurs because
the Alt+Letter sequence does not map to an underlined hot letter on the main menu
bar, and it does not appear as a shortcut key in any of the main menu entries. The
beep can be silenced by making the Alt+Letter sequence the primary command
assignment, and letting the existing assignment become the secondary assignment.
To do this, the existing primary assignment must be cleared, so the Alt+Letter
assignment becomes the primary assignment. Then, the other assignment can be
added back as the secondary assignment. The only effective difference between a
primary assignment and a secondary assignment is that the primary assignment is
displayed in the main menu.

Because they appear in the main menu, primary command assignments are
available whenever Boxer is running. Secondary command assignments do not
appear in the main menu, and are therefore available only when a child editor
window is open. Since most commands are meant to operate on text, this rarely
poses a problem. But there are instances where trouble can arise. For example:
assume that Ctrl+N is the primary command assignment for the File | New
command, and Shift+Alt+N is its secondary assignment. If all child editor windows
are closed, the Shift+Alt+N assignment will be non-functional. The primary
assignment, Ctrl+N, would need to be used.

The Configure Keyboard dialog recognizes the numeric keypad keys as distinct keys
in all of their shifted and unshifted states. These keys appear in the Unassigned
keys listbox as Keypad 1, Keypad 2, etc.

4.9.14 Auto-Complete - Settings

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Settings tab of the Configure Auto-Complete dialog contains general options that
relate to the Auto-Complete feature.

Boxer Text Editor340

Copyright © 1991-2010 by Boxer Software

Auto-Complete is active
The checkbox is the master on/off switch for the Auto-Complete feature. If this box is
unchecked, all Auto-Complete features and functions will be disabled.

Build the Harvested phrase list by analyzing text in the current file
Use this checkbox to control whether or not the current file will be analyzed to harvest
words for use with the Auto-Complete feature. If harvesting is not performed, the
matching word list will be built from other sources: user-defined phrases, reserved
words, and the master dictionary.

Ignore phrases with fewer than n characters
Use this option to specify the shortest word that should be collected during
harvesting. Auto-Complete is most effective when used to complete longer words,
so there's little benefit to storing very small words when harvesting.

Store all case variations encountered (Boxer, BOXER, boxer...)
Use this checkbox to specify how case variations should be handled during
harvesting. When checked, all different case variations will be collected. When
unchecked, only the first case variation of a given word will be stored.

In addition to spaces, tabs and newlines, treat the following
characters as delimiters when harvesting words and phrases in...

Command Reference (in menu order) 341

Copyright © 1991-2010 by Boxer Software

Normal files
These characters will be treated as word delimiters when harvesting words from
normal files -- that is, from files that do not have a Syntax Highlighting
definition entry.

Program files
These characters will be treated as word delimiters when harvesting words from
program files -- that is, from files that do have a Syntax Highlighting definition
entry.

The Program files delimiter characters control how the Auto-Complete feature
harvests code fragments from the current file. This list of delimiters will
typically have fewer characters in it than the Normal files list of delimiters, so
that longer code fragments can be collected. Regardless of the delimiters
listed here, Auto-Complete will also harvest program files with a more
restrictive delimiter list so that the individual elements of a code fragment
appear on their own. For example, the code fragment

structure_name->variable_name[index_variable] might be

collected in its entirety due to the Program files delimiters that are in use.
Regardless of those delimiters, structure_name, variable_name and

index_variable will be harvested as individual entries as well.

Use words from the Dictionary list as potential expansion phrases
This checkbox controls whether or not dictionary words will be used to build the
matching word list.

Use reserved words for the current file type as potential expansion phrases
This checkbox controls whether or not reserved words from the Syntax Highlighting
information for the current file will be used to build the matching word list.

Add harvested phrases to the user-defined phrase list after successful use
When this option is checked, harvested words will be automatically added to the
User-Defined phrase list after they have been used successfully in a word completion.
In this way, the User-Defined phrase list will become filled with the words that you use
most often, and the Auto-Complete feature will become more tuned to your work style.

Ignore case when matching the typed text to a trigger sequence or phrase
Use this option to indicate whether or not character case should be considered when
comparing typed text to User-Defined trigger sequences and phrases.

Beep after the trigger key has been used to cycle through all matching phrases
This option controls whether or not an audible beep should occur after the Trigger Key
has been used to cycle through all potential matches.

When a delimiter triggers a user-defined phrase, insert the delimiter into the
text as well
This option controls how a delimiter character should be treated when it is used to
trigger a User-Defined phrase.

Set Trigger Key

Boxer Text Editor342

Copyright © 1991-2010 by Boxer Software

Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

4.9.15 Auto-Complete - Popup List

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Popup List tab of the Configure Auto-Complete dialog contains options that relate to
the presentation of the popup list of matching words.

Display a popup list of matching words/phrases as text is typed
Use this checkbox to indicate whether or not the popup list box should appear while
text is being typed. When disabled, the popup list can still be displayed using the
Auto-Complete List command.

Command Reference (in menu order) 343

Copyright © 1991-2010 by Boxer Software

Don't show popup list until at least n characters have been typed
Use this option if you prefer that the display of the list be determined by the
number of characters that have been typed. When this option is used, the popup
list will appear as soon as 'n' characters have been typed, provided there are
matches available.

Don't show popup list until n or fewer matching phrases exist
Use this option if you prefer that the popup list not be shown until the number of
matches falls below a certain threshold. When this option is used, display of the
popup list will be suppressed until enough typing has occurred to narrow the list to a
given number of matching words.

Number of lines displayed in popup list
This option controls the number of visible entries in the popup list -- ie, the height
of the list.

Maximum number of items in popup list
This option controls the maximum number of items that will appear in the list. If
this values exceed the number of lines, a vertical scroll bar will be added to the list.

Don't show suggestions with fewer than n characters
Use this option to specify the shortest word that should appear in the popup list.

Whenever possible, position the popup list above/below the current line
Use this option to specify where the popup list will appear in relation to the current
line. When the current line is near screen top or screen bottom, the list may need
to be moved to keep it on-screen.

Display hot numbers to the left of the first nine entries
This option is used to control the display and recognition of hot numbers within the
popup-list.

Display the "Configure..." quick link at the bottom of the popup list
This option is used to control the display of the hot link at the bottom of the list.

Set Popup List Key
Use this button to change the key used to force display of the popup list. See the
Auto-Complete List command for full details.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

4.9.16 Auto-Complete - User-Defined

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

Boxer Text Editor344

Copyright © 1991-2010 by Boxer Software

The User-Defined tab of the Configure Auto-Complete dialog allows words and phrases
to be defined for use with the Auto-Complete feature.

Discussion

One of the most powerful elements of Boxer's Auto-Complete function is the ability to
define words and phrases which will expand automatically, after a delimiter character is
typed, or when the Trigger Key is typed. The phrases in the dialog pictured above
provide a good sampling of the types of assignments that are possible.

Three types of user-defined phrases are available:

· Instant - these phrases will be auto-inserted the instant the sequence string is typed.
In the sample phrase set, typing 'htt' will cause the string 'http://www.' to be

inserted.

· Trigger - these phrases will be inserted only when the sequence string is typed
followed by the Trigger Key. In the sample phrase set, if 'eula' is typed, and the

Trigger Key is typed, 'end user license agreement' will be inserted.

Command Reference (in menu order) 345

Copyright © 1991-2010 by Boxer Software

· Delimiter - these phrases will be auto-inserted only when the sequence string is
followed by a delimiter character. In the sample phrase set, typing 'teh' followed

by (say) space will cause 'the' to be inserted -- an auto-correction for mistyping

'the'.

These three activation styles provide both utility and flexibility. Some phrases are best
defined as Instant, while others are naturally more suitable to being Trigger or
Delimiter style phrases.

You might want to invent your own conventions for defining phrases. By using an
obscure lead-in or trailing character in the sequence string, virtually all phrases can
be defined as Instant. For example, if the addr sequence string had been defined

instead as ~addr, its activation type could have been Instant since there would be

almost no chance of ~addr being typed in the course of normal work. Likewise,

use addr~ as the sequence string effectively makes ~ the new Trigger Key.

New
Use the New button to create a new User-Defined phrase. The following dialog will

appear:

If the phrase will be triggered by a text string, enter the sequence string in the upper
edit box. Enter the phrase itself in the Phrase memo box. Multi-line expansion
phrases are allowed; press Enter to being a new line in the phrase. Finally, select the
type of activation desired using the radiobuttons at the bottom of the dialog.

Expansion Codes
To define a phrase that includes expansion codes, click the Codes button to expose the

Boxer Text Editor346

Copyright © 1991-2010 by Boxer Software

list of expansion codes:

Expansion codes will be expanded when the phrase is inserted to reflect their meaning.
A variety of codes for time, date and various filename functions are available.

Edit
Use the Edit button to edit the settings for the selected phrase.

Delete
Use the Delete button to delete the selected phrase.

Delete All
Use the Delete All button to erase all user-defined phrases. A confirmation will be
required before the operation is performed.

Load Samples
The Load Samples button will add a small collection of sample phrases to the list of
user-defined phrases. Any phrases that are already present in the list will not be
disturbed.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

4.9.17 Auto-Complete - Harvested

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

Command Reference (in menu order) 347

Copyright © 1991-2010 by Boxer Software

The Harvested tab of the Configure Auto-Complete dialog displays the words that have
been harvested from the current document.

If the Harvested word list is large, the dialog will be displayed initially with an empty
list. Use the Show option at the lower right to select the starting letter of the words
you would like to view.

The Harvested word list is a temporary and transient word list. It is built on-the-fly by
analyzing the current file. When an edit session ends, the Harvested word list is
deleted. If the Harvested word list contains words that you would like to make
permanent, there are buttons available to move words to other lists. It is not
meaningful to delete a word from the Harvested word list, because it will simply
reappear in the list the next time the file is next analyzed.

Refresh
Use the Refresh button to request that the current file be re-analyzed to build the
harvested word list. This option is useful to check the effect of changes made on the
Settings dialog tab.

Move to User-Defined
Use the User-Defined button to move the selected word to the User-Defined word list.

Boxer Text Editor348

Copyright © 1991-2010 by Boxer Software

The New User-Defined Word dialog will appear so that additional information can be
provided.

Move to Dictionary
Use the Dictionary button to move the selected word to the master Dictionary. This
ensures that the word will subsequently appear in the popup list of matching words,
even if it does not already exist in the current file.

Move to Excluded
Use the Excluded button to move the selected word to the Excluded word list. Words in
the Excluded word list will never appear in the popup list of matching words.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

4.9.18 Auto-Complete - Dictionary

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Dictionary tab of the Configure Auto-Complete dialog can be used to view or edit
the Auto-Complete master word list.

Command Reference (in menu order) 349

Copyright © 1991-2010 by Boxer Software

Initially, the dialog will be displayed with an empty list. Use the Show option at the
lower right to select the starting letter of the words you would like to view.

Edit Dictionary Words in Boxer
Click this button to load the dictionary word list into Boxer for viewing or editing. The
word list is maintain in a simple ASCII text file, so it can be edited directly without
complication. You can add new words, or remove existing words.

The format of the dictionary file is straightforward: one word per line, alphabetically
sorted, case insensitive. You can use the Sort Lines command, if needed to sort the file
after additions have been made.

Dictionaries for other languages are not available at this time, but if you can locate
a large word list for the language of interest, you can use that list to replace the

AC_Words.txt file provided with Boxer.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

Boxer Text Editor350

Copyright © 1991-2010 by Boxer Software

4.9.19 Auto-Complete - Excluded

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Excluded tab of the Configure Auto-Complete dialog can be used to view or edit the
Excluded word list. Words that appear in the Excluded word list will never appear in the
popup list of matching words, even though they might otherwise be eligible to appear
there. If you find that a certain word is being suggested for completion, and you find
its presence in the popup list to be bothersome, simply add that word to the Excluded
word list.

New
Use the New button to add a word to the Excluded word list.

You can use a string of the form abc* to cause all phrases beginning with abc to be

excluded.

Command Reference (in menu order) 351

Copyright © 1991-2010 by Boxer Software

Edit
Use the Edit button to edit an existing word in the list.

Delete
Use the Delete button to delete a word from the list.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

4.9.20 Toolbar

Menu: Configure > Toolbar

Default Shortcut Key: none

Macro function: ConfigureToolbar()

The Configure Toolbar command can be used to add or delete buttons from the toolbar,
and to change the relative position of those buttons. Options are also available to
control the location of the toolbar, whether the buttons are to have text labels, and
several other features related to the toolbar.

Boxer Text Editor352

Copyright © 1991-2010 by Boxer Software

Available commands

The Available commands listbox contains entries for all editor commands that are
eligible for placement on the toolbar. The commands are initially presented in
menu-order, but can be sorted alphabetically by clicking on the Command header at the
top of the list. Click on the Menu header to return the list to menu-order presentation.

To add a new command to the toolbar, select the command in the Available commands
listbox and click the Add button.

If you first select a button in the Current toolbar buttons listbox, you'll be able to
control where a new button is added. Buttons are added below the selected button
in the Current toolbar buttons listbox.

In addition to the editor commands, several special entries can be used to control the
appearance of the toolbar. The half space and full space entries can be used to insert
extra spacing between toolbar buttons. The divider entry can be used to insert a visible
divider. The new row entry can be placed on the toolbar to create an additional row.
All toolbar buttons situated below a new row entry will appear on a new row of the
toolbar.

Command Reference (in menu order) 353

Copyright © 1991-2010 by Boxer Software

Current toolbar buttons

The Current toolbar buttons listbox contains entries for all of the buttons that are
currently on the toolbar. The order of the list controls the order the buttons will appear
on the toolbar. Use the Move Up and Move Down buttons to move a selected button
within the list. To remove a button from the toolbar, select the button and click the
Remove button. The Reset button can be used to restore the toolbar to its most recent
configuration. The Default button can be used to restore the toolbar to its default
configuration.

Button text
This edit box provides control over the text that will appear below a toolbar button,
when that option has been selected. By default, the full name of the command will be
used, but this text can be changed if desired.

Custom icon
This option allows a user-defined icon to be used in place of Boxer's default icon for a
given command. Some users might wish to customize Boxer's look by using special
icons, or assign more meaningful icons to extra commands that have been added to the
toolbar. For example: the Run Macro ## commands all use the same toolbar icon and,
unless new icons were used, would differ only in the text that is assigned to each
button.

Custom icons can be supplied in either icon (.ICO) or bitmap (.BMP) format. For best
results, use an image that matches the size of the icons that are in use. If the custom
image does not match the icon size that's in use, the image will be scaled
automatically. Boxer uses the convention that the color of the pixel in lower left corner
of the image defines the background color. Pixels of this color are treated as invisible,
allowing the image to blend more naturally with the background color of the button on
which it is drawn.

Location

Use the Top, Left, Bottom, Right and Floating radio buttons to control the location of the
toolbar. The location can be easily changed later on by right-clicking on the toolbar, or
by dragging it from its current location.

Button options

Show text labels
Use this option to control whether or not text labels will appear below each toolbar
button. The Font button allows the font and size to be selected from the available fonts
on your system.

Show button tool tips
Use this option to control whether or not tool tips will be displayed when the mouse is
allowed to hover atop a toolbar button.

Show shortcut keys in tips
Use this option to control whether or not a shortcut key will appear within the toolbar
button tool tips.

Boxer Text Editor354

Copyright © 1991-2010 by Boxer Software

Show button borders
Use this option to place a visible border around each toolbar button.

Auto-format buttons when floating toolbar is resized
Use this option to control the formatting of the toolbar when it is displayed in floating
mode. If auto-format is selected, the toolbar will ignore any new row entries within the
toolbar and format itself to fill the size of the toolbar. If auto-format is not selected, a
floating toolbar will wrap to a new row only when a new row entry occurs.

As you experiment with the various toolbar button options, use the Apply button to
preview the toolbar as it is currently configured.

Icon size

Small / Medium / Large / Jumbo
Use these options to control the size of the icons displayed on the toolbar. The natural
size of Boxer's built-in icons is 16 x 16; other icon sizes are achieved by scaling these
icons accordingly. You'll find that the built-in 16 x 16 icons scale smoothly to 32 x 32
and 48 x 48. The 24 x 24 icon size will show imprecision for some icons, and may be
most useful when a set of custom 24 x 24 icons is being assigned.

A small collection of icons have been supplied for inspiration and experimentation.
These icons are from the public domain icon set created by the Tango Desktop Project.

The Jumbo icons setting is very large, and may be useful to visually impaired users.

Due to internal limitations, the largest image that can be loaded from an icon (.ICO)
file is 32 x 32. If you are using the Jumbo icons option, and you don't want your
image to be scaled from 32 x 32 to 48 x 48, use a 48 x 48 bitmap (.BMP) file as the
source image file.

4.9.21 Syntax Highlighting

Menu: Configure > Syntax Highlighting

Default Shortcut Key: none

Macro function: ConfigureSyntaxHighlighting()

The Configure Syntax Highlighting command is used to specify the information needed
by Boxer to perform on-screen Color Syntax Highlighting and Color Syntax Printing and
for its other syntax-related features. Boxer is supplied with pre-defined syntax
information for many popular languages. The Configure Syntax Highlighting command
can be used to edit any of the pre-defined syntax information, or to define the syntax
for new languages.

The dialog box below is used to define syntax information:

http://tango.freedesktop.org

Command Reference (in menu order) 355

Copyright © 1991-2010 by Boxer Software

Boxer determines whether to perform Syntax Highlighting on the current file according
to three factors.

· The extension of the current file must be one for which syntax information has
been defined

· The language must be configured to be 'active' on the Configure Syntax
Highlighting form (see the Syntax Highlighting is active for this language
checkbox)

· Syntax Highlighting must be enabled on the View menu

Languages

New Button
Use the New button to create a Syntax Highlighting entry for a new language. An entry
called New Language will be created which can be changed with the Rename button.
Up to 100 different languages can be defined.

Rename Button
Use the Rename button to change the name of the selected language. A pop-up dialog
box will appear for entering the new name. The name used will not appear anywhere
other than in the list of languages.

Copy Button
Use the Copy button to create a copy of the currently selected language entry. The
name 'Copy of...' will be used and can be changed with the Rename button. The Copy
function can save time when defining a new language which has similar characteristics
to an existing language.

Boxer Text Editor356

Copyright © 1991-2010 by Boxer Software

Import Button
The Import function can be used to import syntax information in the format used by our
BOXER/DOS, BOXER/TKO and BOXER/OS2 products. If you have created custom
syntax information with our other editors, that information can be imported directly by
Boxer for Windows. First isolate the syntax information blocks which are to be imported
by copying them from the DEFAULT.CFG file into a temporary file. Then click the

Import button and specify that file as the name of the file to be imported. Boxer will
read the named file and automatically convert the syntax information into the new
format. Because the old information format did not contain a name field, you will be
prompted during conversion to supply a name for each language as it is imported.

The Import function can also be used to import a syntax information block which has
been extracted from the Syntax.ini file, in which Boxer stores its syntax information.

This procedure may be useful for passing syntax information from PC to PC or for
installing new syntax information files as they become available from Boxer Software.

Delete Button
Use the Delete button to delete the currently selected language. A confirmation is
required before the deletion occurs. If a language is accidentally deleted, you can
recover it by using the Cancel button.

If you simply wish to disable Syntax Highlighting for a particular language, use the
Syntax Highlighting is active for this language checkbox described below.

Delete All Button
Use the Delete All button to delete ALL languages. A confirmation is required before
the deletions will occur. You can recover from an accidental deletion by using the
Cancel button.

USE THIS COMMAND ONLY IF YOU WISH TO DELETE ALL SYNTAX INFORMATION.

If you wish to disable syntax highlighting for all languages, use the Perform Syntax
Highlighting option on the Configure | Preferences | Display options page. That option
is non-destructive.

Parameters

The Parameters listbox contains all of the parameters which can be defined for a given
language. Each of these parameters is discussed below:

File Extension(s)
This parameter is used to designate the file extensions which belong to the language
being defined. The file extensions are named one per line, with a leading period (.).

Be sure to include all file extensions for which highlighting is desired, such as header
files, and include files. If a file type commonly goes by two names, such as .HTM and

.HTML, be sure to include both extensions to guarantee that highlighting will be

performed on all files desired.

To designate that highlighting is to be applied to files without an extension, use a

Command Reference (in menu order) 357

Copyright © 1991-2010 by Boxer Software

lone period (.) on a line.

Reserved Words 1, 2, 3, 4, 5
These parameters are used to list the reserved words (sometimes known as keywords)
which are to be highlighted. Reserved words are entered one word per line. No care
need be taken to preserve an alphabetic sort, since sorting is performed automatically
by Boxer.

If reserved words are to be considered case-sensitive, they should be entered in the
case which is recognized by the language.

Boxer permits up to 5 sets of reserved words to be defined, and each set can be
distinctly colored (see Configure | Colors). Reserved Words 1 might be used for
language keywords, such as for, if, while, loop, etc. Reserved Words 2 might be

used for preprocessor directives such as #include, #define, #ifdef, etc. Reserved

Words 3 might be used for library functions such as strcpy, strlen, strcat, etc.

The Reserved Words 4 and Reserved Words 5 groups provide flexibility for coloring
other classes of words.

The Reserved Words 4 and Reserved Words 5 groups do not have their own sample
text entries in the miniature configuration screen in the Configure | Colors dialog.
To assign colors and styles to these screen elements, select them from the Screen
elements by name listbox.

The wildcard characters '?' and '*' are no longer recognized when defining reserved

words as they were in our earlier products. We found that very few languages need
this feature, while some popular languages (such as Perl) need to use '?' and '*'
within their reserved words.

Reserved Word Symbols
This parameter is used to designate those symbols which are permissible within a
reserved word or user variable, so that Boxer does not mistakenly highlight a phrase
which happens to begin with a reserved word. An example will help clarify:

If 'read' is a reserved word, and you want to ensure that the first four letters of a
variable named 'read_my_data_file' are not mistakenly highlighted as a reserved word,
designate the underscore in the Reserved Word Symbols parameter. This tells Boxer
that the underscore is allowed to appear in a reserved word or user variable, and that it
is not a valid separator.

Alphanumeric characters are automatically permissible within reserved words. Add any
additional characters which require similar treatment, one per line.

Symbol Characters 1, 2
These parameters are used to designate those characters which are to receive Symbol
coloration. Two different sets of symbols are permitted, providing extra flexibility for
color combinations. Designate one symbol per line.

String Delimiters
This parameter is used to designate the character(s) which are used to delimit strings.

Boxer Text Editor358

Copyright © 1991-2010 by Boxer Software

These characters vary from language to language, but are typically the double quote
and/or single quote characters. Designate one symbol per line.

Boxer does not support the highlighting of strings that extend across more than one
line. If you must highlight such strings, and if the language in question uses
opening and closing string delimiters that are unique to one another, then you may
wish to define these sequences as though they were Block Comments. Strings
would then be colorized in Comment color, but multi-line strings would then be
handled.

Literal Characters
This parameter is used to designate the character which is used to remove significance
from an opening or closing String Delimiter character while within a string. Typically
this is the backslash (\) character.

Open Tag
This parameter is used to designate the character which opens a tag for languages such
as HTML, XML and SGML. These languages differ from conventional programming
languages in that all 'code' within the file appears within markup tags, and all text
outside of markup tags is considered to be the text of the document. For all other
conventional programming languages, this parameter should be left blank.

Close Tag
This parameter is used to designate the character which closes a tag for languages such
as HTML, XML and SGML. These languages differ from conventional programming
languages in that all 'code' within the file appears within markup tags, and all text
outside of markup tags is considered the text of the document. For all other
conventional programming languages, this parameter should be left blank.

Open Block Comment
This parameter is used to designate the sequence (or sequences) which are used to
open a multi-line block comment. Place each sequence on its own line.

Close Block Comment
This parameter is used to designate the sequence (or sequences) which are used to
close a multi-line block comment. Place each sequence on its own line.

Block Comment Search
In order to properly handle multi-line comment blocks, Boxer must at times search
backward in the current file to determine if a multi-line comment remains open from a
line which is off-screen. This parameter designates the number of lines which should be
searched during this effort. Higher values will result in better display accuracy when
large block comments are used, but can slow screen display at other times.

End of Line Comment
This parameter is used to the designate the sequence (or sequences) which are used to
open an end-of-line comment. An end-of-line comment persists from the point it is
opened until the end-of-line. Place each End of Line Comment sequence on its own
line.

For each End of Line Comment defined, a corresponding End of Line Comment

Command Reference (in menu order) 359

Copyright © 1991-2010 by Boxer Software

Column must also be defined. See the paragraph immediately below for details.

If an End of Line Comment sequence includes a Space character, you'll find that
comments in your text will not be not be colorized when the View Visible Spaces
option is in use. This occurs because the Space character in the End of Line
Comment sequence does not match the value of the visible space character used on
screen. You can remedy this by adding a duplicate sequence that uses the visible
space character in place of the Space. You can find the value of the visible space
character on the Configure | Preferences | Display dialog page. This character must
be entered into the edit dialog with a special technique; see the Help topic Inserting
Special Character for details. Finally, remember to add the accompanying End of
Line Comment Column parameter to mate with the duplicate End of Line Comment
sequence.

End of Line Comment Column
This parameter is used to designate the column in which an associated End of Line
Comment should be recognized. Some languages require that an End of Line Comment
sequence be recognized only when it appears in a particular column, such as column 1
or column 7.

Enter the required column value, or enter 0 (zero) if the End of Line Comment sequence
is to be recognized in all column positions. When multiple End of Line Comment
sequences have been defined, each sequence must have a corresponding End of Line
Comment Column entry, in the same list position as its mate.

Languages such as Clipper, dBase and FoxPro require that the asterisk (*) be

recognized as an end of line comment when the symbol appears as the first non-blank
character in the line. In other contexts the asterisk must retain its conventional
meaning as the multiply symbol. This logic can be requested in Boxer (for the asterisk
or any other End of Line Comment sequence) by using a value of -1 for the End of Line
Comment Column parameter.

Tab Stops
Use this parameter to designate tab stop settings for files matching the File Extensions
parameter of this language configuration. See the View | Tab Display Size command for
more information about variable width tab stops.

Help File
This parameter can be used to designate an associated Windows help file (.HLP or

.CHM) for the language being defined. Once the help file has been defined for a

language, context-sensitive help for the word beneath the text cursor can be obtained
by issuing the Help command, which is ordinarily assigned to F1. To obtain Boxer's
native Help instead of language-specific help, simply move the text cursor into an open
area of text before requesting Help. The full filepath to the reference document must
be supplied.

This parameter can also be used to designate an HTML-format reference file, or indeed
any type of reference document which the operating system knows how to open based
on its file extension. For example, if you have a Microsoft Word .DOC file or Adobe

Acrobat .PDF file that details the syntax of a language, these too can be named in the

Help File parameter for that language.

Boxer Text Editor360

Copyright © 1991-2010 by Boxer Software

The ability to display context-sensitive help for the word beneath the text cursor is
available only when launching WinHelp (.HLP) and HTML Help (.CHM) files, and not

when .HTML, .PDF, .DOC and other files are used.

Syntax Spell
This parameter is used to control how the Active Spell Checking feature should be
applied to files which are syntax highlighted. A value of 0, 1, 2 or 3 can be used, with
the effect being as follows:

0: Active Spell Checking will not be performed when editing syntax highlighted files
1: Active Spell Checking will be performed only within comments and quoted strings
2: Active Spell Checking will be performed within comments, quoted strings and
'normal' text
3: Active Spell Checking will be performed only on 'normal' text

Reserved Words are case sensitive
Use this option to designate whether the reserved word lists should be treated as
case-sensitive. If this option is checked, a reserved word must match a list entry
exactly in order to be highlighted. If this option is not checked, a reserved word will
match a list entry even when its case is different.

This option should be selected to correspond to the requirements of the language being
defined, so that Boxer can provide accurate visual feedback when a reserved word has
been mistyped.

Syntax Highlighting is active for this language
Use this option to enable or disable highlighting for the current language. This option is
the simplest way to disable syntax highlighting for a single language. One reason to
disable a language would be to cure a file extension conflict with another language.

Use the View | Syntax Highlighting command to quickly disable syntax highlighting
for all languages.

Notes and Tips

In addition to on-screen Syntax Highlighting, the language information defined with
this command is also used for the following commands and features:

· Color Syntax Printing

· Monochrome Syntax Printing

· Syntax Spelling

· Active Spell Checking

· Auto-Complete

· Syntax Matching

· Comment

· Uncomment

If you define syntax information for new languages, or if you make additions or
corrections to the pre-defined languages, please consider sending your information

Command Reference (in menu order) 361

Copyright © 1991-2010 by Boxer Software

to us. This will allow us to keep our information current, and make it available to
other Boxer users. Syntax information can be sent to support@boxersoftware.com.
Thank you in advance for your contributions.

Some users have reported using Syntax Highlighting as a teaching aid for young
readers. One customer told of how she had created a syntax definition in which
common nouns, verbs and adjectives were assigned to three of Boxer's reserved
word classes. Then, when a file with the required file extension was displayed, each
part of speech would be highlighted in its own color. Another user reported creating
a 'language' definition so that headings within a dense parts list would be
highlighted in color. As you can see, the uses for Syntax Highlighting extend far
beyond its utility to programmers.

The highlighting of Java and Active Server code poses special problems for Boxer.
These languages can include HTML markup tags as well as sections of conventional
procedural style code. At times the open angle bracket (<) is a less-than symbol, at

other times it could open an HTML markup tag. A rigorous handling of Java code
would require that a language parser be used, which is not the method by which
Boxer's (general purpose) highlighting is performed. Therefore, Boxer's default
syntax information for Java has been designed to highlight Java program code, but
not to highlight any HTML markup tags which might appear therein.

4.9.22 Text Highlighting

Menu: Configure > Text Highlighting

Default Shortcut Key: none

Macro function: ConfigureTextHighlighting()

The Configure Text Highlighting command allows the user to designate any number of
text strings for on-screen highlighting. This feature might be used to make table
headings stand out, or to add emphasis to any class of words or phrases that might be
desired. The highlighting strings are saved and restored from session to session. The
color used to highlight the designated strings is configurable on the Configure | Colors
dialog. Text Highlighting can be applied to normal text files, or to program files which
are already being Syntax Highlighted. The highlighting of strings can be quickly toggled
on/off by using the View | Text Highlighting command.

mailto:support@boxersoftware.com

Boxer Text Editor362

Copyright © 1991-2010 by Boxer Software

The Find command has an option to highlight all matches of a given search string.

The Apply Highlighting command can be used to quickly add text to the list of
phrases to be highlighted.

4.9.23 Ctags Function Indexing

Menu: Configure > Ctags Function Indexing

Default Shortcut Key: none

Macro function: ConfigureCtagsFunctionIndexing()

The Configure Ctags Function Indexing command provides options that relate to the
Ctags Function Index feature.

Command Reference (in menu order) 363

Copyright © 1991-2010 by Boxer Software

Indexing options

Index all files that are open for editing
When this option is checked, indexing information will be gathered for all files that are
open for editing. If the Auto-index on startup... option is checked (see below), this
indexing will occur automatically shortly after startup, and files that are opened later in
the editing session will be indexed as they are opened. If the Auto-index option is
unchecked, indexing will not occur until and unless the Ctags Function Index command
is issued.

When indexing files that are open for editing, please note that the operation is
performed on the file as it resides on disk, and not on the memory image of the file.
If you have made changes to a file that you want to be reflected in the index, be
sure to save the file before requesting the indexing operation.

Also index the file(s) named below
When this option is checked, files named in the accompanying list will also be indexed,
even if they are not open for editing in the editor. Use this list to name files that you
would always like to be indexed, even when you're not editing these files. The edit box
below the list is used to enter the full filepath of the file to be added. Click the Add
button to add the file to the list. Use the button with the ellipsis (...) to browse for a
file. The Delete key can be used to remove an unwanted entry from the list.
Right-clicking in the file list will display a context menu, which additionally contains
options to edit the selected entry and to delete all entries.

Boxer Text Editor364

Copyright © 1991-2010 by Boxer Software

List display options

Stay on top
When checked, this option causes the Ctags Function Index dialog to remain on top of
other windows.

Show grid lines
This option controls whether or not grid lines will be displayed between rows and
columns in the Ctags Function Index.

Show full filepaths in list
Use this option if you prefer that full filepaths be displayed in the Ctags Function Index.
This option is useful when you're editing files that have the same filename, but reside in
different directories.

Tool tip options

Auto-index on startup so that tool tips can be shown before function list is
opened
Use this option to ensure that popup function prototype tool tips can be displayed even
if the Ctags Function Index command has not been issued.

An indexing operation must be performed before function prototypes and global
variable information is available for display in either the Ctags Function Index
dialog, or in popup tool tips. Depending on the number of files open for editing, the
number of extra files designated for indexing (see above), the size of these files and
the processing speed of your computer, this operation could take anywhere from a
split second to several seconds. On modern PC's, and with source files of modest
size, the indexing process will be almost instantaneous. However, if you're using a
slow PC, or you typically edit many files at once, or your source files are
exceptionally large, you may wish to disable auto-indexing. For most situations, the
added convenience of having popup information available will outweigh the
split-second indexing process.

Display popup tool tips for function and procedures
Use this option to control whether prototypes for functions and procedures will be
displayed in popup tool tips. The information that is displayed will be dependent on the
language being used. For the C programming language, a popup tool tip for a function
might look like this:

Display popup tool tips for various other identifiers
Use this option to control whether informative tool tips will be displayed for global

Command Reference (in menu order) 365

Copyright © 1991-2010 by Boxer Software

variables, structures, members, macros, typedefs and other recognized identifiers. The
information that is displayed for an identifier will be dependent on the language being
used. For example, when hovering over an identifier that has been #defined in the C

programming language, the tool tip might look like this:

Ctags Execution Options

If you have good reason to do so, you can change the path to the Ctags program, its
command line option flags, or the path to the output file it creates. Doing so could
adversely affect Boxer's ability to process tag information, so proceed with caution. You
can use the Restore defaults button to restore the settings to their recommended
values.

Exuberant Ctags supports a comprehensive set of command line option flags. With

Boxer Text Editor366

Copyright © 1991-2010 by Boxer Software

some experimentation, they can even be used to add support for indexing languages
not supported by the program in its as-released form. Full information about the Ctags
program can be found at the Exuberant Ctags website.

When run from removable media, Boxer will automatically recompute the "Path to
Ctags program" and "Path to output tags file" parameters in case the drive letter of
the removable device changed since the last run.

4.9.24 Templates

Menu: Configure > Templates

Default Shortcut Key: none

Macro function: ConfigureTemplates()

The Configure Templates command is used to create or edit Templates: user-defined
text blocks which can be inserted into any text file from a pop-up selection menu. Once
Templates have been defined, they can be inserted with the Templates command.

Templates are often used by programmers for defining the control structures of a
programming language so that they can later be entered more quickly and without the
chance of a typing error. The use of Templates, however, can be extended to facilitate
the entry of any text, such as address blocks, copyright notices, phone numbers, part
numbers, etc.

Template Sets and Templates are defined using the following dialog box:

http://ctags.sourceforge.net

Command Reference (in menu order) 367

Copyright © 1991-2010 by Boxer Software

Templates may consist of one or more lines of text with any formatting or indenting you
choose. In addition, the template can dictate the placement of the text cursor, or how
selected text should be used:

Text Cursor Placement
The Vertical Rule character (|) can be placed within a Template to dictate where the

text cursor should be placed within the Template following its insertion. This allows, for
example, programming code blocks to be defined in which the text cursor is placed
between a pair of parentheses, ready for additional code to be typed.

Operating on Selected Text
The caret or circumflex character (^) can be placed within a Template to indicate that

the template should operate on a text selection. A pair of examples will help to
illustrate the power of this feature:

Example 1:
The template ^| would cause the current text selection to be surrounded with

HTML bold tags. The text cursor would be placed at the right of the closing bold tag.

Example 2:
The following Template:

<html>
<head>
|
</head>
<body>
^
</body>
</html>

could be run after using the Select All Text command to select the entire file. The
effect would be to add the required HTML tags that help make an ordinary text file
ready for viewing on the Internet. The text cursor would be place between the <head>
and </head> tags, awaiting a title for the document.

Unindenting within a Template
If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force (see below).

Template Sets

A Template Set is a collection of Templates. Up to 100 Template Sets can be defined.
Up to 500 Templates can be defined within any Template Set.

New
Use the New button to define a new Template Set. A pop-up dialog will appear into
which the name of the Template Set is entered.

Boxer Text Editor368

Copyright © 1991-2010 by Boxer Software

Rename
Use the Rename button to change the name of an existing Template Set.

Copy
Use the Copy button to make a copy of the currently selected Template Set.

Delete
Use the Delete button to delete the currently selected Template Set. A confirmation is
required before the deletion occurs. If a Template Set is accidentally deleted, you can
recover it by using the Cancel button.

Close Template window after insertion
Use this option to dictate whether or not the Template window should be closed after a
Template is inserted into the edited text. Note that this option is maintained separately
for each Template Set, permitting a different behavior to be defined as needed for
different Template Sets.

Insert as if pasted from a Clipboard
Use this option if you prefer that Templates from the current Template Set be inserted
into the text stream as if they had been pasted from a Clipboard. When this option is
selected, the Autoindent setting will not influence the indent level of template text.
Note that this option is maintained separately for each Template Set, permitting a
different behavior to be defined as needed for different Template Sets.

Insert as if typed from the keyboard
Use this option if you prefer that Templates from the current Template Set be inserted
into the text stream as if they had been typed from the keyboard. When this option is
selected, the Autoindent setting will influence the indent level of template text, if the
Template is inserted on an indented line. Note that this option is maintained separately
for each Template Set, permitting a different behavior to be defined as needed for
different Template Sets.

If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force.

Templates

New
Use the New button to define a new Template. First, a dialog box will be presented to
get the name of the new Template. Then an editing window will appear into which the
Template text can be typed.

Rename
Use the Rename button to change the name of an existing Template.

Edit
Use the Edit button to edit the content of an existing Template.

Command Reference (in menu order) 369

Copyright © 1991-2010 by Boxer Software

Delete
Use the Delete button to delete the currently selected Template. A confirmation is
required before the deletion occurs. If a Template is accidentally deleted, you can
recover it by using the Cancel button.

Boxer's Template information is stored in the file Template.ini, and its format is

that of a simple text file, not a binary file.

If you need to insert one of the special characters (| or ^) into a template in its

textual form, use either || or ^^. If you need to insert the special character ~ into

a template, use \~.

If the need arises to insert a single character which is not easily typed from the
keyboard, consider using the Insert Symbols feature rather than defining a single
character Template. The Insert Symbols feature permits a defined character to be
entered using a single keystroke.

4.9.25 User Tools

Menu: Configure > User Tools

Default Shortcut Key: none

Macro function: ConfigureUserTools()

The Configure User Tools command is used to define and configure up to 24 external
programs which can be run from the User Tools submenu on the Tools menu. A variety
of Tools Macros is available which makes it possible to control the information which is
passed to the program being run.

A common use for a User Tool would be to send the name of the current file to an
external program which processes the file in some way. Examples of such programs
are assemblers, compilers, grammar checkers, parsers, etc.

Boxer Text Editor370

Copyright © 1991-2010 by Boxer Software

Use of the Configure User Tools dialog box is described below:

Details

Name of this tool
Use this edit box to supply the name for the User Tool being defined. The name
supplied will appear in the User Tools submenu when definition is complete. Up to 20
characters can be used.

Description
Use this edit box to supply an optional description for the tool being defined. This
description will appear as a menu hint for the Tools | User Tools menu entry that
corresponds to this tool.

Program, document, folder or URL
Use this edit box to supply the full filepath of the program which is to be run. The
button with the ellipsis (...) can be used to browse for and select the desired program.

If the program selected has an associated icon, it will be displayed to the right of the
Name edit box.

Tools Macros can be placed into the Program field by clicking on the '$' button. For
example, you might use the $SelWord directive to pass the word at the cursor--or a
short text selection--to a web-based resource that performs a search for that term. The
URL:

Command Reference (in menu order) 371

Copyright © 1991-2010 by Boxer Software

 http://www.google.com/search?hl=en&q=$SelWord

would cause the word at the cursor to be sent to Google for search results.

The $Sel and $SelWord directives are processed specially when used in a URL: any
embedded spaces that might result from expansion are automatically converted to
plus signs (+) to create a web-friendly URL.

Working Directory
Use this edit box to supply the working directory for the program being defined. The
working directory will become the current directory for the program being run. The
button with the ellipsis (...) can be used to browse for and select the working

directory.

The $Path Tools Macro (among others) can also be used in the Working Directory
field as a means of specifying the working directory.

Command Line Parameters
The Command Line Parameters edit box is used to supply command line parameters to
the program being defined. These parameters might be option flags required by the
program or any other such information.

Boxer will recognize several different Tools Macros in the Command Line Parameters
edit box to pass information to the defined program. When a macro appears in the
Command Line Parameters field, it will be expanded to its equivalent text at the time
the User Tool is run.

Clicking the ellipsis (...) button to the right of the edit box presents the Tools Macros

list:

Boxer Text Editor372

Copyright © 1991-2010 by Boxer Software

Macros are available to pass the current filepath, filename, extension and other portions
of the filename. The line and column number can also be passed, as can the word
beneath the text cursor. Selected text (or the first line of a multi-line selection) can
also be passed. If needed, two or more macros can be placed in the Command Line
Parameters edit box.

If it is anticipated that the file and/or path being passed to the User Tool might
contain an embedded space, be sure to enclose the $Filepath directive in double
quotes to ensure proper handling.

Before running this program...

Save current file
Use this option to save any changes in the current file before running the defined User
Tool. Be sure to use this option when defining a User Tool which will operate on the
current file, so the program has access to the most recent changes you've made.

Save all modified files
Use this option to save any changes within all edited files before running the defined
User Tool.

Minimize Boxer
Use this option to request that Boxer be minimized to the task bar while the User Tool
is running.

Prompt for parameters
Use this option to request that Boxer prompt for parameters before running the defined
program. This option is useful when running a program whose command line
parameter(s) must be determined according to other conditions and cannot be specified

Command Reference (in menu order) 373

Copyright © 1991-2010 by Boxer Software

programmatically.

Convert '\'s in Parameters to '/'s
Use this option to request that any backslashes (\) within the Command Line

Parameters edit box be converted to forward slashes (/) before running the defined

program.

Pass short filename to program
Use this option to request that any Tools Macros used in the Command Line Parameters
edit box be converted to short filenames before running the defined program. This
option is needed when defining a User Tool which passes a filename to a DOS program,
or to a 16-bit Windows program, since these programs are typically unable to process
long filenames.

Buttons

Save Tool button
Use the Save Tool button to save the current tool definition. Note that the current tool
will also be saved automatically when moving to a new tool in the Tools list.

Clear Tool button
Use the Clear Tool button to clear the definition for the current tool. No confirmation is
required before the tool is erased.

Test Tool Button
Use the Test Tool button to simulate running the current tool, without actually
executing the defined program or resource. A dialog will appear showing the various
fields, after the expansion of any Tools Macros and other requested conversions have
been made.

Move up in list / Move down in list
Use these buttons to change the order in which tools appear in the User Tools submenu
on the Tools menu. Clicking on a button moves the currently selected User Tool up or
down in the list. Moving a User Tool up or down in the list does not cause a change in
the shortcut key assignments, if any are in use. For example: a shortcut key assigned
to User Tool 2 remains assigned to the second tool in the list and does not travel with a
tool which is moved through that position.

Tips and Notes

The method by which Boxer runs a User Tool program makes it possible to define
User Tools which are mapped to documents, rather than programs. For example, if
the 'program' to be run is defined to be an HTML document, then your Internet
browser will be launched to display that file. If a .DOC file is defined as the

'program' to be run, then Microsoft Word will be launched to display the document.
The browse button will present a file selection dialog box which defaults to showing

.EXE and .COM files, so in order to locate documents it will need to be changed to

show files of all types.

The method described in the above Tip can also be used to create User Tools which
map to your favorite directories. If a directory name is defined as the 'program' to

Boxer Text Editor374

Copyright © 1991-2010 by Boxer Software

be run, then Explorer will be launched with that directory in its view. The browse
button cannot be used to select a directory name, so in order to define a User Tool
in this way, the directory name will need to be typed manually into the Program edit
box.

Some DOS programs issue an on-screen report but do not pause for user interaction
or confirmation before terminating. When such programs are run as User Tools,
they will execute and terminate so quickly that their results cannot be studied. You
can remedy this behavior by making a change to the Properties of the program
being executed. Locate the program in Explorer, right-click on its icon, and select
Properties. Click the Program tab and uncheck the option titled Close on exit. Click
OK to save the change. Thereafter, when the program is run, its window will not
close until its close button is clicked.

By default, Boxer is configured to present a warning message when a file it is
editing is changed by another program or process. This capability is especially
useful when running User Tools since it confirms that a change was made and
provides the opportunity to Reload the file from disk to get the latest copy. If you
will be running a User Tool which operates on the current file, this option should be
kept in force. The option is located on the Configure | Preferences | Messages
option page, and is titled Warn when an edited file is changed by another program.

If you are a user of one of the JP Software command processors and wish to specify
a .BTM file as a User Tool, you may need to make a system configuration change

before doing so. To see if a change is required, create a .BTM file which performs

some passive operation (such as DIR), and try to execute it by double clicking from

within Explorer. If the file executes properly, then the Windows shell is aware that

.BTM files can be executed, and no changes are needed. If the file does not run,

then a change will be needed before a .BTM file can be run as a program in one of

Boxer's User Tools. JP Software has documented this configuration procedure in an
information file on their website. At the time of writing, this file could be found at:
www.jpsoft.com/help/index.htm?deskobjs.htm If the file is not found there, look in
the Support section at www.jpsoft.com.

Here's a tip for users of JP Software's 4DOS and/or 4NT command processors: If you
would like to direct the error output from a DOS program to the Windows clipboard,
you can make use of the clip: logical device to achieve this. At the end of any

Command Line Parameters which might be defined for a given User Tool, add the
following: >&>! clip: This directive causes the standard error stream to be

placed on the Windows clipboard, overwriting the current clipboard content. The
clipboard can later be reviewed in Boxer or manipulated as required.

4.9.26 Explore Data Folder

Menu: Configure > Explore Data Folder

Default Shortcut Key: none

Macro function: ExploreDataFolder()

http://www.jpsoft.com/help/index.htm?deskobjs.htm
http://www.jpsoft.com

Command Reference (in menu order) 375

Copyright © 1991-2010 by Boxer Software

This command provides a convenient method of opening an Explorer window that points
to the folder that holds Boxer's application data files. Among these are the files that
contain syntax highlighting information, templates, user lists, projects, macros, as well
as others.

See also the Explore Program Folder command.

When installed on an operating system prior to Windows Vista, Boxer's
home/installation folder serves double duty as both its program folder and its data
folder. Beginning with Windows Vista, and also under Windows 7, Boxer will
maintain separate folders for its program and data files.

This command can be used to quickly locate the folder that contains the backup files
Boxer creates. This folder should be emptied periodically to conserve disk space.

4.9.27 Explore Program Folder

Menu: Configure > Explore Program Folder

Default Shortcut Key: none

Macro function: ExploreProgramFolder()

This command provides a convenient method of opening an Explorer window that points
to the folder that holds Boxer's program files. Among these are the Boxer program

Boxer Text Editor376

Copyright © 1991-2010 by Boxer Software

itself, calculator, uninstaller, icons and other supporting files.

See also the Explore Data Folder command.

When installed on an operating system prior to Windows Vista, Boxer's
home/installation folder serves double duty as both its program folder and its data
folder. Beginning with Windows Vista, and also under Windows 7, Boxer will
maintain separate folders for its program and data files.

4.10 View Menu

4.10.1 Toolbar -> View Toolbar

Menu: View > Toolbar

Default Shortcut Key: none

Macro function: ViewToolbar()

The View Toolbar command is used to toggle on and off the display of Boxer's Toolbar.
The Toolbar is located just below the main menu bar, and looks like this:

Command Reference (in menu order) 377

Copyright © 1991-2010 by Boxer Software

The Toolbar provides one-click access to Boxer's most common commands. When the
mouse cursor is allowed to hover over a Toolbar button, a Tool Tip will popup showing
the name of the command associated with that button. The display of tool tips can be
disabled with an option on the Configure | Preferences | Display options page. The
option is titled Display Toolbar button tool tips. There is also an option provided to
display shortcut keys within the tool tips.

The Toolbar can be repositioned to any edge of the window by clicking on an open area
in the Toolbar and dragging it to the new location. The Toolbar can also be
repositioned--or turned off--by right-clicking on it to gain access to its context menu.

Toolbar buttons can be displayed in a raised, 3-D style using an option on the Configure
| Preferences | Display options page. The option is titled Display Toolbar buttons in 3-D
style.

The dollar bill icon which appears at the far right of the Toolbar is used to summon
Boxer's Order Form. This icon is present only in the evaluation version of Boxer.

4.10.2 File Tabs -> View File Tabs

Menu: View > File Tabs > View File Tabs

Default Shortcut Key: none

Macro function: ViewFileTabs()

The View File Tabs command is used to toggle on and off the display of the File Tabs
which can appear at the bottom or top of Boxer's window. File Tabs provide a
convenient method of switching among the currently open windows.

The tab for the current file is displayed as the uppermost tab, and its name will appear
in bold text. For example, in the picture above, the current file is REPORT.C. Clicking

on any other tab will bring that file to the foreground position.

Right clicking on an open area of the File Tab bar will provide access to its context
menu, which allows the bar to be repositioned or turned off. The File Tab bar can also
be repositioned by dragging it to a new location.

The context menu also contains an option to sort the File Tabs alphabetically, by
filename. The order of the File Tabs controls the behavior of the Window Previous and
Window Next commands.

Boxer Text Editor378

Copyright © 1991-2010 by Boxer Software

An asterisk (*) is placed in front of the filename on the File Tab to indicate that the file
has changes which have not yet been saved to disk.

To reorder the file tabs, use the mouse to drag a file tab to a new location and drop
it. When an edit session is resumed, the position of the file tabs will be maintained.
The position of file tabs is also maintained within a project file. Note: repositioning
file tabs by drag-and-drop necessitates that any file tab sorting mode (name,
extension or use) which may be in force be abandoned. Otherwise, when a new file
is opened and the file tabs are resorted, the drag-and-drop ordering would be lost.

The filename displayed on the File Tab can be shortened to a user-defined width.
This option appears on the Configure | Preferences | Display options page.

A file can be closed by clicking its File Tab with the middle mouse button.

4.10.3 File Tabs -> Sort by Name

Menu: View > File Tabs > Sort by Name

Default Shortcut Key: none

Macro function: SortFileTabsByName()

When checked, this menu option causes the File Tabs to be arranged alphabetically by
filename.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

4.10.4 File Tabs -> Sort by Extension

Menu: View > File Tabs > Sort by Extension

Default Shortcut Key: none

Macro function: SortFileTabsByExt()

When checked, this menu option causes the File Tabs to be arranged alphabetically first
by file extension, and then by filename.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

Command Reference (in menu order) 379

Copyright © 1991-2010 by Boxer Software

4.10.5 File Tabs -> Sort by Use

Menu: View > File Tabs > Sort by Use

Default Shortcut Key: none

Macro function: SortFileTabsByUse()

When checked, this menu option causes the File Tabs to be arranged according to
frequency of use. When a File Tab is clicked, the file is promoted to the first position.

Switching windows by keyboard will not cause the active file tab to be promoted to
the first position. This only occurs when the file tab is clicked with the mouse.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

4.10.6 File Tabs -> Top

Menu: View > File Tabs > Top

Default Shortcut Key: none

Macro function: FileTabsTop()

Use this command to cause the file tabs to be located at the top of the screen.

The File Tab context menu also includes options to place the file tabs at screen top
or bottom.

4.10.7 File Tabs -> Bottom

Menu: View > File Tabs > Bottom

Default Shortcut Key: none

Macro function: FileTabsBottom()

Use this command to cause the file tabs to be located at screen bottom.

 The File Tab context menu also includes options to place the file tabs at screen top
or bottom.

4.10.8 File Tabs -> Skip File

Menu: Window > Skip -or- View > File Tabs > Skip File

Boxer Text Editor380

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: WindowSkip()

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The skip status of each file is stored when an edit session is closed, so it will
persist if the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

Clicking on a file tab will cause that file's skip status to be released automatically, if
the relevant option on the Configure | Preferences | Cursor dialog page is enabled.

4.10.9 File Tabs -> Skip All

Menu: View > File Tabs > Skip All

Default Shortcut Key: none

Macro function: none

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The Skip All command sets the skip status of all open files to on. You might
issue the Skip All command before loading new files for editing, thereby ensuring that
the Window Previous and Window Next commands would cycle only within the newly
opened files.

The skip status of each file is stored when an edit session is closed, so it will persist if
the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

4.10.10 File Tabs -> Unskip All

Menu: View > File Tabs > Unskip All

Default Shortcut Key: none

Macro function: none

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The Unskip All command restores the state of and and all previously skipped
windows to unskipped.

 The File Tab context menu also includes options to toggle the skip state for the

Command Reference (in menu order) 381

Copyright © 1991-2010 by Boxer Software

current file, or to set or clear the skip status for all open files.

4.10.11 File Tabs -> Undo Close Tab

Menu: View > File Tabs > Undo Close Tab

Default Shortcut Key: none

Macro function: UndoCloseTab()

The Undo Close Tab command can be used to reopen the file that was last closed during
the current editing session. This command makes it easy to reopen a file if it was
closed accidentally.

The "Closed Tabs List" at the bottom of the View | File Tabs submenu shows the
names of the files that are eligible to be reopened, and allows files within the list to
be selectively reopened.

Clicking the middle mouse button in an open area of the file tab bar is taken as a
shortcut gesture to reopen the last closed file tab.

4.10.12 File Tabs -> Undo All Closed Tabs

Menu: View > File Tabs > Undo All Closed Tabs

Default Shortcut Key: none

Macro function: UndoAllClosedTabs()

The Undo All Closed Tabs command can be used to reopen all files that have been
closed during the current editing session. The names of the last ten (10) files are
stored for reopening.

The "Closed Tabs List" at the bottom of the View | File Tabs submenu shows the
names of the files that are eligible to be reopened, and allows files within the list to
be selectively reopened.

4.10.13 Status Bar

Menu: View > Status Bar

Default Shortcut Key: none

Macro function: ViewStatusBar()

The View Status Bar command is used to toggle on and off the display of Boxer's Status
Bar which appears at screen bottom. The status bar displays the location of the text
cursor in the current file, the current edit mode, current Clipboard, read-only state,
Typing Wrap and Text Width settings and the current time and date.

Boxer Text Editor382

Copyright © 1991-2010 by Boxer Software

The leftmost area of the Status Bar is used to present various information depending on
the command being performed. For example, while text is being selected, a report is
displayed that shows the number of lines and characters selected. The percentage of
the selection, with respect to the whole file, is also displayed.

Double clicking in each of the status fields is recognized as a shorthand method of
issuing a related command.

The Line Number field displays the current line number in the current file. Double
clicking in the Line Number field will issue the Go to Line command. In Visual Wrap
mode, the Line Number field will display paragraph numbers, since a one-to-one
relationship between physical lines and screen lines no longer exists. In Visual Wrap
mode, double clicking in this field will issue the Go to Paragraph command.

The Column Number field displays the current column number in the current file.
Double clicking in the Column Number field will issue the Go to Column command.

The Edit Mode field indicates the current edit mode. 'INS' denotes Insert mode. 'TYP'
denotes Typeover mode. Double clicking in the Edit Mode field will toggle the edit mode
between Insert and Typeover modes.

The Clipboard field displays the active clipboard. 'W' indicates the Windows clipboard;
internal clipboards are denoted by the digits 1-8. Double-clicking in this field advances
the active clipboard by one. Shift double-clicking decreases the active clipboard by one.

To the right of the Clipboard field is the Read-Only field. If the current file is being
viewed in read-only mode, 'RO' is displayed. If the file is eligible for changes, 'WR' is
displayed. Double-clicking in this field will change the state of the current file within
the editor. If a file is being edited in read-only mode because its on-disk read-only file
attribute is set, an option is provided to change the file's on-disk read-only attribute.
Changing a writable file to read-only mode does not alter a file's on-disk file attribute.

To the right of the Read-Only field is the Typing Wrap and Text Width field. Double
clicking atop the 'w' in this field will toggle Typing Wrap mode on and off. A lowercase
'w' denotes off; an uppercase 'W' denotes on. Double clicking in the numeric portion of
this field will issue the Text Width command.

The macro field serves several purposes. When the word 'Macro' is not flashing,
double-clicking in this field will display the Macro dialog. When a macro is running, the
word 'Macro' will flash intermittently. When keystrokes are being recorded using the
Record Keys command, the macro field will flash the word 'Record'.

At the far right of the Status Bar is the Time and Date display. Double clicking atop the
time display will issue the Insert Short Time command. Double clicking atop the date
display will issue the Insert Short Date command.

Due to a problem reported by users in countries that do not use the Western/Latin
code page, the date in the lower right corner of the status bar will now be displayed

Command Reference (in menu order) 383

Copyright © 1991-2010 by Boxer Software

in English, and not in the language dictated by the operating system's regional
settings. The Insert Short/Long Time/Date commands will continue to honor the
system's regional settings.

Unless screen space is at a premium, it is recommended that the Status Bar display be
left on. Right clicking on the Status Bar summons its context menu, which allows it to
be turned off.

4.10.14 Vertical Scroll Bar

Menu: View > Vertical Scroll Bar

Default Shortcut Key: none

Macro function: ViewVScrollBar()

The View Vertical Scroll Bar command is used to toggle on or off the scroll bar at the
right edge on the editing window.

The height of the thumb or scroll box is proportional to the number of lines in the file.
If the height of the thumb is one-third the height of the window, then the portion of the
file visible within the window is approximately one-third of the entire file.

When the current file has insufficient lines to fill the height of the window, the Vertical
Scroll Bar disappears automatically.

Clicking on the scroll bar with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the scroll bar.

As the thumb is dragged with the mouse, the current line and page count of the new
view is displayed on the status bar in real-time. This makes it easier to locate a
line/page of interest, since the current line need not be changed to get a report on
the text that is in view.

4.10.15 Horizontal Scroll Bar

Menu: View > Horizontal Scroll Bar

Default Shortcut Key: none

Macro function: ViewHScrollBar()

The View Horizontal Scroll Bar command is used to toggle on or off the scroll bar at the
bottom edge on the editing window.

When the current file has no lines which exceed the width of the window, the Horizontal
Scroll Bar disappears automatically.

Boxer Text Editor384

Copyright © 1991-2010 by Boxer Software

Clicking on the scroll bar with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the scroll bar.

4.10.16 Bookmarks

Menu: View > Bookmarks

Default Shortcut Key: Alt+F2

Macro function: ViewBookmarks()

The View Bookmarks command is used to toggle on or off the bookmarks in the left
column of the editor window. When active, bookmarked lines are displayed with a small
number (0-9) in a region to the left of the editing space:

The Toggle Bookmark command is used to set or clear a bookmark on the current line
at the current column of the text cursor. The Previous Bookmark and Next Bookmark
commands can be used to move among bookmarked lines.

Whether or not bookmarks are displayed, they remain functional. All bookmark
commands are available even when View Bookmarks is toggled off.

Clicking in the Bookmark region with the right mouse button provides access to its
context menu, which allows the display of Bookmarks to be turned off.

The background color of the bookmark region is shared with that of the Line Numbers.
Use the Configure Colors command to select screen colors.

Command Reference (in menu order) 385

Copyright © 1991-2010 by Boxer Software

4.10.17 Line Numbers

Menu: View > Line Numbers

Default Shortcut Key: Alt+F3

Macro function: ViewLineNumbers()

The View Line Numbers command is used to toggle on or off the line numbers in a
region to the left of the editing area.

In order to optimize the amount of screen space available for editing, the area allocated
to the display of line numbers changes dynamically. If a file grows in size, such that
the largest line number requires more space to be displayed, the line number margin
will expand automatically. If a file shrinks in size, the line number margin will likewise
be adjusted.

When Visual Wrap mode is active, the line number display will be adjusted to display
paragraph numbers.

Leading zeros can be displayed on line numbers using an option on the Configure |
Preferences | Display options page. The option is titled Display leading zeros on line
numbers.

The display of Line Numbers is a visual aid and does not result in any changes to the
file being edited. To insert line numbers into the file itself, use the Auto-Number
command.

Clicking in the Line Number region with the right mouse button provides access to its
context menu. Options are available to toggle on and off the display of leading zeros,
and to turn off the viewing of line numbers.

The current line number is also displayed in the Status Bar.

To enable the display of a ruler which labels screen columns, use the View Column
Ruler command.

Boxer Text Editor386

Copyright © 1991-2010 by Boxer Software

4.10.18 Text Ruler

Menu: View > Text Ruler

Default Shortcut Key: Alt+F5

Macro function: ViewTextRuler()

The View Text Ruler command is used to toggle on or off the horizontal ruler at the top
of the editing window.

The Text Ruler labels the column numbers of the file being displayed. When the view of
the file is scrolled to the right, the ruler values scroll along with the file. Clicking on a
column number within the ruler will move the text cursor to that column on the current
line. Clicking at the far right of the Ruler will cause the file to scroll to the right.

The current column number is also displayed in the Status Bar.

To enable the display of line numbers, use the View Line Numbers command.

Clicking on the Ruler with the right mouse button provides access to its context menu.
The menu has an option to turn off display of the Ruler.

4.10.19 Hex Ruler

Menu: View > Hex Ruler

Default Shortcut Key: none

Macro function: ViewHexRuler()

The View Hex Ruler command is used to toggle on or off the horizontal ruler at the top
of the editing window.

Command Reference (in menu order) 387

Copyright © 1991-2010 by Boxer Software

The Hex Ruler labels the column numbers of the file being displayed in hexadecimal
format. Clicking on a column number within the ruler will move the text cursor to that
column on the current line.

The current byte offset and column number are also displayed in the Status Bar.

To enable the display of line numbers, use the View Line Numbers command.

Clicking on the Hex Ruler with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the Hex Ruler.

4.10.20 Right Margin Rule

Menu: View > Right Margin Rule

Default Shortcut Key: Alt+F6

Macro function: ViewRightMarginRule()

The View Right Margin Rule command is used to toggle on and off the display of a thin
vertical line which marks a user-defined column. The Right Margin Rule can be used as
a visual reminder that a particular line length has been exceeded.

You can set the Right Margin Rule to any column you desire; the default is column 80.
An option is provided to set the column on the Configure | Preferences | Display options
page. The option is titled Show right margin rule at column...

Boxer Text Editor388

Copyright © 1991-2010 by Boxer Software

Clicking on the Right Margin Rule with the right mouse button provides access to its
context menu, which allows the line to be turned off.

4.10.21 Visible Spaces

Menu: View > Visible Spaces

Default Shortcut Key: Alt+F1

Macro function: ViewVisibleSpaces()

The Visible Spaces command can be used to toggle on and off a display mode in which
Spaces, Tabs and Newline characters (also known as whitespace) are displayed as
visible symbols. This command is useful for drawing attention to extra Tabs and Spaces
at the ends of lines, and to see whether indents are comprised of Tabs, Spaces, or both.

The color used to display Visible Spaces can be controlled with the Configure Colors
command. In most of the default color schemes, a color has been used which makes
the characters appear less prominent than foreground text. This often makes it
possible to use Visible Spaces mode full-time, without concern for a cluttered display.

The symbols which are used to represent Spaces, Tabs and Newlines are
user-configurable. These can be set using options on the Configure | Preferences |
Display options page. Separate options are provided for use with both ANSI and OEM
screen fonts.

4.10.22 Active Spell Checking

Menu: View > Active Spell Checking

Default Shortcut Key: Alt+F7

Macro function: ActiveSpellChecking()

The View Active Spell Checking command is used to toggle on/off a display mode in
which misspelled words are underlined with a squiggly line. When this mode is on,
Boxer will underline words as you type if they are not found in the active spell checker
dictionary.

Command Reference (in menu order) 389

Copyright © 1991-2010 by Boxer Software

Note that Boxer does not wait for you to press Space and move off the word before
deciding whether an underline will appear: the visual feedback is provided
instantaneously. This makes it easier to experiment with alternative spellings, or to
make a correction early in the word before it is completely typed.

If you right click on an underlined word, the misspelled word context menu will appear:

The context menu shows up to ten suggested corrections for the misspelled word, as
well as other options related to spell checking.

Add Word
Use the Add Word option to add the offending word to the dictionary. Words which are
added to the dictionary are saved within the file userdict.txt in Boxer's data folder.

This file can also be edited within Boxer to add other words, or to remove words which
may have been added mistakenly.

Words which are added to the user dictionary will be accepted as correctly spelled
words in any case configuration in which they may occur. For example, if the word

ebay is added to the dictionary, it will be accepted in any of the following forms:

Boxer Text Editor390

Copyright © 1991-2010 by Boxer Software

eBay, ebAy, and ebaY. This liberal processing was necessary because the

third-party dictionary that Boxer uses is not processed in a case sensitive manner.
Before this handling was put in place, the word eBay would always be reported as

misspelled, even when eBay (or any variant) had been added to the user dictionary.

Ignore All
Use the Ignore All option to ignore the offending word, and to indicate that all other
occurrences of the word should also be ignored.

Active Spell Check
Use this option to disable the Active Spell Checking feature. It can be reactivated using
the View | Active Spell Checking command.

Spell Checker
Use this option to initiate a full spell checking scan with the Tools | Spell Checker
command.

Reset Ignore List
This option can be used to clear the list of ignored words that have been added with
the Ignore All option, or from earlier use of the Ignore button on the Spell Checker
dialog.

Options
This menu entry opens the Configure | Preferences dialog to the page that contains the
spell checker options.

Cut Word
Use this option to cut the misspelled word to the current clipboard.

Copy Word
Use this option to copy the misspelled word to the current clipboard.

Paste
Use this option to paste text from the current clipboard.

For general information about Boxer's spell checker, see the Spell Checker command.

The Configure | Preferences | Other dialog page contains a section with options
related to Spell Checking.

4.10.23 Text Highlighting

Menu: View > Text Highlighting

Default Shortcut Key: Alt+F8

Macro function: ViewTextHighlighting()

This command is used to toggle on/off the text highlighting performed by either the

Command Reference (in menu order) 391

Copyright © 1991-2010 by Boxer Software

Text Highlighting command, or the Highlight all matches feature of the Find command.

4.10.24 Apply Highlighting

Menu: View > Apply Highlighting

Default Shortcut Key: none

Macro function: ApplyHighlighting()

This command can be used to add the word at the text cursor -- or the currently
selected text -- to the list of phrases that are to be highlighted by the Text Highlighting
command. This feature can be used to make table headings stand out, or to add
emphasis to any class of words or phrases that might be desired. The highlighting
strings are saved and restored from session to session. The color used to highlight the
designated strings is configurable using the Configure | Colors dialog. Text Highlighting
can be applied to normal text files, or to program files which are already being Syntax
Highlighted. The highlighting of strings can be quickly toggled on/off by using the View
| Text Highlighting command.

This command is also available from the context menu.

4.10.25 Syntax Highlighting

Menu: View > Syntax Highlighting

Default Shortcut Key: none

Macro function: ViewSyntaxHighlighting()

This command can be used to toggle on/off the display of Syntax Highlighting on files
which are eligible for such display. This command overrides the option on the Configure
| Syntax Highlighting dialog that enables and disables syntax highlighting for an
individual programming language.

To create a temporary association between a file and a syntax highlighting
language, or to disable syntax highlighting for a single file, use the View | Syntax
Highlight As command.

4.10.26 Syntax Highlight As

Menu: View > Syntax Highlight As

Default Shortcut Key: none

Macro function: SyntaxHighlightAs()

The Syntax Highlight As command provides a means to override the syntax highlighting
that occurs due to a file's extension, or to select a language for a file that would not
otherwise be eligible for highlighting. For example, if you're viewing a file named

Boxer Text Editor392

Copyright © 1991-2010 by Boxer Software

index.html.bak, the Syntax Highlight As command would allow HTML to be

designated as the syntax highlighting language, even though the file's .bak extension

is not configured for HTML highlighting.

The None button allows a file to be disassociated from its syntax highlighting language,
without the need to disable syntax highlighting for all files being edited, as the View |
Syntax Highlighting command can do.

The duration of the Syntax Highlight As assignment is for the current editing session
only. To permanently associate a file type with a syntax highlighting language, use the
Configure | Syntax Highlighting command to add its file extension to the list of
recognized extensions.

4.10.27 Hex Mode

Menu: View > Hex Mode

Default Shortcut Key: Shift+Alt+X

Command Reference (in menu order) 393

Copyright © 1991-2010 by Boxer Software

Macro function: ViewHexMode()

Use the View Hex Mode command to switch from normal text mode into a read-only hex
mode display:

The hex mode display uses a special format which has three sections. At the left, the
byte offset into the file is shown in hexadecimal format. In the center, sixteen bytes
are displayed as two-byte hexadecimal values. At the far right the same sixteen bytes
are displayed as characters, except in cases where the character cannot be so
represented.

The hex mode display can be exited by issuing this command again, or by pressing
Escape.

When switching between normal editing mode and hex mode display, the relative
location of the text cursor is maintained. This makes the View Hex Mode command
useful for studying the hex values characters at or near the text cursor.

The representation of the sixteen characters at the right depends upon whether an
ANSI or OEM screen font is in use. The screen font can be changed with the Screen
Font command.

Ordinary text files can be opened for editing and then toggled between normal and hex
mode display using this command. To open a file for hex mode viewing directly--as is
required for the display of binary files--use the Open Hex Mode command instead.

Boxer Text Editor394

Copyright © 1991-2010 by Boxer Software

4.10.28 Scroll Up

Menu: View > Scroll Up

Default Shortcut Key: Ctrl+Down Arrow

Macro function: ScrollUp()

The Scroll Up command will scroll the current file up regardless of where the text cursor
is positioned within the window. The cursor remains on the current line until a window
edge requires it to be changed. This command is useful to scroll a file up without losing
your position in the file. There must be more than a screen full of lines in order for this
command to operate.

4.10.29 Scroll Down

Menu: View > Scroll Down

Default Shortcut Key: Ctrl+Up Arrow

Macro function: ScrollDown()

The Scroll Down command will scroll the current file down regardless of where the text
cursor is positioned within the window. The cursor remains on the current line until a
window edge requires it to be changed. This command is useful to scroll a file down
without losing your position in the file. There must be more than a screen full of lines in
order for this command to operate.

4.10.30 Scroll Left

Menu: View > Scroll Left

Default Shortcut Key: Alt+Left Arrow

Macro function: ScrollLeft()

The Scroll Left command will scroll the current file left regardless of where the text
cursor is positioned within the window. If column 1 is already visible on screen, no
movement is possible. This command is useful to scroll a file leftward without losing
your position in the file.

4.10.31 Scroll Right

Menu: View > Scroll Right

Default Shortcut Key: Alt+Right Arrow

Macro function: ScrollRight()

Command Reference (in menu order) 395

Copyright © 1991-2010 by Boxer Software

The Scroll Right command will scroll the current file right regardless of where the text
cursor is positioned within the window. This command is useful to scroll a file rightward
without losing your position in the file.

4.10.32 Synchronized Scroll

Menu: View > Synchronized Scroll

Default Shortcut Key: none

Macro function: none (the interactive nature of this command makes it unsuitable for
use within a macro)

The Synchronized Scroll command can be used to enter a display mode in which all
open windows will scroll synchronously. This command is useful for hands-off file
browsing, or for comparing similar files in side-by-side windows.

The initial direction of scrolling is downward, but the Up and Down arrow keys can be
used to change direction at any time.

The Left Arrow and Right Arrow keys can be used to decrease or increase the scrolling
delay, respectively.

Pressing Right Arrow repeatedly through the range of delay settings will set the delay to
infinite. The infinite setting effectively locks all open windows to one another. The Up
Arrow and Down Arrow keys can then be used to scroll all windows synchronously.

The Home and End keys can be used to move quickly to the minimum and maximum
(infinite) delay settings.

Scrolling can be canceled with the Esc key or by pressing any key other than the arrow
keys.

You may observe that Synchronized Scrolling quickens when the mouse is being
moved. This is because a program receives more CPU cycles from the operating
system when it is perceived to be active than when the operating system believes
the program to be idle.

4.10.33 Shaded Tab Zones

Menu: View > Shaded Tab Zones

Default Shortcut Key: none

Macro function: ShadedTabZones()

The Shaded Tab Zones command toggles on and off a mode in which a different
background screen color is used for alternating tab zones:

Boxer Text Editor396

Copyright © 1991-2010 by Boxer Software

This display mode is most helpful when Boxer is used to edit files containing
character-separated field data, such as comma-separated values (CSV) or fixed-width
field records. The Tab Display Size command would typically be used first to configure
the proper tab stop settings for the data file. The Intelli-Tabs feature on that dialog is
especially useful in this regard. Once the tab stop settings are entered, use this
command to enable the shading of tab zones.

The alternative background color used by the Shaded Tab Zones command can be
set using the Configure | Colors command. The tab zone is not depicted in the
miniature screen on that dialog, but rather appears in the Screen elements by name
listbox. Its name is Tab Zone Background.

4.10.34 Tab Display Size

Menu: View > Tab Display Size

Default Shortcut Key: Alt+F9

Macro function: TabDisplaySize()

The Tab Display Size command is used to set the display width of the tab character
within the current editor window. To set the default tab size for all future editing
sessions, see the Configure | Preferences | Tabs dialog page.

Command Reference (in menu order) 397

Copyright © 1991-2010 by Boxer Software

Boxer supports the use of either fixed or variable width tabs. When fixed width tabs are
used, the display width of a tab is a constant value, though the effect of a tab within
text will depend on its column location. When variable width tabs are used, the display
value of a tab is computed so as to cause a jump to the next tab stop. Variable width
tabs are sometimes referred to as typewriter style tabs, since they mimic the function
of tab stops on early typewriters.

Tab size and type

Fixed width tabs of size n
Use this option to set the display size for fixed width tabs in the current file.

Variable with tabs, with tab stops at columns...
Use this option to designate the columns at which variable width tab stops should occur
in the current file.

Boxer Text Editor398

Copyright © 1991-2010 by Boxer Software

Additional tab character

When viewing certain data files, it can sometimes be helpful to treat an additional
character as though it were a tab, for display purposes only. For example, when
viewing a file containing comma-separated fields (CSV), designating a comma as the
additional tab character will allow Boxer to display the file with each field in its own
column, greatly enhancing its on-screen readability. This option would typically be used
when variable width tabs are in use, and most likely in conjunction with the Intelli-Tabs
feature described below.

When an additional character is designated as a tab, it will become invisible on screen,
just as is the tab character. You can use the Visible Spaces command to make real
tabs--and the additional tab character--visible on screen.

If a comma is designated as the additional tab character, please note that it is not
possible to properly process quote and comma-delimited data files whose field data
contains commas within the quoted fields. Boxer requires that the field separator
character appear only between fields, and not within the data itself. In the help
topic for the Replace command, the Process $1, $2, $3... substring directives in the
replace string section contains an example that shows how embedded commas can
be removed.

When an additional tab character is in use, the Tabs to Spaces command will treat
that character as though it was a tab. This makes it possible to convert a file that
uses a character-separated field format (CSV, for example), to a fixed width field
format. See the topic Converting CSV Data to Fixed Width Format.

Intelli-Tabs

Use the Intelli-Tabs feature to automatically determine the optimum tab stop columns
for tab-delimited data. Boxer will analyze the current file to determine the maximum
width of each data field and then suggest the tab stop columns that should be used for
optimum viewing.

The Intelli-Tabs feature can also be used on files containing fixed width field data. If
tabs (or 'additional tabs', see above) are not found in the data, fixed width field data is
assumed. Then a secondary analysis is made to try to determine the boundaries of the
fields. If a range of lines is selected, the secondary analysis will be restricted to the
selected range.

During its analysis, the Intelli-Tabs feature will often detect records whose field count
differs from those of other records. When this happens, a report will be given, and the
(first) non-conforming line number will be reported. As such, Intelli-Tabs can double as
a useful tool for validating data files.

Boxer's default fixed width Tab Display Size is 4, which permits program source code
with several indent levels to be displayed without exceeding the screen width. Many
other programs, and most printers, will treat Tabs as having a display size of 8. You
may need to make adjustments in order to print or display files with another
program which does not use a Tab display size of 4. One remedy could be to use
the Tabs to Spaces command to convert a copy of the file before using it with the

Command Reference (in menu order) 399

Copyright © 1991-2010 by Boxer Software

other program. Note that Boxer's Print command will automatically convert Tabs to
Spaces before sending its data to the printer, so there will be no such difficulty
when printing files from within Boxer.

See the Insert Tab command for additional information about tabs.

After selecting the proper tab stops for optimum viewing, consider using the View |
Shaded Tab Zones command to colorize the background of adjacent fields.

Tab settings can be designated on the command line using the -T option flag. See
Command Line Options for more information.

Files that have Syntax Highlighting applied are eligible to have their tab stop
settings defined as part of the syntax information for the language being
highlighted. See Configure | Syntax Highlighting for more information. The
parameter of interest is the Tab Stops parameter.

 Tabs, spaces and newline characters can be made visible with the Visible Spaces
command.

4.11 Window Menu

4.11.1 Tile Across

Menu: Window > Tile Across

Default Shortcut Key: none

Macro function: TileAcross()

The Tile Across command can be used to resize and reposition all editor windows such
that the client area is fully occupied, and the windows are arranged left-to-right.

Minimized windows are not affected by this operation.

If the number of open windows will not permit a left-to-right arrangement, Windows will
use an alternative arrangement which allows all windows to fit.

4.11.2 Tile Down

Menu: Window > Tile Down

Default Shortcut Key: none

Macro function: TileDown()

The Tile Down command can be used to resize and reposition all editor windows such
that the client area is fully occupied and the windows are arranged top-to-bottom.

Boxer Text Editor400

Copyright © 1991-2010 by Boxer Software

Minimized windows are not affected by this operation.

If the number of open windows will not permit a top-to-bottom arrangement, Windows
will use an alternative arrangement which allows all windows to fit.

4.11.3 Cascade

Menu: Window > Cascade

Default Shortcut Key: none

Macro function: Cascade()

The Cascade command can be used to resize and reposition all editor windows in a
cascading arrangement beginning at the upper left of the client area and proceeding to
the lower right. The height and width of each window is uniform, and is determined by
the size of the client area.

Minimized windows are not affected by this operation.

4.11.4 Cascade Vertical

Menu: Window > Cascade Vertical

Default Shortcut Key: none

Macro function: CascadeVertical()

The Cascade Vertical command can be used to resize and reposition all editor windows
in a cascading arrangement beginning at the upper left of the client area and
proceeding toward the lower left. The height and width of each window is uniform, and
is determined by the size of the client area. Unlike the Cascade command, the left
edges of all windows are placed against the left edge of the client area.

Minimized windows are not affected by this operation.

4.11.5 Cascade Horizontal

Menu: Window > Cascade Horizontal

Default Shortcut Key: none

Macro function: CascadeHorizontal()

The Cascade Horizontal command can be used to resize and reposition all editor
windows in a cascading arrangement beginning at the upper left of the client area and
proceeding toward the upper right. The height and width of each window is uniform,
and is determined by the size of the client area. Unlike the Cascade command, the top

Command Reference (in menu order) 401

Copyright © 1991-2010 by Boxer Software

edges of all windows are placed against the top edge of the client area.

Minimized windows are not affected by this operation.

4.11.6 Arrange Icons

Menu: Window > Arrange Icons

Default Shortcut Key: none

Macro function: ArrangeIcons()

The Arrange Icons command can be used to neatly position minimized windows icons at
the bottom of the client area. When several windows have been minimized, and some
are later restored to normal size, the display of the remaining minimized windows can
become untidy. The Arrange Icons command is useful in this situation.

4.11.7 Split Vertical

Menu: Window > Split Vertical

Default Shortcut Key: none

Macro function: SplitVertical()

The Split Vertical command can be used to split the current window vertically. A split
window provides a second view into the same file, allowing two different sections of the
file to be viewed simultaneously in different window panes. Each window pane can be
scrolled separately from the other, just as if a second window were in use.

After a window is split, a thin splitter bar appears which visually separates the two
panes. The splitter bar can be dragged left or right with the left mouse button to resize
the window panes.

Clicking on the splitter bar with the right mouse button provides access to its context
menu. The context menu has options to change the split from vertical to horizontal, or
to turn off the vertical split so the window becomes whole again.

The Window Next command can be used to move from the left pane to the right pane,
while the Window Previous command changes focus from the right pane to the left.

When the width of the window is increased or decreased due to window resizing, the
relative position of the window split will be maintained, so long as each pane remains
wider than the minimum window width.

If the Column Ruler is in use, it will appear in both the left and right window panes of a
vertically split window.

When the panes of a split window are resized with the mouse, a report appears on

Boxer Text Editor402

Copyright © 1991-2010 by Boxer Software

the status line that shows the percentage of width/height allocated to each pane.

4.11.8 Split Horizontal

Menu: Window > Split Horizontal

Default Shortcut Key: none

Macro function: SplitHorizontal()

The Split Horizontal command can be used to split the current window horizontally. A
split window provides a second view into the same file, allowing two different sections
of the file to be viewed simultaneously in different window panes. Each window pane
can be scrolled separately from the other, just as if a second window were in use.

After a window is split, a thin splitter bar appears which visually separates the two
panes. The splitter bar can be dragged up or down with the left mouse button to resize
the window panes.

Clicking on the splitter bar with the right mouse button provides access to its context
menu. The context menu has options to change the split from horizontal to vertical, or
to turn off the horizontal split so the window becomes whole again.

The Window Next command can be used to move from the top pane to the bottom
pane, while the Window Previous command changes focus from the bottom pane to the
top.

When the height of the window is increased or decreased due to window resizing, the
relative position of the window split will be maintained, so long as each pane remains
taller than the minimum window height.

If the Column Ruler is in use, it will appear only in the top window pane of a
horizontally split window.

When the panes of a split window are resized with the mouse, a report appears on
the status line that shows the percentage of width/height allocated to each pane.

4.11.9 Next

Menu: Window > Next

Default Shortcut Key: F6

Macro function: WindowNext()

The Window Next command is used to move to the next window when editing two or
more files. When a window has been split with the Split Horizontal or Split Vertical
commands, Window Next will move to the lower or right window pane, respectively.
Window Next will skip over a minimized window, but the Windows-level service (Ctrl+F6
) will stop on minimized windows.

Command Reference (in menu order) 403

Copyright © 1991-2010 by Boxer Software

The next window in the sequence will be determined according to the order of the File
Tabs. If the File Tabs have been configured to sort the files alphabetically, Window
Next will move to the window whose filename occurs next, alphabetically. If the File
Tabs are not sorted, the order is determined
by Windows according to the "z order" ranking of the windows.

When many windows are open, it may prove faster to use the Window List to select a
new window. Boxer's File Tabs can also be used to move quickly among windows.

4.11.10 Previous

Menu: Window > Previous

Default Shortcut Key: Shift+F6

Macro function: WindowPrevious()

The Window Previous command is used to move to the previous window when editing
two or more files. When a window has been split with the Split Horizontal or Split
Vertical commands, Window Next will move to the upper or left window pane,
respectively. Window Previous will skip over a minimized window, but the
Windows-level service (Ctrl+F6) will stop on minimized windows.

The previous window in the sequence will be determined according to the order of the
File Tabs. If the File Tabs have been configured to sort the files alphabetically, Window
Next will move to the window whose filename is previous, alphabetically. If the File
Tabs are not sorted, the order is determined
by Windows according to the "z order" ranking of the windows.

When many windows are open, it may prove faster to use the Window List to select a
new window. Boxer's File Tabs can also be used to move quickly among windows.

4.11.11 Skip

Menu: Window > Skip -or- View > File Tabs > Skip File

Default Shortcut Key: none

Macro function: WindowSkip()

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The skip status of each file is stored when an edit session is closed, so it will
persist if the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

Boxer Text Editor404

Copyright © 1991-2010 by Boxer Software

Clicking on a file tab will cause that file's skip status to be released automatically, if
the relevant option on the Configure | Preferences | Cursor dialog page is enabled.

4.11.12 Last Visited

Menu: Window > Last Visited

Default Shortcut Key: Shift+Alt+F6

Macro function: WindowLastVisited()

The Window Last Visited command provides a means to return quickly to the last
window that was active before the current window was activated. When a large number
of files is being edited, using the Window Previous or Window Next command may not
be practical for this purpose. Issuing the command repeatedly has the effect of
toggling focus between the last two windows that were active.

4.11.13 Minimize All

Menu: Window > Minimize All

Default Shortcut Key: none

Macro function: MinimizeAll()

The Minimize All command can be used to quickly minimize all open editor windows.
Minimized windows are placed at the bottom of the client area in iconic form. The size
and position of each window is stored so that any window can assume its former
position once restored. Windows can be restored individually or with the Restore All
command. To neatly arrange minimized icons which have become out of line, use the
Arrange Icons command.

4.11.14 Restore All

Menu: Window > Restore All

Default Shortcut Key: none

Macro function: RestoreAll()

The Restore All command can be used to return all minimized windows to their former
sizes and positions.

4.11.15 Maximize All

Menu: Window > Maximize All

Command Reference (in menu order) 405

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: MaximizeAll()

The Maximize All command can be used to maximize all editor windows. The current
window will consume the entire client area, and all other windows can be conceptualized
as having been placed behind the current window.

When an editor window is maximized, its Minimize/Maximize/Close icon set is moved
to the far right of the main menu bar. Once the window is minimized or restored,
its icons are moved back to its title bar.

4.11.16 Close All

Menu: Window > Close All

Default Shortcut Key: none

Macro function: CloseAll()

The Close All command is used to close all open windows within the editor. If unsaved
changes have been made to any file, a dialog box will appear for each such file to alert
you to this fact. You will then be able to choose whether to save the changes before
closing, close without saving, or cancel the Close All operation.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar or on its File Tab.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

The Window | Close All command is functionally equivalent to the File | Close All
command, since each file resides in its own window.

4.11.17 Close All but Active

Menu: Window > Close All but Active

Default Shortcut Key: none

Macro function: CloseAllButActive()

Use this command to close all open editing windows except the current window.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar or on its File Tab.

Boxer Text Editor406

Copyright © 1991-2010 by Boxer Software

4.11.18 Window List

Menu: Window > Window List

Default Shortcut Key: none

Macro function: WindowList()

The Window List command presents a pop-up dialog containing the names of all
currently open windows. A count of the windows is displayed at the top of the dialog.

Double-click or press Enter to make the selected window active. Right-clicking provides
access to the Window List context menu. This menu provides options to Save, switch
to, minimize, maximize, restore or close the selected window. The Delete key can be
used to close the selected file.

The content of the Window List can be sorted by clicking on any of the field headers at
the top of the listbox control. A second click on the same header reverses the order of
the sort.

The Window List dialog is resizeable so it can accommodate long filepaths. The window
is non-modal so that it can remain open while focus returns to an editor window.

Boxer's File Tabs also provide another method of switching among open windows, as do
the Window Next and Window Previous commands.

If the Window List is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

Command Reference (in menu order) 407

Copyright © 1991-2010 by Boxer Software

4.12 Help Menu

4.12.1 Boxer Help

Menu: Help > Boxer Help

Default Shortcut Key: F1

Help is available at any time within Boxer by pressing F1. In most cases, the help topic
presented will be sensitive to the context in which help was requested.

While cursoring within the main menu or a context menu Help will be presented for the
highlighted menu item.

Most dialog boxes contain a Help button which presents the help topic dealing with that
dialog box.

When editing a source code file for which Syntax Highlighting has been defined, the
Help command can be used to summon language-specific help information for the word
beneath the text cursor. The pathname of the help file which is associated with the
language is defined in the Help File parameter of the Syntax Highlighting information
for that language. See the Syntax Highlighting topic for more information about this
capability.

4.12.2 Help On

Menu: Help > Help On

Default Shortcut Key: Shift+F1

The Help On command is used to activate a special mode in which the mouse cursor is
changed to a help icon with an arrow cursor. In this mode the mouse is relieved of its
conventional duties, and Help information will be displayed for the next object or menu
item clicked upon.

The mouse arrow cursor will change to a 'no' cursor when atop an item for which help is
not available, or not applicable.

4.12.3 FAQs

Menu: Help > FAQs

Boxer Text Editor408

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Frequently Asked Questions

After I order, will I get a password or key to convert the evaluation version of
Boxer into a licensed version?
No. New software will be sent which is easily installed atop the evaluation version. All
of your settings will be maintained. Software keys are frequently distributed on 'pirate'
Internet sites, thus reducing sales and driving up the cost of software for paying
customers.

Why can't other programs see the text I copied to the clipboard in Boxer?
You are almost certainly using an internal clipboard, rather than the Windows clipboard.
Other programs can't see text that is placed on Boxer's internal clipboards. See the Set
Clipboard command for details.

Why am I having trouble opening filenames from Explorer when they contain
embedded spaces?
This is due to a bug in Explorer. It doesn't enclose a filename in double quotes before
sending it off to the associated application. In the file associations set up by Boxer's
installer, double quotes have been added around "%1", so you'll find these associations
(.TXT, .BAT, etc) work fine. But for any file associations you create yourself, or if you
elected not to allow Boxer's installer to create the associations, you'll need to manually
edit the association to have double quotes around "%1". You'll find that Boxer's help
topic entitled 'File Associations' has additional useful information about this subject.

Why can't I see all my Windows fonts in the Screen Font dialog?
Boxer requires that fixed width fonts (monospace fonts) be used, so the Screen Font
dialog box does not display proportionally spaced fonts. This is required, in part, to
ensure that columnar selections can be highlighted neatly in rectangular blocks, and so
that the Column Ruler can be used. These features would not be possible if the use of
proportionally spaced fonts was permitted.

Will there be a German version of Boxer for Windows, as there was for earlier
Boxer products?
It appears unlikely. We learned from our earlier products that the effort to release a
program in a new language is quite substantial. It appears that our resources can be
better spent enhancing our current products, or developing new ones.

Will there ever be a Linux version of Boxer?
That's uncertain at this time. We're keeping an eye on the Linux market, and will
continue to do so.

How long did it take to develop Boxer for Windows?
The initial development took almost two years. Boxer for Windows was a ground-up
effort, with almost none of the code from our earlier products being used in its
development.

What language was Boxer written in? How many lines of code? What
development tool was used?

Command Reference (in menu order) 409

Copyright © 1991-2010 by Boxer Software

Boxer currently consists of over 110,000 lines of C++ code. Borland's C++ Builder was
used for development.

Where did the name 'Boxer' come from?

In the mid 1980's, one of the most popular editors for the PC was a product called
BRIEF, which was then marketed by a company called UnderWare. In fact, the very first
lines of Boxer/DOS were written using Brief, until Boxer was able to edit its own code.
The name Boxer was simply a play on words: another style of men's underwear!

4.12.4 Boxer Shorts

Menu: Help > Boxer Shorts

Default Shortcut Key: none

'Boxer Shorts' are a collection of useful tips which are displayed in a popup window:

The tips presented in Boxer Shorts will help you to discover some of Boxer's lesser
known features and capabilities. You can page through the tips with the buttons
supplied, or select the Remember to 'pull up' your Boxer Shorts upon startup option so
that the tips will be shown each time Boxer starts.

If you think you have a clever tip which could benefit other Boxer users, please send it
to info@boxersoftware.com. We'll include the best tips we receive in future editions of
Boxer Shorts.

4.12.5 Technical Support

Menu: Help > Technical Support

mailto:info@boxersoftware.com

Boxer Text Editor410

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

There are several ways to receive technical support for Boxer. The first and most
obvious resource is the online Help. Online help contains detailed information on the
configuration and use of Boxer, and for all of its commands. If you are having
problems, please consult the relevant section of help before contacting us for support.
You may also be able to find answers to some common questions on our website:

www.boxersoftware.com

Email
You can send electronic mail to us via the Internet. We prefer this method of support
since it allows us to fully research a problem before responding. Also, we can
sometimes reuse an earlier reply for a problem which has been experienced by more
than one person. We typically check email several times a day:

support@boxersoftware.com

Telephone
You can also reach us by telephone Monday through Friday, 10:00 AM to 4:00 PM,
Mountain Standard Time.

Voice: +1-602-485-1635

Postal Mail or Fax
Finally, you can mail or fax your inquiry to us. If you choose one of these methods,
please be sure to describe your problem fully and include any information which may
help us to diagnose the problem. Whenever possible, please provide an email address
so that we can make return contact quickly and easily.

Fax: +1-602-485-1636

Boxer Software
PO Box 14545

Scottsdale, AZ
85267-4545 U.S.A.

4.12.6 Order Boxer

Menu: Help > Order Boxer

Default Shortcut Key: none

Boxer has an in-software order form to make ordering fast and easy. The order form is
available by selecting the Order Boxer option from the Help menu, or by clicking the
dollar bill icon on the toolbar of the evaluation version.

http://www.boxersoftware.com
mailto:support@boxersoftware.com

Command Reference (in menu order) 411

Copyright © 1991-2010 by Boxer Software

This order form can be used to submit your order by email, or to print an order form
which can later be faxed or mailed along with payment. In all cases you can be assured
that your order will receive prompt attention, and that we will safeguard your personal
information. Boxer Software does not share its customers' mailing addresses, or email
addresses, with any third parties.

If you prefer to print an order form from within this help file, and then mail or fax it
to us, use this order form.

The Order Form will compute your total automatically as you complete your order. If a
Multi-User License is being ordered, click the appropriate option and enter the quantity
desired. The total will be updated automatically to reflect the quantity ordered.
Likewise, shipping is computed according to the destination country, and depending on
whether delivery will be made by email or postal mail (delivery by email is free). If you
elect to have the software sent via email, an http link will be sent from which you can
download the software; the software is not sent by email attachment.

Ordering by Email

Complete the form, and then click Copy to Clipboard to copy the information entered to
the Windows clipboard. Click Send via Email to launch your email program. The To

Boxer Text Editor412

Copyright © 1991-2010 by Boxer Software

field of your email program should auto-fill with sales@boxersoftware.com. Paste the
order information from the clipboard into the message body and send the message in
the usual way. Note that your credit card information will be encoded using a
proprietary encoding algorithm for added security. We will decode the information after
your order arrives.

If your email program does not launch after clicking Send via Email, simply start it
in the usual way and paste the content on the clipboard into the body of a new
message. Send the message to sales@boxersoftware.com.

Ordering at our Website

Visit www.boxersoftware.com to order from our secure order page. Full ordering details
are provided at the site.

Ordering by Phone

Call toll-free within the U.S. and Canada at 1-800-98-BOXER (1-800-982-6937) to

order. Have your credit card ready; our sales representative will prompt you for the
required information. From outside the U.S. and Canada call +1-602-485-1635.

Business hours are Monday through Friday, 9 AM to 5 PM MST.

Ordering by Fax

Complete the form, and then click Print. Fax the order form to Boxer Software at

+1-602-485-1636. Note that your credit card information will be encoded with a

proprietary encoding algorithm for added security. We will decode the information after
your order arrives. Our fax line is available 24 hours a day.

Ordering by Mail

Complete the form, and then click Print. Mail the order form to Boxer Software, PO
Box 14545, Scottsdale, AZ 85267-4545. Note that your credit card information

will be encoded with a proprietary encoding algorithm for added security. We will
decode the information when your order arrives.

Ordering from Overseas

International Agents are available for those who might prefer to place their order with

a local agent. Our agents accept payment in local currency and ship product from
stock. Technical support services are also available.

Payment

Payment can be made in a variety of ways:

Credit Card
Visa, MasterCard, Discover or American Express

U.S. Check or Money Order
Made payable to 'Boxer Software'

mailto:sales@boxersoftware.com
mailto:sales@boxersoftware.com
http://www.boxersoftware.com

Command Reference (in menu order) 413

Copyright © 1991-2010 by Boxer Software

Purchase Order
Purchase Orders can be mailed or faxed. Please make sure the Purchase Order includes
both the shipping and invoicing addresses. Our payment terms are Net 30 days.

Western Union
Wire funds to 'David Hamel' and tell us the Control Number for the transaction, as well
as the sender's name and the exact amount sent. Western Union also allows wire
transfers to be made from their website: www.westernunion.com

U.S. Cash
Sent by certified or registered mail

PayPal
Send funds to 'sales@boxersoftware.com'. Don't have PayPal yet? Click here to sign
up: www.paypal.com

International Money Order
Available at most banks. Money order should be drawn on a U.S. bank, in U.S. Funds,
payable to 'Boxer Software'

International Postal Money Order
Available at the Post Office. Money order should be drawn in U.S. Funds, payable to
'Boxer Software'

Bank Wire Transfer
Please contact us for current bank transfer information. A $5.00 surcharge must be
added to help offset the wire transfer fees we are assessed by our bank.
(Note: U.S. banks are not nearly as efficient as European banks with regard to bank
wire transfers. Incoming transfers are slow, and receiving fees can be as high as
$20.00. For this reason, we strongly encourage using another method of payment.)

4.12.7 Boxer Software Order Form

If you prefer not to order online, use the Print button to print this order form, and then
mail or fax it to us.

 BOXER SOFTWARE ORDER FORM

NAME: ___

(COMPANY:) ___

ADDRESS: ___________________________ CITY/TOWN: ________________

STATE/PROV: ______________________ ZIP/POST CODE: _________________

COUNTRY: ____________________ PHONE: __________________________

EMAIL: ___

http://www.westernunion.com
https://www.paypal.com

Boxer Text Editor414

Copyright © 1991-2010 by Boxer Software

 MC/VISA/DISCOVER/AMEX: ______________________________ Exp ___ /___

 CARDHOLDER: __

 SIGNATURE: _______________________________ DATE: ____ /____ /____

HOW DID YOU FIRST LEARN OF BOXER SOFTWARE? ________________________

FOR WHAT TASKS DO YOU USE OUR PRODUCT? ___________________________

QTY DESCRIPTION PRICE TOTAL

___ Boxer Text Editor $59.99 ____.__

___ Text Monkey 29.99 ____.__

___ The Permutator 49.99 ____.__

___ File Append and Split Tool 19.95 ____.__

___ Shipping: $4.00 U.S./Canada, $6.00 elsewhere ____.__

 TOTAL: ____.__

 Boxer Software, Post Office Box 14545, Scottsdale, AZ 85267-4545
Sales: 800-982-6937 Voice: +1-602-485-1635 Fax :
+1-602-485-1636
 sales@boxersoftware.com www.boxersoftware.com

4.12.8 Check for Latest Version

Menu: Help > Check for Latest Version

Default Shortcut Key: none

This command can be used to check if the version of Boxer being used is still
up-to-date. This command will launch your Internet browser to display a special page
at the Boxer Software website. If a new version of Boxer is available, details will be
given on how to get the update. Minor updates to Boxer will be made available
free-of-charge. See the topic Upgrade Information for more information.

In order to launch your Internet browser, Boxer relies upon the operating system
shell's ability to open an Internet address. When an Internet browser is installed, it
typically establishes itself as the program which is called by the shell to open such
addresses. This is true of all common browsers you are likely to encounter. If you
find that your Internet browser is not launched by Boxer, or if some other inactive
browser is launched instead, it's because your active browser has not established

Command Reference (in menu order) 415

Copyright © 1991-2010 by Boxer Software

itself as the one that processes the 'open' request from the operating system shell
for Internet addresses. This situation should be rare, cannot be remedied by Boxer,
and is not due to any shortcomings in Boxer.

4.12.9 Contact Information

Menu: Help > Contact Information

Default Shortcut Key: none

The Contact Information command displays this dialog:

4.12.10 Email Boxer Software

Menu: Help > Email Boxer Software

Default Shortcut Key: none

This command displays a dialog box with email addresses which can be used to contact
us at Boxer Software. Just click on the email address that fits your need, and your
email client will be run so that a message can be sent.

Boxer Text Editor416

Copyright © 1991-2010 by Boxer Software

In order to launch your email program, Boxer relies upon the operating system
shell's ability to process a 'mailto' directive. When an email client program is
installed, it typically establishes itself as the program which is called by the shell to
process the 'mailto' directive. If you find that your active email program is not
launched by Boxer, or if some other inactive email program is launched instead, it's
probably because your active email program did not establish itself to be the
program that processes mailto commands. This situation cannot be remedied by
Boxer, and is not due to any shortcomings in Boxer. You might consult the
documentation of your email program or contact its vendor.

4.12.11 Boxer Software Website

Menu: Help > Boxer Software Website

Default Shortcut Key: none

This command displays a dialog box with the address of the Boxer Software Website.
Just click the address and your Internet browser will be run, taking you to our website.
If you prefer that Boxer be minimized before the browser is run, an option is provided
to do so.

The Boxer Software Website has a host of information that will be of interest to all
users of Boxer. We invite you to visit the site periodically to learn about new products,

Command Reference (in menu order) 417

Copyright © 1991-2010 by Boxer Software

upgrades, and usage tips, and for other information which will be posted.

You can also visit our site by clicking here: www.boxersoftware.com

4.12.12 About Boxer

Menu: Help > About Boxer

Default Shortcut Key: none

The About Boxer command displays a popup box with information about the software
version and copyright.

When the "System Info" link at the lower left of the image is clicked, this dialog is
displayed:

http://www.boxersoftware.com

Boxer Text Editor418

Copyright © 1991-2010 by Boxer Software

Data folder
This edit box displays the full path of the current Data folder. You can use the Explore
Data Folder command to open an Explorer window that points to this folder.

Program folder
This edit box displays the full path of the current Program folder. You can use the
Explore Program Folder command to open an Explorer window that points to this folder.

Command line
This edit box displays the full command line that was used to invoke the current editing
session. If any command line options have been used, they will appear in this display.

Active INI file or registry location
This edit box display the location from which the editor's settings were loaded, be it
from a disk-based INI file, or from the Windows registry. If the -I command line option
has been used to designate an alternate INI file, that directive's effect will be reflected
here.

The various Boxer-related directories are presented in read-only edit boxes, making
it possible to select them as text and copy them to the Windows clipboard.

Command Reference (alphabetically) 419

Copyright © 1991-2010 by Boxer Software

5 Command Reference (alphabetically)

5.2 Active Spell Checking

5.2 Active Spell Checking

Menu: View > Active Spell Checking

Default Shortcut Key: Alt+F7

Macro function: ActiveSpellChecking()

The View Active Spell Checking command is used to toggle on/off a display mode in
which misspelled words are underlined with a squiggly line. When this mode is on,
Boxer will underline words as you type if they are not found in the active spell checker
dictionary.

Note that Boxer does not wait for you to press Space and move off the word before
deciding whether an underline will appear: the visual feedback is provided
instantaneously. This makes it easier to experiment with alternative spellings, or to
make a correction early in the word before it is completely typed.

If you right click on an underlined word, the misspelled word context menu will appear:

Boxer Text Editor420

Copyright © 1991-2010 by Boxer Software

The context menu shows up to ten suggested corrections for the misspelled word, as
well as other options related to spell checking.

Add Word
Use the Add Word option to add the offending word to the dictionary. Words which are
added to the dictionary are saved within the file userdict.txt in Boxer's data folder.

This file can also be edited within Boxer to add other words, or to remove words which
may have been added mistakenly.

Words which are added to the user dictionary will be accepted as correctly spelled
words in any case configuration in which they may occur. For example, if the word

ebay is added to the dictionary, it will be accepted in any of the following forms:

eBay, ebAy, and ebaY. This liberal processing was necessary because the

third-party dictionary that Boxer uses is not processed in a case sensitive manner.
Before this handling was put in place, the word eBay would always be reported as

misspelled, even when eBay (or any variant) had been added to the user dictionary.

Ignore All
Use the Ignore All option to ignore the offending word, and to indicate that all other
occurrences of the word should also be ignored.

Active Spell Check
Use this option to disable the Active Spell Checking feature. It can be reactivated using
the View | Active Spell Checking command.

Command Reference (alphabetically) 421

Copyright © 1991-2010 by Boxer Software

Spell Checker
Use this option to initiate a full spell checking scan with the Tools | Spell Checker
command.

Reset Ignore List
This option can be used to clear the list of ignored words that have been added with
the Ignore All option, or from earlier use of the Ignore button on the Spell Checker
dialog.

Options
This menu entry opens the Configure | Preferences dialog to the page that contains the
spell checker options.

Cut Word
Use this option to cut the misspelled word to the current clipboard.

Copy Word
Use this option to copy the misspelled word to the current clipboard.

Paste
Use this option to paste text from the current clipboard.

For general information about Boxer's spell checker, see the Spell Checker command.

The Configure | Preferences | Other dialog page contains a section with options
related to Spell Checking.

5.3 Add All

Menu: Project > Add All

Default Shortcut Key: none

Macro function: ProjectAddAll()

Use the Add All command to add all open files to the active project.

This command can be used safely even when some of the open files are known to
already reside within the active project. Duplicate entries will not result.

See the Project | New command for full details about Boxer's project file feature.

5.4 Add One

Menu: Project > Add One

Default Shortcut Key: none

Boxer Text Editor422

Copyright © 1991-2010 by Boxer Software

Macro function: ProjectAddOne()

Use the Add One command to add the current file to the active project.

See the Project | New command for full details about Boxer's project file feature.

5.5 Align Center

Menu: Paragraph > Align Center

Default Shortcut Key: Ctrl+F8

Macro function: AlignCenter()

The Align Center command centers the current line within the current Text Width. The
cursor is moved to the line below upon completion.

If text is selected, all lines within the selected range will be centered.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Center command is issued when a columnar selection is in force, the
effect of the command will be to center align the selected text within the extent of
the rectangular selection.

5.6 Align Left

Menu: Paragraph > Align Left

Default Shortcut Key: Ctrl+F7

Macro function: AlignLeft()

The Align Left command moves the current line flush against the left edge, removing
any indent which may have been present. The cursor is moved to the line below upon
completion.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Left command is issued when a columnar selection is in force, the effect
of the command will be to left align the selected text within the extent of the
rectangular selection.

Command Reference (alphabetically) 423

Copyright © 1991-2010 by Boxer Software

5.7 Align Right

Menu: Paragraph > Align Right

Default Shortcut Key: Ctrl+F9

Macro function: AlignRight()

The Align Right command moves the current line flush against the right margin, as
determined by the current Text Width. The cursor is moved to the line below upon
completion.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Right command is issued when a columnar selection is in force, the
effect of the command will be to right align the selected text within the extent of the
rectangular selection.

5.8 Align Smooth

Menu: Paragraph > Align Smooth

Default Shortcut Key: Ctrl+F11

Macro function: AlignSmooth()

The Align Smooth command adjusts the current line to be flush against both the left
and right margins. The right margin is determined according to the current Text Width.
The cursor is moved to the line below upon completion.

Spaces are inserted alternately in the left, center and right portions of each line to
minimize the appearance of rivers and valleys in the justified text.

If text is selected, all lines within the selected range are affected.

This command will not cause words to be wrapped across lines. Use the Reformat
command, with the desired Justification Style, for this purpose.

If the Align Smooth command is issued when a columnar selection is in force, the
effect of the command will be to smooth align the selected text within the extent of
the rectangular selection.

5.9 ANSI Chart

Menu: Tools > ANSI Chart

Boxer Text Editor424

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: ANSIChart()

The ANSI Chart command provides access to a popup chart which displays characters 0
to 255 in the ANSI character set. The character's visual representation is shown in the
leftmost column, followed by the character value in decimal, hexadecimal, octal and
binary formats. The active code page is also displayed at the top of the dialog:

To jump directly to a character of interest, simply press that character on the keyboard.

The ANSI Chart can be used to insert a character into the file being edited. Simply
double click on the entry for the desired character or highlight the character in the
chart and press Enter. When the need to insert a special character or symbol arises
frequently, consider using the Insert Symbols feature rather than the ANSI Chart
command. The Insert Symbols feature permits a defined character to be entered using
a single keystroke.

Command Reference (alphabetically) 425

Copyright © 1991-2010 by Boxer Software

Right-clicking on a selected item summons the ANSI Chart context menu. The context
menu provides an option to copy the selected character to the current clipboard.

The ANSI Chart can also be used to convert between bases for values in the range 0 to
255. Simply locate the value to be converted in its proper column and read the
converted value from the column of the new base.

If you prefer that the ANSI Chart remain atop other windows, select the Stay on top
option. The ANSI Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

The ANSI Chart uses the same font and code page as the current screen font.

If the ANSI Chart left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

5.10 ANSI to OEM

Menu: Block > Convert Other > ANSI to OEM

Default Shortcut Key: none

Macro function: ANSItoOEM()

The ANSI to OEM command converts characters within the selected text from ANSI
character encoding to OEM (ASCII) character encoding. These character encoding
schemes share all the common alphabetic and numeric character mappings, but differ
in the area of accented and/or graphic characters. A conversion may be appropriate
when a file which was created with a Windows program must be prepared for use with a
DOS program. Note that not all characters will have equivalents in the destination
character set. In such cases a conversion will not be made for that character.

Boxer's ANSI Chart and OEM Chart commands can be useful for viewing the character
assignments in each of these encoding schemes.

5.11 Append

Menu: Edit > Append

Default Shortcut Key: Shift+Ctrl+C

Macro function: Append()

The Append command copies the selected text from the current file and adds it to the
current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Append command will operate on the current line. This

Boxer Text Editor426

Copyright © 1991-2010 by Boxer Software

behavior can be controlled on the Configure | Preferences | Editing 1 options page. The
option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

Text cannot be appended to a clipboard if the selection type (stream or columnar)
differs from the type of the text which is already present on the clipboard.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
allows a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

5.12 Apply Highlighting

Menu: View > Apply Highlighting

Default Shortcut Key: none

Macro function: ApplyHighlighting()

This command can be used to add the word at the text cursor -- or the currently
selected text -- to the list of phrases that are to be highlighted by the Text Highlighting
command. This feature can be used to make table headings stand out, or to add
emphasis to any class of words or phrases that might be desired. The highlighting
strings are saved and restored from session to session. The color used to highlight the
designated strings is configurable using the Configure | Colors dialog. Text Highlighting
can be applied to normal text files, or to program files which are already being Syntax
Highlighted. The highlighting of strings can be quickly toggled on/off by using the View
| Text Highlighting command.

This command is also available from the context menu.

Command Reference (alphabetically) 427

Copyright © 1991-2010 by Boxer Software

5.13 Arrange Icons

Menu: Window > Arrange Icons

Default Shortcut Key: none

Macro function: ArrangeIcons()

The Arrange Icons command can be used to neatly position minimized windows icons at
the bottom of the client area. When several windows have been minimized, and some
are later restored to normal size, the display of the remaining minimized windows can
become untidy. The Arrange Icons command is useful in this situation.

5.14 ASCII to EBCDIC

Menu: Block > Convert Other > ASCII to EBCDIC

Default Shortcut Key: none

Macro function: ASCIItoEBCDIC()

This command will convert text encoded in the ASCII character set to the EBCDIC
character set. The text to be converted must first be selected. If an entire file is to be
converted, use the Select All Text command to select the whole file.

EBCDIC is a character encoding system used primarily on mainframe computers. The
ASCII character encoding system is used widely on personal computers. At times, a file
that uses ASCII encoding may need to be converted for use on a computer that uses
the EBCDIC character encoding system. This command can be used for that purpose.

ASCII is an acronym for American Standard Code for Information Interchange.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

5.15 Auto-Complete

Menu: Tools > Auto-Complete

Default Shortcut Key: Ctrl+Space

Macro function: none

Boxer's Auto-Complete feature will display a popup list of matching words that can be
used to complete a partially typed word at the text cursor. The popup list will appear
after a (user-configurable) number of characters have been entered, and contains only
those words that match the characters just typed. There is no need to interact with the

Boxer Text Editor428

Copyright © 1991-2010 by Boxer Software

list: if you prefer to keep typing, the list will simply disappear when it becomes
irrelevant.

To select a word from the popup list, simply press the number displayed to its left, or
use the down arrow to cursor into the list and press Enter at the desired entry.

The display (and recognition) of the hot numbers within the popup list is optional.
It can be controlled on the Configure | Auto-Complete | Popup List dialog page.

 If the suggestions within the popup list contain digits, the hot numbers feature will
be automatically disabled. Otherwise, the entry of alphanumeric text strings would
become confusing and error prone.

Discussion

Much of the utility of the Auto-Complete feature derives from the relevance of the
words that are presented in the popup list.
Auto-Complete builds its list of matching words from four sources:

· user-defined phrases

· the existing text of the current document

· the reserved word list for the current file type (when applicable)

· an external, user-editable dictionary of 37,000 long words

User-defined phrases are those words and phrases that have been pre-defined on the
Configure Auto-Complete - User-Defined dialog page. These might include common
text strings that you use in your work, your mailing address, email address, etc. These
phrases are given highest priority and will appear first in the completion list.
User-defined phrases can also be set to expand 1) as soon as they're typed (bte could

Command Reference (alphabetically) 429

Copyright © 1991-2010 by Boxer Software

auto-expand to 'Boxer Text Editor'), 2) only when a delimiter is typed, or 3) only when
the Trigger Key is pressed. See Configure Auto-Complete - User-Defined for full details.

Auto-Complete also analyzes the content of the current file to find potential matches for
the completion list. This means that words and phrases that are particular to your
document are automatically suggested as matching words. If you're editing a
document that contains the term 'diethylthiocarbamate', that word will appear in the
completion list, even though it doesn't appear in the dictionary proper. Auto-Complete
also intelligently harvests phrases from program source code, making the feature useful
for programmers as well.

When editing a file for which Syntax Highlighting has been defined, the reserved words
for that language will be used as completion words.

Finally, Auto-Complete uses a large dictionary of English* words from which all shorter
words have been removed. This dictionary is maintained in simple, uncompressed
ASCII text format, and is therefore user-editable. The dictionary can be viewed and/or
edited from the Configure Auto-Complete - Dictionary dialog page.

* Dictionaries for other languages are not available at this time, but if you can
locate a large word list for the language of interest, you can use that list to replace
the AC_Words.txt file provided with Boxer. The Sort Lines command has an

option to sort lines by line length, making it easy to locate and remove smaller
words from the list. If you assemble your list from multiple sources, use the Delete
Duplicate Lines to remove duplicates. The final word list should contain one
word/phrase per line, and be ASCII-sorted, case insensitive.

Customization

Auto-Complete is the type of feature that some users will have very strong feelings
about. Users are sure to have different ideas about when the popup list should appear,
where it should appear, whether it should appear at all, how many entries it should
have, which words should appear in the list, etc. Auto-Complete has an extensive
collection of configuration options to control every aspect of its operation. The following
help topics cover the configuration of the Auto-Complete feature:

General Settings
Popup List Settings
User-Defined Phrases
Harvested Words
Dictionary Words
Excluded Words

If the default Auto-Complete settings don't feel perfect to you, you are encouraged to
spend a few minutes experimenting with the various options to make sure it feels just
right.

Manual Operation

Some users may find the popup list distracting, and opt to disable it. When
Auto-Complete is configured not to display a popup list, the Trigger Key can be used to
complete the partially typed word at the text cursor. Pressing the Trigger Key

Boxer Text Editor430

Copyright © 1991-2010 by Boxer Software

repeatedly cycles through the available matches. By default, the Trigger Key for
Auto-Compete is Ctrl+Space.

The popup list can be displayed at any time by using the Auto-Complete List command.
This command is useful when the popup list has been disabled, or when you want to
force the list to appear in a situation where it would not naturally appear (for example,
when you haven't typed enough characters for it to appear).

5.16 Auto-Complete List

Menu: Tools > Auto-Complete List

Default Shortcut Key: Ctrl+Alt+Down

Macro function: none

The Auto-Complete List command can be used to force the popup list of matching words
to appear in situations when it wouldn't appear naturally on its own. One such case is
when an insufficient number of characters has been typed to cause the list to appear.
Another case is when the popup list has been configured not to appear at all.

For more complete information about Auto-Complete, see the Auto-Complete topic.

5.17 Auto-Complete - Settings

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

Command Reference (alphabetically) 431

Copyright © 1991-2010 by Boxer Software

The Settings tab of the Configure Auto-Complete dialog contains general options that
relate to the Auto-Complete feature.

Auto-Complete is active
The checkbox is the master on/off switch for the Auto-Complete feature. If this box is
unchecked, all Auto-Complete features and functions will be disabled.

Build the Harvested phrase list by analyzing text in the current file
Use this checkbox to control whether or not the current file will be analyzed to harvest
words for use with the Auto-Complete feature. If harvesting is not performed, the
matching word list will be built from other sources: user-defined phrases, reserved
words, and the master dictionary.

Ignore phrases with fewer than n characters
Use this option to specify the shortest word that should be collected during
harvesting. Auto-Complete is most effective when used to complete longer words,
so there's little benefit to storing very small words when harvesting.

Store all case variations encountered (Boxer, BOXER, boxer...)
Use this checkbox to specify how case variations should be handled during

Boxer Text Editor432

Copyright © 1991-2010 by Boxer Software

harvesting. When checked, all different case variations will be collected. When
unchecked, only the first case variation of a given word will be stored.

In addition to spaces, tabs and newlines, treat the following
characters as delimiters when harvesting words and phrases in...

Normal files
These characters will be treated as word delimiters when harvesting words from
normal files -- that is, from files that do not have a Syntax Highlighting
definition entry.

Program files
These characters will be treated as word delimiters when harvesting words from
program files -- that is, from files that do have a Syntax Highlighting definition
entry.

The Program files delimiter characters control how the Auto-Complete feature
harvests code fragments from the current file. This list of delimiters will
typically have fewer characters in it than the Normal files list of delimiters, so
that longer code fragments can be collected. Regardless of the delimiters
listed here, Auto-Complete will also harvest program files with a more
restrictive delimiter list so that the individual elements of a code fragment
appear on their own. For example, the code fragment

structure_name->variable_name[index_variable] might be

collected in its entirety due to the Program files delimiters that are in use.
Regardless of those delimiters, structure_name, variable_name and

index_variable will be harvested as individual entries as well.

Use words from the Dictionary list as potential expansion phrases
This checkbox controls whether or not dictionary words will be used to build the
matching word list.

Use reserved words for the current file type as potential expansion phrases
This checkbox controls whether or not reserved words from the Syntax Highlighting
information for the current file will be used to build the matching word list.

Add harvested phrases to the user-defined phrase list after successful use
When this option is checked, harvested words will be automatically added to the
User-Defined phrase list after they have been used successfully in a word completion.
In this way, the User-Defined phrase list will become filled with the words that you use
most often, and the Auto-Complete feature will become more tuned to your work style.

Ignore case when matching the typed text to a trigger sequence or phrase
Use this option to indicate whether or not character case should be considered when
comparing typed text to User-Defined trigger sequences and phrases.

Beep after the trigger key has been used to cycle through all matching phrases
This option controls whether or not an audible beep should occur after the Trigger Key
has been used to cycle through all potential matches.

When a delimiter triggers a user-defined phrase, insert the delimiter into the

Command Reference (alphabetically) 433

Copyright © 1991-2010 by Boxer Software

text as well
This option controls how a delimiter character should be treated when it is used to
trigger a User-Defined phrase.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

5.18 Auto-Complete - Popup List

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Popup List tab of the Configure Auto-Complete dialog contains options that relate to
the presentation of the popup list of matching words.

Boxer Text Editor434

Copyright © 1991-2010 by Boxer Software

Display a popup list of matching words/phrases as text is typed
Use this checkbox to indicate whether or not the popup list box should appear while
text is being typed. When disabled, the popup list can still be displayed using the
Auto-Complete List command.

Don't show popup list until at least n characters have been typed
Use this option if you prefer that the display of the list be determined by the
number of characters that have been typed. When this option is used, the popup
list will appear as soon as 'n' characters have been typed, provided there are
matches available.

Don't show popup list until n or fewer matching phrases exist
Use this option if you prefer that the popup list not be shown until the number of
matches falls below a certain threshold. When this option is used, display of the
popup list will be suppressed until enough typing has occurred to narrow the list to a
given number of matching words.

Number of lines displayed in popup list
This option controls the number of visible entries in the popup list -- ie, the height
of the list.

Maximum number of items in popup list
This option controls the maximum number of items that will appear in the list. If
this values exceed the number of lines, a vertical scroll bar will be added to the list.

Don't show suggestions with fewer than n characters
Use this option to specify the shortest word that should appear in the popup list.

Whenever possible, position the popup list above/below the current line
Use this option to specify where the popup list will appear in relation to the current
line. When the current line is near screen top or screen bottom, the list may need
to be moved to keep it on-screen.

Display hot numbers to the left of the first nine entries
This option is used to control the display and recognition of hot numbers within the
popup-list.

Display the "Configure..." quick link at the bottom of the popup list
This option is used to control the display of the hot link at the bottom of the list.

Set Popup List Key
Use this button to change the key used to force display of the popup list. See the
Auto-Complete List command for full details.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

Command Reference (alphabetically) 435

Copyright © 1991-2010 by Boxer Software

5.19 Auto-Complete - User-Defined

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The User-Defined tab of the Configure Auto-Complete dialog allows words and phrases
to be defined for use with the Auto-Complete feature.

Discussion

One of the most powerful elements of Boxer's Auto-Complete function is the ability to
define words and phrases which will expand automatically, after a delimiter character is
typed, or when the Trigger Key is typed. The phrases in the dialog pictured above
provide a good sampling of the types of assignments that are possible.

Three types of user-defined phrases are available:

· Instant - these phrases will be auto-inserted the instant the sequence string is typed.

Boxer Text Editor436

Copyright © 1991-2010 by Boxer Software

In the sample phrase set, typing 'htt' will cause the string 'http://www.' to be

inserted.

· Trigger - these phrases will be inserted only when the sequence string is typed
followed by the Trigger Key. In the sample phrase set, if 'eula' is typed, and the

Trigger Key is typed, 'end user license agreement' will be inserted.

· Delimiter - these phrases will be auto-inserted only when the sequence string is
followed by a delimiter character. In the sample phrase set, typing 'teh' followed

by (say) space will cause 'the' to be inserted -- an auto-correction for mistyping

'the'.

These three activation styles provide both utility and flexibility. Some phrases are best
defined as Instant, while others are naturally more suitable to being Trigger or
Delimiter style phrases.

You might want to invent your own conventions for defining phrases. By using an
obscure lead-in or trailing character in the sequence string, virtually all phrases can
be defined as Instant. For example, if the addr sequence string had been defined

instead as ~addr, its activation type could have been Instant since there would be

almost no chance of ~addr being typed in the course of normal work. Likewise,

use addr~ as the sequence string effectively makes ~ the new Trigger Key.

New
Use the New button to create a new User-Defined phrase. The following dialog will

appear:

Command Reference (alphabetically) 437

Copyright © 1991-2010 by Boxer Software

If the phrase will be triggered by a text string, enter the sequence string in the upper
edit box. Enter the phrase itself in the Phrase memo box. Multi-line expansion
phrases are allowed; press Enter to being a new line in the phrase. Finally, select the
type of activation desired using the radiobuttons at the bottom of the dialog.

Expansion Codes
To define a phrase that includes expansion codes, click the Codes button to expose the
list of expansion codes:

Expansion codes will be expanded when the phrase is inserted to reflect their meaning.
A variety of codes for time, date and various filename functions are available.

Edit
Use the Edit button to edit the settings for the selected phrase.

Delete
Use the Delete button to delete the selected phrase.

Delete All
Use the Delete All button to erase all user-defined phrases. A confirmation will be
required before the operation is performed.

Load Samples
The Load Samples button will add a small collection of sample phrases to the list of
user-defined phrases. Any phrases that are already present in the list will not be
disturbed.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

Boxer Text Editor438

Copyright © 1991-2010 by Boxer Software

5.20 Auto-Complete - Harvested

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Harvested tab of the Configure Auto-Complete dialog displays the words that have
been harvested from the current document.

If the Harvested word list is large, the dialog will be displayed initially with an empty
list. Use the Show option at the lower right to select the starting letter of the words
you would like to view.

The Harvested word list is a temporary and transient word list. It is built on-the-fly by
analyzing the current file. When an edit session ends, the Harvested word list is
deleted. If the Harvested word list contains words that you would like to make
permanent, there are buttons available to move words to other lists. It is not
meaningful to delete a word from the Harvested word list, because it will simply
reappear in the list the next time the file is next analyzed.

Command Reference (alphabetically) 439

Copyright © 1991-2010 by Boxer Software

Refresh
Use the Refresh button to request that the current file be re-analyzed to build the
harvested word list. This option is useful to check the effect of changes made on the
Settings dialog tab.

Move to User-Defined
Use the User-Defined button to move the selected word to the User-Defined word list.
The New User-Defined Word dialog will appear so that additional information can be
provided.

Move to Dictionary
Use the Dictionary button to move the selected word to the master Dictionary. This
ensures that the word will subsequently appear in the popup list of matching words,
even if it does not already exist in the current file.

Move to Excluded
Use the Excluded button to move the selected word to the Excluded word list. Words in
the Excluded word list will never appear in the popup list of matching words.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

5.21 Auto-Complete - Dictionary

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Dictionary tab of the Configure Auto-Complete dialog can be used to view or edit
the Auto-Complete master word list.

Boxer Text Editor440

Copyright © 1991-2010 by Boxer Software

Initially, the dialog will be displayed with an empty list. Use the Show option at the
lower right to select the starting letter of the words you would like to view.

Edit Dictionary Words in Boxer
Click this button to load the dictionary word list into Boxer for viewing or editing. The
word list is maintain in a simple ASCII text file, so it can be edited directly without
complication. You can add new words, or remove existing words.

The format of the dictionary file is straightforward: one word per line, alphabetically
sorted, case insensitive. You can use the Sort Lines command, if needed to sort the file
after additions have been made.

Dictionaries for other languages are not available at this time, but if you can locate
a large word list for the language of interest, you can use that list to replace the

AC_Words.txt file provided with Boxer.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

Command Reference (alphabetically) 441

Copyright © 1991-2010 by Boxer Software

5.22 Auto-Complete - Excluded

Menu: Configure > Auto-Complete

Default Shortcut Key: none

Macro function: none

The Excluded tab of the Configure Auto-Complete dialog can be used to view or edit the
Excluded word list. Words that appear in the Excluded word list will never appear in the
popup list of matching words, even though they might otherwise be eligible to appear
there. If you find that a certain word is being suggested for completion, and you find
its presence in the popup list to be bothersome, simply add that word to the Excluded
word list.

New
Use the New button to add a word to the Excluded word list.

You can use a string of the form abc* to cause all phrases beginning with abc to be

excluded.

Boxer Text Editor442

Copyright © 1991-2010 by Boxer Software

Edit
Use the Edit button to edit an existing word in the list.

Delete
Use the Delete button to delete a word from the list.

Set Trigger Key
Use the Set Trigger Key button to change the key that is used to complete a partially
typed word, or expand a User-Defined phrase with trigger style activation.

5.23 Auto-Number

Menu: Block > Auto-Number

Default Shortcut Key: None

Macro function: AutoNumber()

The Auto-Number command can be used to automatically number a selected range of
lines. A variety of options are available to control the numbering operation, and are
described below:

Numbering

Command Reference (alphabetically) 443

Copyright © 1991-2010 by Boxer Software

Start at
This is the value that will be used to start the numbering from.

Step by
This is the increment that numbering will jump by from line to line. Programmers
might use 10 or 100 for program listings, for example.

Use actual line numbers
This option allows the line number for each line to be used. When this option is used,
the Start at and Step by options are disabled.

Skip blank lines
Use this option to control whether or not blank lines will be numbered.

Restart after blank lines
This option causes line numbering to restart from the starting value after a sequence of
one or more blank lines is encountered.

Order

Ascending
Use this option for numbering which increases in value.

Descending
Use this option for numbering which decreases in value.

Options

Insert leading zeros
This option can be used to force leading zeros on the numbers.

Field width
Use the field width property to control the width of the numbers that will be generated.
Use '0' for automatic sizing.

Prefix string
Use this edit box to specify the text to be placed at the left of the numbers.

Suffix string
Use this edit box to specify the text to be placed at the right of the numbers.

Justification

Left justify
This option can be used for numbering which is left aligned.

Right justify
This option can be used for numbering which is right aligned.

Number System

Decimal

Boxer Text Editor444

Copyright © 1991-2010 by Boxer Software

Use this option for numbering in the decimal system.

Hexadecimal
Use this option for numbering in the hexadecimal system. The case of the alphabetic
characters used can be controlled with the Lowercase and Uppercase options below.

Octal
Use this option for numbering in the octal system.

Base
Use this combobox to select any base in the range 2 to 36. For bases 11 and above,
alphabetic characters are used in place of digits. The case of the alphabetic characters
used can be controlled with the Lowercase and Uppercase options below.

Roman Numeral
Use this option for numbering with Roman Numerals. The case of the alphabetic
characters used can be controlled with the Lowercase and Uppercase options below.

Case

Lowercase
This option can be used to dictate that lowercase characters be used when Hexadecimal
or Roman Numeral numbering is in use.

Uppercase
This option can be used to dictate that uppercase characters be used when Hexadecimal
or Roman Numeral numbering is in use.

5.24 Auto-Update

Menu: Project > Auto-Update

Default Shortcut Key: none

Macro function: ProjectAutoUpdatel()

This option can be used to keep the editing options of the active project updated
automatically. As windows sizes, window locations, bookmarks, cursor locations and
other file-specific options change, the project file will be updated automatically. Each
project is permitted to have a different Auto-Update setting, if desired.

If you prefer to maintain project settings manually, the Update One and/or Update All
commands can be used to manually update the editing options for the current file, or all
open files, on an as-needed basis.

5.25 Backtab

Menu: Jump > Backtab

Command Reference (alphabetically) 445

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Alt+Left Arrow

Macro function: Backtab()

The Backtab command is used to move the text cursor backward to the previous
tabstop. The size of tabstops is determined by the Tab Display Size command.

5.26 Bookmark Manager

Menu: Jump > Bookmark Manager

Default Shortcut Key: Shift+F9

Macro function: BookmarkManager()

The Bookmark Manager command displays a pop-up dialog showing all bookmarked
lines in the files being edited. Double clicking on an entry causes the associated file to
become current, and the cursor to be placed on the bookmarked line. The display can
be sorted on any of the fields by clicking on the header bar at the top of each field.
Press the Delete key to remove a bookmark.

The Bookmark Manager can be left open while working in Boxer, so that it's available
for reference or quick navigation.

Boxer Text Editor446

Copyright © 1991-2010 by Boxer Software

Show filepaths
Use this option to control whether filenames or full filepaths are displayed for each
bookmark entry.

Stay on Top
This checkbox controls whether or not the dialog will remain on top of other windows.

Show Grid Lines
Use this option to toggle on/off the display of grid lines within the view.

Show all bookmarks
This checkbox can be used to control whether bookmarks are displayed for all open
files, or for only the current file.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

5.27 Bookmarks

Menu: View > Bookmarks

Default Shortcut Key: Alt+F2

Macro function: ViewBookmarks()

The View Bookmarks command is used to toggle on or off the bookmarks in the left
column of the editor window. When active, bookmarked lines are displayed with a small
number (0-9) in a region to the left of the editing space:

Command Reference (alphabetically) 447

Copyright © 1991-2010 by Boxer Software

The Toggle Bookmark command is used to set or clear a bookmark on the current line
at the current column of the text cursor. The Previous Bookmark and Next Bookmark
commands can be used to move among bookmarked lines.

Whether or not bookmarks are displayed, they remain functional. All bookmark
commands are available even when View Bookmarks is toggled off.

Clicking in the Bookmark region with the right mouse button provides access to its
context menu, which allows the display of Bookmarks to be turned off.

The background color of the bookmark region is shared with that of the Line Numbers.
Use the Configure Colors command to select screen colors.

5.28 Boxer Shorts

Menu: Help > Boxer Shorts

Default Shortcut Key: none

'Boxer Shorts' are a collection of useful tips which are displayed in a popup window:

Boxer Text Editor448

Copyright © 1991-2010 by Boxer Software

The tips presented in Boxer Shorts will help you to discover some of Boxer's lesser
known features and capabilities. You can page through the tips with the buttons
supplied, or select the Remember to 'pull up' your Boxer Shorts upon startup option so
that the tips will be shown each time Boxer starts.

If you think you have a clever tip which could benefit other Boxer users, please send it
to info@boxersoftware.com. We'll include the best tips we receive in future editions of
Boxer Shorts.

5.29 Boxer Software Order Form

If you prefer not to order online, use the Print button to print this order form, and then
mail or fax it to us.

 BOXER SOFTWARE ORDER FORM

NAME: ___

(COMPANY:) ___

ADDRESS: ___________________________ CITY/TOWN: ________________

STATE/PROV: ______________________ ZIP/POST CODE: _________________

COUNTRY: ____________________ PHONE: __________________________

EMAIL: ___

 MC/VISA/DISCOVER/AMEX: ______________________________ Exp ___ /___

 CARDHOLDER: __

mailto:info@boxersoftware.com

Command Reference (alphabetically) 449

Copyright © 1991-2010 by Boxer Software

 SIGNATURE: _______________________________ DATE: ____ /____ /____

HOW DID YOU FIRST LEARN OF BOXER SOFTWARE? ________________________

FOR WHAT TASKS DO YOU USE OUR PRODUCT? ___________________________

QTY DESCRIPTION PRICE TOTAL

___ Boxer Text Editor $59.99 ____.__

___ Text Monkey 29.99 ____.__

___ The Permutator 49.99 ____.__

___ File Append and Split Tool 19.95 ____.__

___ Shipping: $4.00 U.S./Canada, $6.00 elsewhere ____.__

 TOTAL: ____.__

 Boxer Software, Post Office Box 14545, Scottsdale, AZ 85267-4545
Sales: 800-982-6937 Voice: +1-602-485-1635 Fax :
+1-602-485-1636
 sales@boxersoftware.com www.boxersoftware.com

5.30 Boxer Software Website

Menu: Help > Boxer Software Website

Default Shortcut Key: none

This command displays a dialog box with the address of the Boxer Software Website.
Just click the address and your Internet browser will be run, taking you to our website.
If you prefer that Boxer be minimized before the browser is run, an option is provided
to do so.

Boxer Text Editor450

Copyright © 1991-2010 by Boxer Software

The Boxer Software Website has a host of information that will be of interest to all
users of Boxer. We invite you to visit the site periodically to learn about new products,
upgrades, and usage tips, and for other information which will be posted.

You can also visit our site by clicking here: www.boxersoftware.com

5.31 Bring User Lists to Top

Menu: Tools > User Lists > Bring User Lists to Top

Default Shortcut Key: none

Macro function: BringUserListsToTop()

Use this command to bring all open User List windows to the top of the desktop.

5.32 Calculator

Menu: Tools > Calculator

Default Shortcut Key: F11

Macro function: Calculator()

The Calculator command provides access to Boxer's multi-function, multi-base
calculator:

http://www.boxersoftware.com

Command Reference (alphabetically) 451

Copyright © 1991-2010 by Boxer Software

Boxer's Calculator works just like a conventional calculator, and it has all the scientific
and trigonometric functions one would expect to find on a full-featured calculator.
Values can be entered by clicking keys with the mouse, or by using the keyboard. A list
of shortcut keys can be found below.

If a numeric value appears beneath the text cursor when the Calculator is summoned,
that value will be placed into the calculator display automatically. The Calculator is also
able to interact with the clipboard. The Copy button can be used to copy the value in
the Calculator's display to the Windows clipboard. The Paste button can be used to
paste a value from the clipboard into the Calculator's display. The Insert button will
insert the value in Calculator display at the current text cursor location.

Selecting the Hints checkbox reveals a small panel at the bottom of the Calculator that
displays information about the key below the mouse cursor.

Calculator Shortcut Keys

Degrees Mode F2
Radians Mode F3

Boxer Text Editor452

Copyright © 1991-2010 by Boxer Software

Grads Mode F4

Hexadecimal Mode F5
Decimal Mode F6
Octal Mode F7
Binary Mode F8
Precision F10

Pi P
Euler's Constant E
1 Kilobyte K
16 Kilobytes Ctrl+K
Square Root Q
Log - natural N
Log - base 10 L
Reciprocal R
Square @
Cube #
Y-th Power Y
e to the X X
Factorial !
NOT ~
AND &
OR |
XOR ^
Shift Left <
Shift Right >
Sine S
Cosine O
Tangent T

Add +
Subtract -
Multiply *
Divide /
Modulus %

Memory Add Ctrl+P
Memory Subtract Ctrl+S
Memory Store Ctrl+M
Memory Recall Ctrl+R
Memory Clear Ctrl+L

Copy to Clipboard Ctrl+C
Paste to Display Ctrl+V
Insert into File Ctrl+I

Clear Esc
Clear C (unless in hex mode)
Clear Entry Del
Back Backspace
Help F1

Close Alt+F4

Command Reference (alphabetically) 453

Copyright © 1991-2010 by Boxer Software

The Calculator uses 64-bit arithmetic so that very large values can be entered and
computed. Special thanks are due to Jonas Hammarberg for his help in this area.

The Calculator uses the Algebraic Operating System (AOS), not Reverse Polish
Notation (RPN).

5.33 Calendar

Menu: Tools > Calendar

Default Shortcut Key: none

Macro function: Calendar()

The Calendar command provides access to Boxer's popup calendar:

When first summoned, the Calendar displays the current month and year and highlights
the current date. The arrow buttons at the top of the display can be used to move
forward or backward, by months or by years. The button with the curved arrow can be
used to return the display to the current month and year.

Clicking on any date within the display highlights that date. The Insert button can be
used to insert a text string describing the highlighted date at the text cursor location.
The Short Format and Long Format options control the format that will be used. The
short and long formats used to display the date are in accordance with the regional
settings for date display as defined on your computer. To change these settings, see
Start Menu | Settings | Control Panel | Regional Settings | Date.

The Calendar recognizes various characters to speed movement from date to date:

Boxer Text Editor454

Copyright © 1991-2010 by Boxer Software

 Y = first day of year
 R = last day of year
 M = first day of month
 H = last day of month
 T = Today

The following keys are also recognized:

 Space = +1 month
 - = -1 day
 + = +1 day
 Shift+Left = -1 month
 Shift+Right = +1 month
 Ctrl+Left = -1 year
 Ctrl+Right = +1 year

The day on which a calendar week starts can be configured on the Configure |
Preferences | Other options page. The option is titled: Calendar week starts on.

If you prefer that the Calendar always remain on top of other windows, the Stay on top
option can be used. The Calendar is a non-modal window, which allows it to remain
on-screen after focus has been returned to another editing window.

If the Calendar is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

5.34 Cascade

Menu: Window > Cascade

Default Shortcut Key: none

Macro function: Cascade()

The Cascade command can be used to resize and reposition all editor windows in a
cascading arrangement beginning at the upper left of the client area and proceeding to
the lower right. The height and width of each window is uniform, and is determined by
the size of the client area.

Minimized windows are not affected by this operation.

5.35 Cascade Vertical

Menu: Window > Cascade Vertical

Default Shortcut Key: none

Macro function: CascadeVertical()

Command Reference (alphabetically) 455

Copyright © 1991-2010 by Boxer Software

The Cascade Vertical command can be used to resize and reposition all editor windows
in a cascading arrangement beginning at the upper left of the client area and
proceeding toward the lower left. The height and width of each window is uniform, and
is determined by the size of the client area. Unlike the Cascade command, the left
edges of all windows are placed against the left edge of the client area.

Minimized windows are not affected by this operation.

5.36 Cascade Horizontal

Menu: Window > Cascade Horizontal

Default Shortcut Key: none

Macro function: CascadeHorizontal()

The Cascade Horizontal command can be used to resize and reposition all editor
windows in a cascading arrangement beginning at the upper left of the client area and
proceeding toward the upper right. The height and width of each window is uniform,
and is determined by the size of the client area. Unlike the Cascade command, the top
edges of all windows are placed against the top edge of the client area.

Minimized windows are not affected by this operation.

5.37 Check for Latest Version

Menu: Help > Check for Latest Version

Default Shortcut Key: none

This command can be used to check if the version of Boxer being used is still
up-to-date. This command will launch your Internet browser to display a special page
at the Boxer Software website. If a new version of Boxer is available, details will be
given on how to get the update. Minor updates to Boxer will be made available
free-of-charge. See the topic Upgrade Information for more information.

In order to launch your Internet browser, Boxer relies upon the operating system
shell's ability to open an Internet address. When an Internet browser is installed, it
typically establishes itself as the program which is called by the shell to open such
addresses. This is true of all common browsers you are likely to encounter. If you
find that your Internet browser is not launched by Boxer, or if some other inactive
browser is launched instead, it's because your active browser has not established
itself as the one that processes the 'open' request from the operating system shell
for Internet addresses. This situation should be rare, cannot be remedied by Boxer,
and is not due to any shortcomings in Boxer.

Boxer Text Editor456

Copyright © 1991-2010 by Boxer Software

5.38 Check Word

Menu: Tools > Check Word

Default Shortcut Key: Shift+F7

Macro function: CheckWord()

Use the Check Word command to check the spelling of the word at the text cursor. If
the word is spelled correctly, a message will appear to confirm this fact. If the word is
spelled incorrectly, a dialog will appear providing options to make a correction:

The Check Word command can also be accessed by right-clicking on a suspect word and
selecting the command from the context menu.

5.39 Clear All Clipboards

Menu: Edit > Clear Clipboard > All Clipboards

Default Shortcut Key: none

Macro function: ClearAllClipboards()

The Clear All Clipboards command can be used to clear (erase) the content of all
clipboards. The Windows clipboard and the eight internal clipboards will all be affected.

The effect of the Clear All Clipboards command cannot be undone with Undo, so use this
command carefully.

Command Reference (alphabetically) 457

Copyright © 1991-2010 by Boxer Software

5.40 Clear Clipboard

Menu: Edit > Clear Clipboard > Clipboard n

Default Shortcut Key: none

Macro function: ClearClipboard()

The Clear Clipboard command can be used to clear (erase) the content of the clipboard
selected. The content of each clipboard is displayed in a popup window as the menu
cursor is moved across the clipboard's menu entry. This makes it easy to check what's
on a clipboard before deciding whether to clear it.

The effect of the Clear Clipboard command cannot be undone with Undo, so use this
command carefully.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

The Clear Windows Clipboard command will remain enabled even when the Windows
Clipboard contains non-text data. This allows the content of the clipboard to be
cleared by Boxer, in case this operation is desired.

5.41 Clear Closed Tabs List

Menu: File Tab Context Menu > Closed Tabs List > Clear List

Default Shortcut Key: none

Macro function: ClearClosedTabsList()

Clear the list of closed file tabs

5.42 Clear Recent Files List

Menu: File > Clear Recent Files List

Default Shortcut Key: None

Macro function: ClearRecentFilesList()

Use this command to clear the record of recently accessed files from the Recent Files

Boxer Text Editor458

Copyright © 1991-2010 by Boxer Software

submenu.

5.43 Clear Recent Projects List

Menu: Project > Clear Recent Projects List

Default Shortcut Key: none

Macro function: ClearRecentProjectsList()

Use this command to clear the record of recently accessed projects from the Recent
Project submenu.

See the Project | New command for full details about Boxer's project file feature.

5.44 Clear Undo

Menu: Edit > Clear Undo

Default Shortcut Key: none

Macro function: ClearUndo()

The Clear Undo command can be used to clear the record of changes which are used by
the Undo and Redo commands. After issuing this command, the record of changes for
the current file is erased, and the Undo and Redo commands become disabled until
additional changes are made.

5.45 Close (File)

Menu: File > Close

Default Shortcut Key: Alt+X

Macro function: Close()

The Close command is used to close the file in the active editor window. If unsaved
changes have been made to the file, a dialog box will first appear to alert you to this
fact. You will then be able to choose whether to save the changes before closing, close
without saving, or cancel the Close operation altogether.

Command Reference (alphabetically) 459

Copyright © 1991-2010 by Boxer Software

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar, or on its File Tab.

A file can also be closed by clicking the 'X' box in the upper right corner of its window.
When a file's window is maximized, the 'X' box will be located at the far right of the
main menu bar.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

5.46 Close (Project)

Menu: Project > Close

Default Shortcut Key: none

Macro function: ProjectClose()

Use the Project | Close command to close the current project. All files associated with
the active project will be closed.

See the Project | New command for full details about Boxer's project file feature.

5.47 Close All

Menu: File > Close All

Default Shortcut Key: none

Macro function: CloseAll()

The Close All command is used to close all open files within the editor. If unsaved
changes have been made to any file, a dialog box will appear for each such file to alert
you to this fact. You will then be able to choose whether to save the changes before
closing, close without saving, or to cancel the Close All operation. If Close All is issued
when more than one file is modified, Yes-to-All and No-to-All buttons are provided to

Boxer Text Editor460

Copyright © 1991-2010 by Boxer Software

save time:

You can tell quickly whether a file has unsaved changes by looking for an asterisk (*
) to the left of its name in the title bar, or on its File Tab.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

The File | Close All command is functionally equivalent to the Window | Close All
command, since each file resides in its own window.

5.48 Close All but Active

Menu: Window > Close All but Active

Default Shortcut Key: none

Macro function: CloseAllButActive()

Use this command to close all open editing windows except the current window.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar or on its File Tab.

5.49 Closed Tabs List

Menu: View > File Tabs > Undo Close Tab

Default Shortcut Key: none

Macro function: UndoCloseTab()

The Undo Close Tab command can be used to reopen the file that was last closed during
the current editing session. This command makes it easy to reopen a file if it was
closed accidentally.

Command Reference (alphabetically) 461

Copyright © 1991-2010 by Boxer Software

The "Closed Tabs List" at the bottom of the View | File Tabs submenu shows the
names of the files that are eligible to be reopened, and allows files within the list to
be selectively reopened.

Clicking the middle mouse button in an open area of the file tab bar is taken as a
shortcut gesture to reopen the last closed file tab.

5.50 Colors

Menu: Configure > Colors

Default Shortcut Key: none

Macro function: ConfigureColors()

The Configure Colors command allows you to customize the colors that are used to
display and print text files. Buttons are provided for the standard 16 colors. Use the
Custom button to select from a palette of 16 million colors.

Configure
The Configure Colors dialog box operates in three different modes: Screen Colors, Color
Syntax Printing, and Monochrome Syntax Printing. The active mode is selected from
the Configure drop-down list at the upper left of the dialog box. Screen Colors mode
allows you to set the colors used to display text files on-screen. Color Syntax Printing

Boxer Text Editor462

Copyright © 1991-2010 by Boxer Software

mode is used to set the colors used for printing program files on color printers.
Monochrome Syntax Printing mode is used to set the colors used for printing program
files on non-color printers.

Scheme
A set of pre-defined color schemes has been provided to speed the process of color
configuration. You can start with the pre-defined scheme that is closest to your liking,
and then make other changes as desired. Once a change has been made to a
pre-defined color scheme you will be asked where to save the custom layout; four
custom positions are available.

Maintain a single background color
This option can be used to ensure that all elements will use a single background color.
When selected, Boxer ensures that all elements are updated when the background color
is changed. Turn this option off if you would like to create a color scheme in which some
elements use different background colors.

Disallow invisible color combinations
This option can be used to prevent any color selection which would cause the
foreground and background colors of one or more elements to be the same.

System selected text colors
This button can be used to quickly apply the default text selection colors of the
operating system to the current color scheme.

This option will be of particular use to blind users who are using Boxer with a screen
reader such as JAWS. Screen reader software sometimes requires that the text
selection colors used by an application match those that are used system wide.

HTML Color Code
As a convenience, the current color is displayed in HTML Color Code format to make it
easy to duplicate a color used in Boxer in your HTML code. The HTML Color Chart
command can also be used for selecting colors and getting an HTML Color Code value.

The process of changing colors is quite simple, and includes three steps:

1. Click to select an element
Click with the left mouse button in the miniature screen display on the element which is
to be changed. You can click on the text of an element to select its foreground
element, or on the background of an element to select its background element. After
clicking, you'll see that the Elements by name listbox is updated to reflect the selected
element. You'll also see that the color and font style buttons will be displayed in a
depressed state to reflect the current settings for the selected element. If the element
uses a color other than those appearing on the standard buttons, the Custom button
will appear depressed. Some elements, such as the Right Margin Vertical Rule, cannot
be easily selected by mouse in the miniature screen display. These elements can be
selected from the Elements by name listbox instead.

2. Click to select a color
Click on the new color for the selected element. The miniature screen display will be

Command Reference (alphabetically) 463

Copyright © 1991-2010 by Boxer Software

updated to reflect the new color. When configuring for Monochrome Syntax Printing,
the available colors will be reduced to those which can be achieved on non-color
printers.

3. Click to select font style(s)
Click on one or more font styles for the selected element. The miniature screen display
will be updated to reflect the new style. To remove a font style, click again on its
button to clear the style.

When configuring screen colors, the Apply button can be used to update the screen
below the dialog box to reflect the changes made.

5.51 Command Multiplier

Menu: Tools > Command Multiplier

Default Shortcut Key: Alt+Y

Macro function: none (Boxer's macro language provides far more powerful methods to
multiply the execution of commands)

The Command Multiplier can be used to multiply the execution of a keystroke or
command key sequence. A popup box appears to retrieve the multiplier to be used.
After clicking OK, Boxer awaits the next keystroke or command key sequence. Once
issued it will be performed repeatedly, according to the value entered.

This command might be used to multiply the execution of an insertable character so as
to create a divider bar containing a known number of characters. Or it might be used
with the Delete Current Line command to quickly delete 100 lines.

To simply repeat the last command issued, one or more times, use the Repeat Last
Command command.

5.52 Comment

Menu: Block > Comment

Default Shortcut Key: F5

Macro function: Comment()

The Comment command can be used to apply commenting to the current line--or to a
selected range of lines--when editing a file for which Boxer has syntax information
defined (see Configure | Syntax Highlighting).

Boxer Text Editor464

Copyright © 1991-2010 by Boxer Software

When text is not selected, the current line will be commented using the end-of-line
comment sequence for the language being edited. If that sequence is not available, the
entire line will be enclosed using the open and close comment sequences. In either
case the text cursor is advanced to the line below following the operation.

If text is selected, the selected lines will be bracketed with the open and close block
comment sequences for the language being edited. If the language does not support
block commenting, the end-of-line comment sequence will be applied to each line within
the selected range. If neither of these sequences has been defined, an error message
will be given.

The Uncomment command can be used to remove commenting from the current line or
from selected text.

5.53 Contact Information

Menu: Help > Contact Information

Default Shortcut Key: none

The Contact Information command displays this dialog:

5.54 Convert Case - Invert

Menu: Block > Convert Case > Invert

Command Reference (alphabetically) 465

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: CaseInvert()

The Invert command converts alphabetic characters within the selected text to the
opposite case. Uppercase characters are converted to lowercase; lowercase characters
are converted to uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : tHE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

5.55 Convert Case - Lower

Menu: Block > Convert Case > Lower

Default Shortcut Key: none

Macro function: CaseLower()

The Lower command converts alphabetic characters within the selected text to
lowercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : the quick brown fox jumped over the lazy dog.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

5.56 Convert Case - Sentences

Menu: Block > Convert Case > Sentences

Default Shortcut Key: none

Macro function: CaseSentences()

The Sentences command converts the first character of all sentences within the
selected text to uppercase. For purposes of this command, a sentence is considered to
be a series of words that ends with either a period, a question mark, or an exclamation
mark.

Before conversion: the quick brown fox jumped over the lazy dog.
After conversion : The quick brown fox jumped over the lazy dog.

Boxer consults the case conversion map provided by the operating system so that

Boxer Text Editor466

Copyright © 1991-2010 by Boxer Software

accented characters can be properly converted.

By default, this command will first convert the selected text to lowercase before
capitalizing each sentence. This ensures that the command operates as expected
when processing text in all uppercase. Converting to lowercase may disrupt some
all-caps words (such as acronyms and proper nouns) that should have remained in
uppercase, so you should review the results for accuracy after applying the
conversion. If you prefer that the selected text not be forced to lowercase prior to
operation, you can change this behavior on the Configure | Preferences | Editing 2
dialog page.

5.57 Convert Case - Title

Menu: Block > Convert Case > Title

Default Shortcut Key: none

Macro function: CaseTitle()

This command converts the selected text to conform to the rules of title case (aka
proper case). Grammar experts do not all agree on the precise rules for title case, but
most references use these rules:

1. Always capitalize the first word
2. Always capitalize the last word
3. Capitalize all other words, except articles, prepositions and conjunctions which

have fewer than five letters

Because the application of title case presumes a knowledge of the
language--capitalization depends on parts of speech--this command is limited to
operating on English text.

By default, this command will first convert the selected text to lowercase before
capitalizing words. This ensures that the command operates as expected when
processing text in all uppercase. Converting to lowercase may disrupt some all-caps
words (such as acronyms) that should have remained in uppercase, so you should
review the results for accuracy after applying the conversion. If you prefer that the
selected text not be forced to lowercase prior to operation, you can change this
behavior on the Configure | Preferences | Editing 2 dialog page.

5.58 Convert Case - Upper

Menu: Block > Convert Case > Upper

Default Shortcut Key: none

Macro function: CaseUpper()

Command Reference (alphabetically) 467

Copyright © 1991-2010 by Boxer Software

The Upper command converts alphabetic characters within the selected text to
uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

5.59 Convert Case - Words

Menu: Block > Convert Case > Words

Default Shortcut Key: none

Macro function: CaseWords()

The Words command converts the first character of all words within the selected text to
uppercase.

Before conversion: The quick brown fox jumped over the lazy dog.
After conversion : The Quick Brown Fox Jumped Over The Lazy Dog.

Boxer consults the case conversion map provided by the operating system so that
accented characters can be properly converted.

By default, this command will first convert the selected text to lowercase before
capitalizing each word. This ensures that the command operates as expected when
processing text in all uppercase. Converting to lowercase may disrupt some all-caps
words (such as acronyms) that should have remained in uppercase, so you should
review the results for accuracy after applying the conversion. If you prefer that the
selected text not be forced to lowercase prior to operation, you can change this
behavior on the Configure | Preferences | Editing 2 dialog page.

5.60 Copy

Menu: Edit > Copy

Default Shortcut Key: Ctrl+C

Macro function: Copy()

The Copy command copies the selected text in the current file onto the current
clipboard. The current clipboard might be the Windows clipboard or one of Boxer's
eight internal clipboards. See the Edit | Set Clipboard command for details on changing
the current clipboard.

If text is not selected, the Copy command will operate on the current line. This
behavior can be controlled on the Configure | Preferences | Editing 1 options page. The

Boxer Text Editor468

Copyright © 1991-2010 by Boxer Software

option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

5.61 Copy Filename

Menu: Edit > Copy Filename

Default Shortcut Key: none

Macro function: CopyFilename()

The Copy Filename command copies the full filepath of the current window to the
current clipboard.

To insert the filepath of the current file into the edited text, use the Insert Filename
command.

This command can be useful when supplying the name of an edited file to an email
program for attachment to a message.

5.62 Ctags Function Index

Menu: Jump > Ctags Function Index

Default Shortcut Key: none

Macro function: CtagsFunctionIndex()

The Ctags Function Index command displays a dialog containing a list of functions,
procedures and global variables for the files currently being edited. The list can be used
as a handy reference to function names and their calling parameters, or as a navigation
aid: double-clicking on an entry will jump to the file and line that corresponds to the
highlighted entry. The dialog is non-modal, so it can remain open alongside Boxer as
you're doing other work.

Command Reference (alphabetically) 469

Copyright © 1991-2010 by Boxer Software

In order to index the edited files, Boxer runs an external program and then reads the
output file it creates. Exuberant Ctags is a fast, multi-language implementation of the
original ctags and etags programs that are available on Unix. Exuberant Ctags is
distributed under the GNU General Public License. The program ctags.exe and a zip

file containing the program's source code have been installed in a directory named
'Ctags' beneath the Boxer installation directory.

Exuberant Ctags provides built-in support for indexing the following languages:

Ant HTML Ruby

Assembler Jave Scheme

ASP Javascript Shell scripts (Bourne/Korn/Z)

Awk Lisp S-Lang

Basic Lua SML (Standard ML)

BETA Make Tcl

C and C++ MATLAB TeX

C# Objective Caml Vera

COBOL Pascal Veilog

DOS Batch Perl VHDL

Eiffel PHP Vim

Erlang PL/SQL YACC

Flex Python

http://ctags.sourceforge.net/

Boxer Text Editor470

Copyright © 1991-2010 by Boxer Software

Fortran REXX

In addition, Boxer is supplied with a CTAGS.CNF configuration file that adds support for

these languages:

ActionScript Latex System Verilog

Cascading Style Sheets Miva XML

INI files

Support for indexing additional languages can be added by making additions to the

CTAGS.CNF file. The process is not trivial, however, and it's often easier to find a

configuration on the internet which has been developed by someone else.
Instructions for adding additional languages can be found at the Exuberant Ctags
website. By keeping your copy of Ctags up-to-date, you can also be assured of
getting access to new built-in languages as they are added by its developers. The
version of Ctags that was supplied with Boxer was current at the time of Boxer's
release.

The list can be sorted on any of its columns by clicking on the associated column title in
the header at the top of the listing. Clicking on the same header a second time will
reverse the order of the sort.

The function prototype information contained in the Ctags Function Index dialog is also
available for display when the mouse hovers over a function that has been indexed:

The display of these popup tool tips can be configured by clicking the Settings button,
which leads to the Configure Ctags Function Indexing dialog.

Popup tool tips can also be displayed for global variables, structure and class members,
typedefs, macros and other language-dependent identifiers:

http://ctags.sourceforge.net/

Command Reference (alphabetically) 471

Copyright © 1991-2010 by Boxer Software

Refresh
Use the Refresh button to re-index all open files, and any other 'extra files' that may
have been designated in the Configure Ctags Function Indexing dialog. You might want
to use the Refresh button when changes have been made to an edited file that would
invalidate the information that was previously gathered. For example, if a function's
calling parameters are changed, or a function is added or deleted, use Refresh.

It is not necessary to use Refresh simply because the line number of a function's
declaration has changed. The indexing is maintained in a format that is not
sensitive to changes in line numbers.

Settings
The Settings button will display the Configure Ctags Function Indexing dialog, which
provides options that control how and when files will be indexed, the appearance of the
function list, and whether popup tool tips will be displayed.

Display
Use the Display combobox to filter the listing of indexed functions and variables. The
available choices are:

all indexed files
all open files
files in active project
current file
extra files

Extra files to be indexed can be designated in the Configure Ctags Function Indexing
dialog.

The Display setting will also influence which identifiers are visible to the popup tool
tip feature. If you have filtered the listing to show only those entries in the current
file, for example, you may wish to restore the Display setting to all indexed files so
that the full collection of indexed identifiers are available to the popup tool tips
feature.

5.63 Ctags Function Indexing

Menu: Configure > Ctags Function Indexing

Default Shortcut Key: none

Macro function: ConfigureCtagsFunctionIndexing()

The Configure Ctags Function Indexing command provides options that relate to the
Ctags Function Index feature.

Boxer Text Editor472

Copyright © 1991-2010 by Boxer Software

Indexing options

Index all files that are open for editing
When this option is checked, indexing information will be gathered for all files that are
open for editing. If the Auto-index on startup... option is checked (see below), this
indexing will occur automatically shortly after startup, and files that are opened later in
the editing session will be indexed as they are opened. If the Auto-index option is
unchecked, indexing will not occur until and unless the Ctags Function Index command
is issued.

When indexing files that are open for editing, please note that the operation is
performed on the file as it resides on disk, and not on the memory image of the file.
If you have made changes to a file that you want to be reflected in the index, be
sure to save the file before requesting the indexing operation.

Also index the file(s) named below
When this option is checked, files named in the accompanying list will also be indexed,
even if they are not open for editing in the editor. Use this list to name files that you
would always like to be indexed, even when you're not editing these files. The edit box
below the list is used to enter the full filepath of the file to be added. Click the Add
button to add the file to the list. Use the button with the ellipsis (...) to browse for a
file. The Delete key can be used to remove an unwanted entry from the list.
Right-clicking in the file list will display a context menu, which additionally contains
options to edit the selected entry and to delete all entries.

Command Reference (alphabetically) 473

Copyright © 1991-2010 by Boxer Software

List display options

Stay on top
When checked, this option causes the Ctags Function Index dialog to remain on top of
other windows.

Show grid lines
This option controls whether or not grid lines will be displayed between rows and
columns in the Ctags Function Index.

Show full filepaths in list
Use this option if you prefer that full filepaths be displayed in the Ctags Function Index.
This option is useful when you're editing files that have the same filename, but reside in
different directories.

Tool tip options

Auto-index on startup so that tool tips can be shown before function list is
opened
Use this option to ensure that popup function prototype tool tips can be displayed even
if the Ctags Function Index command has not been issued.

An indexing operation must be performed before function prototypes and global
variable information is available for display in either the Ctags Function Index
dialog, or in popup tool tips. Depending on the number of files open for editing, the
number of extra files designated for indexing (see above), the size of these files and
the processing speed of your computer, this operation could take anywhere from a
split second to several seconds. On modern PC's, and with source files of modest
size, the indexing process will be almost instantaneous. However, if you're using a
slow PC, or you typically edit many files at once, or your source files are
exceptionally large, you may wish to disable auto-indexing. For most situations, the
added convenience of having popup information available will outweigh the
split-second indexing process.

Display popup tool tips for function and procedures
Use this option to control whether prototypes for functions and procedures will be
displayed in popup tool tips. The information that is displayed will be dependent on the
language being used. For the C programming language, a popup tool tip for a function
might look like this:

Display popup tool tips for various other identifiers
Use this option to control whether informative tool tips will be displayed for global

Boxer Text Editor474

Copyright © 1991-2010 by Boxer Software

variables, structures, members, macros, typedefs and other recognized identifiers. The
information that is displayed for an identifier will be dependent on the language being
used. For example, when hovering over an identifier that has been #defined in the C

programming language, the tool tip might look like this:

Ctags Execution Options

If you have good reason to do so, you can change the path to the Ctags program, its
command line option flags, or the path to the output file it creates. Doing so could
adversely affect Boxer's ability to process tag information, so proceed with caution. You
can use the Restore defaults button to restore the settings to their recommended
values.

Exuberant Ctags supports a comprehensive set of command line option flags. With

Command Reference (alphabetically) 475

Copyright © 1991-2010 by Boxer Software

some experimentation, they can even be used to add support for indexing languages
not supported by the program in its as-released form. Full information about the Ctags
program can be found at the Exuberant Ctags website.

When run from removable media, Boxer will automatically recompute the "Path to
Ctags program" and "Path to output tags file" parameters in case the drive letter of
the removable device changed since the last run.

5.64 Cut

Menu: Edit > Cut

Default Shortcut Key: Ctrl+X

Macro function: Cut()

The Cut command removes the selected text from the current file and places it on the
current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Cut command will operate on the current line. This behavior
can be controlled on the Configure | Preferences | Editing 1 options page. The option is
titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

When operating in Typeover mode on a columnar selection, the Cut command will fill
the selected area with Spaces without closing up the rectangle occupied by the text.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

http://ctags.sourceforge.net

Boxer Text Editor476

Copyright © 1991-2010 by Boxer Software

5.65 Cut Append

Menu: Edit > Cut Append

Default Shortcut Key: Shift+Ctrl+X

Macro function: CutAppend()

The Cut Append command removes the selected text from the current file and adds it to
the current clipboard. The current clipboard might be the Windows clipboard or one of
Boxer's eight internal clipboards. See the Edit | Set Clipboard command for details on
changing the current clipboard.

If text is not selected, the Cut Append command will operate on the current line. This
behavior can be controlled on the Configure | Preferences | Editing 1 options page. The
option is titled Cut/Copy/Append commands use current line when no text is selected.

When a columnar selection (Block | Select Columnar) is placed on the clipboard, any
under-length lines within the selected range will be extended with Spaces to match the
width of the rectangular text block. This ensures that the block will behave as expected
if the Paste command is later used to insert the text at a new location. Likewise, any
Tab characters within the selected region will be converted to Spaces before being
placed on the clipboard.

When operating in Typeover mode on a columnar selection, the Cut Append command
will fill the selected area with Spaces without closing up the rectangle occupied by the
text.

Text cannot be appended to a clipboard if the selection type (stream or columnar)
differs from the type of the text which is already present on the clipboard.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

5.66 Declaration

Menu: Jump > Declaration

Command Reference (alphabetically) 477

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: Declaration()

When editing within a supported source code file, the Declaration command provides a
means to jump from an identifier reference to the point at which the identifier was
declared. For example, when sitting at a function/procedure call, issuing the
Declaration command will cause the cursor to jump to the declaration of the
function/procedure being referenced. The Declaration command can also be used to
jump to the declaration point of defined constants and global variables, so long as these
entities are indexed by Ctags.

If the declaration resides in another file, that file will be opened and/or made current
before moving the cursor to the relevant declaration line. If more than one declaration
exists for the identifier at the cursor, the Ctags Function Index dialog will be displayed
so that the proper instance can be selected.

 The Declaration command relies upon the Ctags Function Index feature to perform
its service. If the Ctags feature has been disabled, or if the file being edited is not
supported by Ctags, the Declaration command will be unavailable.

After moving to a declaration, use the Reference command to return to the identifier
reference from which the Declaration command was made.

5.67 Decrement

Menu: Edit > Math > Decrement

Default Shortcut Key: none

Macro function: Decrement()

The Decrement command can be used to decrement an integer value (ie, a whole
number, not a floating point value) at the text cursor by another integer value. A
dialog box will appear to retrieve the value to be subtracted. After clicking 'OK' the
arithmetic is performed, and the old value is replaced by the result.

If the text cursor is situated on a character rather than a numeric value, the supplied
value will be subtracted from the character at the cursor and the new character will be
displayed. If the resultant character value is out of range, an error message will be
given.

5.68 Delete (Text)

Menu: Edit > Delete

Default Shortcut Key: Del

Boxer Text Editor478

Copyright © 1991-2010 by Boxer Software

Macro function: Delete()

The Delete command deletes the selected text from the current file. If text is not
selected, the character at the text cursor is deleted.

When operating in Typeover mode on a columnar selection, the Delete command will fill
the selected area with Spaces without closing up the rectangle occupied by the text.

5.69 Delete (Project)

Menu: Project > Delete

Default Shortcut Key: none

Macro function: ProjectDelete()

Use the Project | Delete command to delete a selected project file. This command
deletes a project file. It does not delete the files named within that file.

See the Project | New command for full details about Boxer's project file feature.

5.70 Delete Blank Lines

Menu: Edit > Delete > Blank Lines

Default Shortcut Key: none

Macro function: DeleteBlankLines()

The Delete Blank Lines command can be used to delete blank lines within the current
file. If a range of lines is selected, the operation will be restricted to the selected lines.
Due to the destructive nature of this command, a confirmation is required before the
operation begins.

A line is considered blank if it has no text, or if its text consists only of whitespace.

5.71 Delete Bookmarked Lines

Menu: Edit > Delete > Bookmarked Lines

Default Shortcut Key: none

Macro function: DeleteBookmarkedLines()

The Delete Bookmarked Lines command can be used to delete all bookmarked lines
from the current file. For example, the Toggle Bookmark command can be used to 'flag'
several lines for deletion, and then the Delete Bookmarked Lines command can be used
to delete the lines.

Command Reference (alphabetically) 479

Copyright © 1991-2010 by Boxer Software

This command deletes lines, not simply bookmarks. To remove the bookmarks from
bookmarked lines, use either the Toggle Bookmark or the Bookmark Manager
command. If you have accidentally deleted bookmarked lines when you meant only to
clear their bookmarks, use the Undo command to recover these lines.

5.72 Delete Current Line

Menu: Edit > Delete > Current Line

Default Shortcut Key: Alt+D

Macro function: DeleteLine()

The Delete Current Line command deletes all of the text and the newline character on
the current line. Whenever possible, the column of the text cursor will be preserved
when moving to the next line.

5.73 Delete Duplicate Lines

Menu: Edit > Delete > Duplicate Lines

Default Shortcut Key: none

Macro function: DeleteDuplicateLines()

The Delete Duplicate Lines command can be used to delete duplicate lines within the
current file. If a range of lines is selected, the operation will be restricted to the
selected lines. Due to the destructive nature of this command, a confirmation is
required before the operation begins.

Delete Duplicate Lines will not delete the first instance of a duplicated line. In other
words, given a file that contained five lines with the text 'sample', four of these lines

would be deleted.

This command is similar in effect to the Find Unique Lines and Find Distinct Lines
commands. For certain tasks, one of these commands might be more suitable.

To delete blank lines, use the Delete Blank Lines command.

5.74 Delete Lines that Begin with

Menu: Edit > Delete > Lines That Begin With

Default Shortcut Key: none

Macro function: DeleteLinesThatBeginWith()

Boxer Text Editor480

Copyright © 1991-2010 by Boxer Software

This command can be used to delete all lines that begin with a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

5.75 Delete Lines that Contain

Menu: Edit > Delete > Lines That Contain

Default Shortcut Key: none

Macro function: DeleteLinesThatContain()

This command can be used to delete all lines that contain a user-specified text string.
If a range of lines is selected, the operation will be restricted to the selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

5.76 Delete Lines that do not Begin with

Menu: Edit > Delete > Lines That Do Not Begin With

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotBeginWith()

This command can be used to delete all lines that do not begin with a user-specified
text string. If a range of lines is selected, the operation will be restricted to the
selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

5.77 Delete Lines that do not Contain

Menu: Edit > Delete > Lines That Do Not Contain

Command Reference (alphabetically) 481

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotContain()

This command can be used to delete all lines that do not contain a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

5.78 Delete Lines that do not End with

Menu: Edit > Delete > Lines That Do Not End With

Default Shortcut Key: none

Macro function: DeleteLinesThatDoNotEndWith()

This command can be used to delete all lines that do not end with a user-specified text
string. If a range of lines is selected, the operation will be restricted to the selected
range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

5.79 Delete Lines that End with

Menu: Edit > Delete > Lines That End With

Default Shortcut Key: none

Macro function: DeleteLinesThatEndWith()

This command can be used to delete all lines that end with a user-specified text string.
If a range of lines is selected, the operation will be restricted to the selected range.

The text string is supplied in a dialog box that appears after the command is issued.
The "Match case" checkbox on that dialog can be used to control how the search is
performed: with or without case sensitivity. Before the operation is performed, a
second dialog box appears which tells the number of lines that will be deleted, and
provides an opportunity to cancel the operation.

Boxer Text Editor482

Copyright © 1991-2010 by Boxer Software

5.80 Delete Next Word

Menu: Edit > Delete > Next Word

Default Shortcut Key: Ctrl+Del

Macro function: DeleteNextWord()

The Delete Next Word command deletes from the text cursor to the beginning of the
next word.

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

5.81 Delete Previous Word

Menu: Edit > Delete > Previous Word

Default Shortcut Key: Ctrl+Backspace

Macro function: DeletePreviousWord()

The Delete Previous Word command deletes from the text cursor to the end of the
previous word.

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

5.82 Delete to End of Line

Menu: Edit > Delete > to End of Line

Default Shortcut Key: none

Macro function: DeleteToEndOfLine()

The Delete to End of Line command deletes from the text cursor to the end of line. The
Newline character is not deleted. The position of the text cursor is unchanged.

If issued on an empty line with the text cursor in column 1, the Delete to End of Line
command will delete the entire line.

5.83 Delete to Start of Line

Menu: Edit > Delete > to Start of Line

Command Reference (alphabetically) 483

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Ctrl+K

Macro function: DeleteToStartOfLine()

The Delete to Start of Line command deletes from the left of the text cursor to the start
of line. The cursor is left in Column 1.

If issued on an empty line with the text cursor in column 1, the Delete to Start of Line
command will delete the entire line.

5.84 Divide

Menu: Edit > Math > Divide

Default Shortcut Key: none

Macro function: Divide()

The Divide command can be used to divide an integer value (ie, a whole number, not a
floating point value) at the text cursor by another integer value. The result will be
displayed as an integer value. A dialog box will appear to retrieve the value to divide
by. After clicking 'OK' the arithmetic is performed, and the old value is replaced by the
result.

If the text cursor is situated on a character rather than a numeric value, the character
value of the character at the cursor will be divided by the supplied value and the
resultant character will be displayed. If the resultant character value is out of range, an
error message will be given.

5.85 Duplicate and Increment

Menu: Edit > Line > Duplicate and Increment

Default Shortcut Key: Shift+F2

Macro function: DuplicateAndIncrement()

The Duplicate and Increment command is similar to the Duplicate Line command, with
one important difference: as it copies the current line to a new line below, it increments
any values it finds within the line. A few examples will help illustrate its utility:

When the cursor is placed on a line with the following text:

 width1 = MainForm->WidthArray[1];

and the Duplicate and Increment command is issued three times, the following text will
result:

 width1 = MainForm->WidthArray[1];

Boxer Text Editor484

Copyright © 1991-2010 by Boxer Software

 width2 = MainForm->WidthArray[2];
 width3 = MainForm->WidthArray[3];
 width4 = MainForm->WidthArray[4];

Duplicate and increment also recognizes character constants...

 char01 = 'A';

would become:

 char01 = 'A';
 char02 = 'B';
 char03 = 'C';
 char04 = 'D';

... and on hexadecimal values:

 pos[15] := $DF;

becomes:

 pos[15] := $DF;
 pos[16] := $E0;
 pos[17] := $E1;
 pos[18] := $E2;

Hexadecimal values are recognized in three forms: 0xFF, FFh and $FF.

The examples above relate to programming, but Duplicate and Increment can also be
useful in non-technical situations. If you needed to start a numbered list of items, you
could create the first line:

 Part No. 3141001

and then use Duplicate and Increment to make as many copies as needed:

 Part No. 3141001
 Part No. 3141002
 Part No. 3141003
 Part No. 3141004
 Part No. 3141005

When the Duplicate and Increment command is issued repeatedly to duplicate a
line, the status line will report a count of the number of times the command has
issued.

5.86 Duplicate Line

Menu: Edit > Line > Duplicate Line

Command Reference (alphabetically) 485

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: F2

Macro function: DuplicateLine()

The Duplicate Line command can be used to make a copy of the current line. The new
line will be created below the current line, and the text cursor will be moved onto the
new line at the current cursor column.

The Duplicate Line command is a quick alternative to using the Copy and Paste
commands to perform the same task, and does not affect the content of the current
clipboard.

When the Duplicate Line command is issued repeatedly to duplicate a line, the
status line will report a count of the number of times the command has issued.

5.87 EBCDIC to ASCII

Menu: Block > Convert Other > EBCDIC to ASCII

Default Shortcut Key: none

Macro function: EBCDICtoASCII()

This command will convert text encoded in the EBCDIC character set to the ASCII
character set. The text to be converted must first be selected. If an entire file is to be
converted, use the Select All Text command to select the whole file.

EBCDIC is a character encoding system used primarily on mainframe computers. The
ASCII character encoding system is used widely on personal computers. At times, a file
that uses EBCDIC encoding may need to be converted for use on a computer that uses
the ASCII character encoding system. This command can be used for that purpose.

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code.

ASCII is an acronym for American Standard Code for Information Interchange.

5.88 Edit Active

Menu: Project > Edit Active

Default Shortcut Key: none

Macro function: ProjectEditActive()

Use the Edit Active command to open the active project file for editing. This command
opens a project file as a text file; it does not open the files named within that project
file. To open the files within a project file, use the Project | Open command.

See the Project | New command for full details about Boxer's project file feature.

Boxer Text Editor486

Copyright © 1991-2010 by Boxer Software

5.89 Edit Clipboard

Menu: Edit > Edit Clipboard

Default Shortcut Key: none

Macro function: EditClipboard()

The Edit Clipboard command can be used to edit the content of the clipboard selected.
The content of the clipboard is placed into an editing window and can be edited in all
the same ways a file may be edited. When the text in the window is saved, it is written
back to the clipboard. The Windows clipboard and any of Boxer's internal clipboards can
be edited. The Windows clipboard is not eligible for editing if it contains non-text data.

The content of each clipboard is displayed in a popup window as the menu cursor is
moved across the clipboard's menu entry. This makes it easy to check what's on a
clipboard without pasting the content into a file or opening it for editing.

The content of Boxer's internal clipboards will be saved at the end of an edit session, as
long as the length of the text on the clipboard is 2,048 characters or less. Because the
content of the internal clipboards persists from session to session, and cannot be
changed by other applications, these clipboards can be useful for storing frequently
used text blocks for insertion into your files. The Edit Clipboard command might be
used to create these text blocks and maintain them.

The content of a clipboard can be cleared with the Clear Clipboard command. The
content of all clipboards can be cleared with the Clear All Clipboards command.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

5.90 Edit Other

Menu: Project > Edit Other

Default Shortcut Key: none

Macro function: ProjectEditOther()

Use the Edit Other command to open a selected project file for editing. This command
opens a project file as a text file; it does not open the files named within that project
file. To open the files within a project file, use the Project | Open command.

Command Reference (alphabetically) 487

Copyright © 1991-2010 by Boxer Software

See the Project | New command for full details about Boxer's project file feature.

5.91 Email Boxer Software

Menu: Help > Email Boxer Software

Default Shortcut Key: none

This command displays a dialog box with email addresses which can be used to contact
us at Boxer Software. Just click on the email address that fits your need, and your
email client will be run so that a message can be sent.

In order to launch your email program, Boxer relies upon the operating system
shell's ability to process a 'mailto' directive. When an email client program is
installed, it typically establishes itself as the program which is called by the shell to
process the 'mailto' directive. If you find that your active email program is not
launched by Boxer, or if some other inactive email program is launched instead, it's
probably because your active email program did not establish itself to be the
program that processes mailto commands. This situation cannot be remedied by
Boxer, and is not due to any shortcomings in Boxer. You might consult the
documentation of your email program or contact its vendor.

5.92 Error Chart

Menu: Tools > Error Chart

Default Shortcut Key: none

Macro function: ErrorChart()

The Error Chart command displays a popup list of Windows error codes and their
associated messages. When errors are reported by the operating system--or by an

Boxer Text Editor488

Copyright © 1991-2010 by Boxer Software

application program--they will often reference a numeric error code. These reports
frequently have insufficient information about the error which occurred. Boxer's Error
Chart can be used by programmers--or by any users--to decode the meaning of
Windows error codes.

The Error Chart can be searched by value or by any text which appears within the
listing. Type the search string into the edit box provided and click Find. The Find
button is also used to find the next occurrence of a string which has just been found.

Right-clicking on a selected item summons the Error Chart context menu. The context
menu provides an option to copy the selected message to the current clipboard.

If you prefer that the Error Chart remain atop other windows, select the Stay on top
option. The Error Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

If the Error Chart is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

5.93 Exit

Menu: File > Exit

Default Shortcut Key: Alt+F4

Macro function: Exit()

The Exit command is used to close Boxer and end your editing session. If unsaved
changes have been made to any file a dialog box will appear for each such file to alert
you to this condition. You will then be able to choose whether to save the changes

Command Reference (alphabetically) 489

Copyright © 1991-2010 by Boxer Software

before exiting, exit without saving, or cancel the Exit request altogether.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar, or on its File Tab.

Boxer has an option to warn on exit if the size of the text on the clipboard exceeds a
user-defined threshold. This option can be found on the Configure | Preferences |
Messages dialog.

5.94 Explore Data Folder

Menu: Configure > Explore Data Folder

Default Shortcut Key: none

Macro function: ExploreDataFolder()

This command provides a convenient method of opening an Explorer window that points
to the folder that holds Boxer's application data files. Among these are the files that
contain syntax highlighting information, templates, user lists, projects, macros, as well
as others.

See also the Explore Program Folder command.

When installed on an operating system prior to Windows Vista, Boxer's

Boxer Text Editor490

Copyright © 1991-2010 by Boxer Software

home/installation folder serves double duty as both its program folder and its data
folder. Beginning with Windows Vista, and also under Windows 7, Boxer will
maintain separate folders for its program and data files.

This command can be used to quickly locate the folder that contains the backup files
Boxer creates. This folder should be emptied periodically to conserve disk space.

5.95 Explore Program Folder

Menu: Configure > Explore Program Folder

Default Shortcut Key: none

Macro function: ExploreProgramFolder()

This command provides a convenient method of opening an Explorer window that points
to the folder that holds Boxer's program files. Among these are the Boxer program
itself, calculator, uninstaller, icons and other supporting files.

See also the Explore Data Folder command.

Command Reference (alphabetically) 491

Copyright © 1991-2010 by Boxer Software

When installed on an operating system prior to Windows Vista, Boxer's
home/installation folder serves double duty as both its program folder and its data
folder. Beginning with Windows Vista, and also under Windows 7, Boxer will
maintain separate folders for its program and data files.

5.96 FAQs

Menu: Help > FAQs

Default Shortcut Key: none

Frequently Asked Questions

After I order, will I get a password or key to convert the evaluation version of
Boxer into a licensed version?
No. New software will be sent which is easily installed atop the evaluation version. All
of your settings will be maintained. Software keys are frequently distributed on 'pirate'
Internet sites, thus reducing sales and driving up the cost of software for paying
customers.

Why can't other programs see the text I copied to the clipboard in Boxer?
You are almost certainly using an internal clipboard, rather than the Windows clipboard.
Other programs can't see text that is placed on Boxer's internal clipboards. See the Set
Clipboard command for details.

Why am I having trouble opening filenames from Explorer when they contain
embedded spaces?
This is due to a bug in Explorer. It doesn't enclose a filename in double quotes before
sending it off to the associated application. In the file associations set up by Boxer's
installer, double quotes have been added around "%1", so you'll find these associations
(.TXT, .BAT, etc) work fine. But for any file associations you create yourself, or if you
elected not to allow Boxer's installer to create the associations, you'll need to manually
edit the association to have double quotes around "%1". You'll find that Boxer's help
topic entitled 'File Associations' has additional useful information about this subject.

Why can't I see all my Windows fonts in the Screen Font dialog?
Boxer requires that fixed width fonts (monospace fonts) be used, so the Screen Font
dialog box does not display proportionally spaced fonts. This is required, in part, to
ensure that columnar selections can be highlighted neatly in rectangular blocks, and so
that the Column Ruler can be used. These features would not be possible if the use of
proportionally spaced fonts was permitted.

Will there be a German version of Boxer for Windows, as there was for earlier
Boxer products?
It appears unlikely. We learned from our earlier products that the effort to release a
program in a new language is quite substantial. It appears that our resources can be
better spent enhancing our current products, or developing new ones.

Will there ever be a Linux version of Boxer?

Boxer Text Editor492

Copyright © 1991-2010 by Boxer Software

That's uncertain at this time. We're keeping an eye on the Linux market, and will
continue to do so.

How long did it take to develop Boxer for Windows?
The initial development took almost two years. Boxer for Windows was a ground-up
effort, with almost none of the code from our earlier products being used in its
development.

What language was Boxer written in? How many lines of code? What
development tool was used?
Boxer currently consists of over 110,000 lines of C++ code. Borland's C++ Builder was
used for development.

Where did the name 'Boxer' come from?

In the mid 1980's, one of the most popular editors for the PC was a product called
BRIEF, which was then marketed by a company called UnderWare. In fact, the very first
lines of Boxer/DOS were written using Brief, until Boxer was able to edit its own code.
The name Boxer was simply a play on words: another style of men's underwear!

5.97 Fast Frame

Menu: Tools > Fast Frame

Default Shortcut Key: Alt+F12

Macro function: FastFrame()

The Fast Frame command can be used to frame a columnar-selected rectangle with a
chosen frame style, or with a specified character. A dialog box appears from which the
frame style is selected:

Command Reference (alphabetically) 493

Copyright © 1991-2010 by Boxer Software

A frame style is selected by checking the radio button which corresponds to the desired
style. Options are also provided to frame the selected area with some other character,
and either the ANSI Chart or OEM Chart can be summoned to assist in character
selection.

When using an OEM Screen Font, several additional frame styles may be used. The
bottom eight styles offered in the dialog box require the use of an OEM screen font for
proper display. The ANSI character set does not contain these characters, so using
these styles with an ANSI Screen Font will produce undesirable results.

Once OK is clicked, the selected area is automatically framed with the chosen frame
style. The frame is applied to the outside of the selected area. If the left edge of the
selection lies in column one, the lines in the selected range will be pushed right by one
column to make room for the frame. If Tab characters appear within the selection, they
will be automatically converted to Spaces to ensure proper display after framing.

When printing files which contain drawing characters from the OEM character set, be
sure to use a Printer Font which also uses the OEM character set.

5.98 File Insert

Menu: File > Insert

Default Shortcut Key: Ctrl+I

Macro function: InsertFile()

Boxer Text Editor494

Copyright © 1991-2010 by Boxer Software

The File Insert command is used to insert (some may say 'import') the content of
another file at the current location of the text cursor. The file open dialog is presented
for selecting a file and, after its selection, the content of the file will be placed at the
cursor.

Any text file can be selected for insertion (subject to Sizes and Limits), even one which
is being edited in another editor window.

See the Open command for full details on using both the custom and standard Windows
File Open dialogs.

5.99 File Picker

Menu: File > Picker

Default Shortcut Key: Alt+K

Macro function: FilePicker()

The File Picker command opens a dockable tool window alongside Boxer that can be
used to open files for editing. The File Picker can remain open while Boxer is in use,
making it easy to open new files for editing whenever the need arises. The treeview
interface can display files from either the local PC or from PCs on attached networks.
The File Picker also contains logical entries for "Desktop," "My Documents," and other
conceptual locations on the local PC.

Command Reference (alphabetically) 495

Copyright © 1991-2010 by Boxer Software

To open a file, double click on its name, or select it and press Enter. To open multiple
files, select the files of interest and press Enter.

The right-click context menu contains options to open the selected file in its default
application, or with an application of your choice. Commands to Cut, Copy, Rename
and Delete files are also provided. Options are also provided to close the File Picker
automatically when a file is opened, and/or when Boxer itself is closed.

A list of recent directories from which files have been opened is maintained in the
Favorites list at the top of the File Picker window.

The Mask control permits the display of files to be filtered to show only a particular
class of files.

The column headers in the file display area permit the file listing to be sorted by
filename or file size.

By dragging the horizontal divider bar between the directory and file panes, you can
control how much space is allocated to each pane.

Boxer Text Editor496

Copyright © 1991-2010 by Boxer Software

5.100 File Properties

Menu: File > Properties

Command Reference (alphabetically) 497

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: FileProperties()

The File Properties command displays a dialog box containing information about the file
on disk which is associated with the editor's current file. The file's long and short
names, create/modify/access times, file size and file attributes are all displayed.
Because this command reports information about the current file's disk file, it will be
disabled when editing a file which has yet to be written to disk.

Line ender

Boxer Text Editor498

Copyright © 1991-2010 by Boxer Software

PC
Use this option to save files with a PC style line ender (CR+LF).

Unix
Use this option to save files with a Unix style line ender (LF only).

Macintosh
Use this option to save files with a Macintosh style line ender (CR only).

UTF-8 line separator
Use this option to save files with a UTF-8 line separator. This option is only valid when
file encoding is set to Unicode UTF-8. Note that this line ender sequence uses three
bytes: hex 0xE2, 0x80 and 0xA8.

UTF-16 line separator
Use this option to save files with a UTF-16 line separator (U+2028). This option is only
valid when file encoding is set to one of the Unicode UTF-16 encoding options.

Boxer can read files with any type of line ender, and it will make note of the line
ender as the file is read. The above options can be used to force a file to be written
with a specific line ender.

An option to set the line ender styles that is used for newly created files appears on
the Configure | Preferences | Editing 1 dialog page.

Remove all line enders when saving
This option can be used to ensure that no line enders are written to the output file
when it is saved. This option should not be used for conventional text files, as all
line-related formatting will be lost. Rather, this option can be useful when saving a file
that contains fixed length records, if its file format requires that line enders not appear
within the data stream. To load such a file for viewing or editing, Boxer's File Open
dialog contains an option to impose a fixed length record format onto the file being
opened. The -F command line option is also available for this purpose.

File encoding

ASCII
Use this option to save the current file with ASCII encoding. This is the standard file
format for most text files. No header characters or null characters will appear in the
output file.

UTF-8
Use this option to save the current file with UTF-8 encoding. This is a Unicode format
that uses between one and four bytes to encode each character unambiguously. Null
characters do not appear in UTF-8 encoded files.

Though it is not displayed on-screen in the editor, the three-byte UTF-8 Byte Order
Mark (0xEF 0xBB 0xBF) will be applied when a UTF-8 encoded file is saved to disk.
These bytes will appear as the first three bytes in the file.

UTF-16, little endian
Use this option to save the current file with UTF-16 little endian encoding. This is a

Command Reference (alphabetically) 499

Copyright © 1991-2010 by Boxer Software

Unicode format that uses two bytes to encode each character that appears in the file.
The 'little endian' designator refers to the byte order in the output file. The little endian
version of UTF-16 is popular on Windows-based PCs. Null characters will almost
certainly appear in the output file.

Though it is not displayed on-screen in the editor, the UTF-16 Byte Order Mark
(U+FEFF) will be applied when a UTF-16 encoded file is saved to disk. In a UTF-16 little
endian file, the first two bytes will be 0xFF 0xFE.

UTF-16, big endian
Use this option to save the current file with UTF-16 big endian encoding. This is a
Unicode format that uses two characters to encode each character that appears in the
file. The 'big endian' designator refers to the byte order in the output file. Null
characters will almost certainly appear in the output file.

Though it is not displayed on-screen in the editor, the UTF-16 Byte Order Mark
(U+FEFF) will be applied when a UTF-16 encoded file is saved to disk. In a UTF-16 big
endian file, the first two bytes will be 0xFE 0xFF.

See the help topic Unicode Files for full information about Boxer's handling of
Unicode files.

The active code page can be viewed using the System Info option on Boxer's About
dialog.

An option to set the default line ender for newly created files appears on the
Configure | Preferences | Editing 1 dialog page

An option to set the file encoding format for newly created files appears on the
Configure | Preferences | Editing 1 dialog page

Statistics

The statistics section displays the date and time when the current file was
created/modified/accessed, as well the file size and file attributes. When a file attribute
is set, it is displayed in normal density; when not set, it is displayed as grayed or
disabled.

The Long Name and Short Name properties are displayed in read-only edit boxes to
permit the strings to be copied to the Windows clipboard, if desired.

5.101 File Tabs

Menu: View > File Tabs > View File Tabs

Default Shortcut Key: none

Macro function: ViewFileTabs()

Boxer Text Editor500

Copyright © 1991-2010 by Boxer Software

The View File Tabs command is used to toggle on and off the display of the File Tabs
which can appear at the bottom or top of Boxer's window. File Tabs provide a
convenient method of switching among the currently open windows.

The tab for the current file is displayed as the uppermost tab, and its name will appear
in bold text. For example, in the picture above, the current file is REPORT.C. Clicking

on any other tab will bring that file to the foreground position.

Right clicking on an open area of the File Tab bar will provide access to its context
menu, which allows the bar to be repositioned or turned off. The File Tab bar can also
be repositioned by dragging it to a new location.

The context menu also contains an option to sort the File Tabs alphabetically, by
filename. The order of the File Tabs controls the behavior of the Window Previous and
Window Next commands.

An asterisk (*) is placed in front of the filename on the File Tab to indicate that the file
has changes which have not yet been saved to disk.

To reorder the file tabs, use the mouse to drag a file tab to a new location and drop
it. When an edit session is resumed, the position of the file tabs will be maintained.
The position of file tabs is also maintained within a project file. Note: repositioning
file tabs by drag-and-drop necessitates that any file tab sorting mode (name,
extension or use) which may be in force be abandoned. Otherwise, when a new file
is opened and the file tabs are resorted, the drag-and-drop ordering would be lost.

The filename displayed on the File Tab can be shortened to a user-defined width.
This option appears on the Configure | Preferences | Display options page.

A file can be closed by clicking its File Tab with the middle mouse button.

5.102 File Tabs - Bottom

Menu: View > File Tabs > Bottom

Default Shortcut Key: none

Macro function: FileTabsBottom()

Use this command to cause the file tabs to be located at screen bottom.

 The File Tab context menu also includes options to place the file tabs at screen top
or bottom.

Command Reference (alphabetically) 501

Copyright © 1991-2010 by Boxer Software

5.103 File Tabs - Top

Menu: View > File Tabs > Top

Default Shortcut Key: none

Macro function: FileTabsTop()

Use this command to cause the file tabs to be located at the top of the screen.

The File Tab context menu also includes options to place the file tabs at screen top
or bottom.

5.104 Fill with String

Menu: Block > Fill with String

Default Shortcut Key: none

Macro function: FillWithString()

The Fill with String command can be used to fill a selected area with a supplied text
string. The selected area will be filled automatically with the string supplied. If the text
supplied is less than the width of the selected text, the pattern will be repeated to fill
the selected area.

To prevent unexpected results, the lines affected are automatically de-tabbed prior to
performing the Fill operation. If any lines in the selected range are too short, they will
be extended so that a complete fill of the selected area is achieved.

Boxer Text Editor502

Copyright © 1991-2010 by Boxer Software

Special characters can be entered into the Fill with String edit box using the
technique described in the Help topic Inserting Special Characters.

5.105 Find

Menu: Search > Find

Default Shortcut Key: Ctrl+F

Macro function: Find()

The Find command is used to specify and initiate a search for a text string. Many
different options are available to make searching more flexible and more powerful.
Wildcard characters (also known as Regular Expressions) can also be used within the
search string.

If the search string is found the text cursor will be moved to the matching string and
the text will be selected, if the Select matched text option is active. The matched text
can then be operated upon as can any other selected text.

If the search string is not found a dialog box will appear to report this fact. If you
prefer that this report appear on the message line instead, use the option provided on
the Configure | Preferences | Messages options page. The option is titled Report failed
searches in a popup message box.

The controls and options in the Find dialog box are described below:

Command Reference (alphabetically) 503

Copyright © 1991-2010 by Boxer Software

Find
This is the edit box where the search string is entered. When the Find command is
issued, the word beneath the text cursor is placed into the Find edit box, in case that
word--or a word which is nearly the same--is to be the search string. The Find Fast
command can also be used to search for the word at the text cursor without raising the
Find Text dialog. To recall a search string which was previously entered, use the
drop-down list or press the up or down arrow keys to review the items in the history
list. Regular Expressions may be used within the search string.

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Special characters can be entered into the Find edit box using the technique
described in the Help topic Inserting Special Characters.

Insert Tab
Use this button to insert a tab character into the Find edit box.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Boxer Text Editor504

Copyright © 1991-2010 by Boxer Software

In most fonts, the tab character does not have a unique visual representation. It
will often be depicted as an open square box (), as will be other characters in the
low-ASCII portion of the character set.

Sort list
If this box is checked the history list will be maintained in alphabetic order, rather than
in the order the strings were entered.

When switching to an alphabetically sorted list, the chronological ordering of the list
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Find operations, a list could result that contained only phrases beginning with
the letter 'A'. This occurs because entries at the bottom of the list will be removed
after the maximum size of the list is reached.

Direction

Forward
This option causes the search to be performed downward, toward the end of file.

Backward
This option causes the search to be performed upward, toward the start of file.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

The Match Whole Words option is logically incompatible with the Incremental Search
option, and will therefore be disabled when Incremental Search is active.

Command Reference (alphabetically) 505

Copyright © 1991-2010 by Boxer Software

Match at start of Line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of Line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Match syntax element
This option can be used to force a matching string to belong to a specified syntax
group. Example: you could type the search string 'while' and require that it be matched
only when it appears as a Reserved Word. Instances that occur within program
comments or quoted strings (or any other syntax) would not be matched. (This is a
powerful capability with lots of potential, and one we've never seen in another editor.)

Scope

Selected Text
This option can be used to restrict the search to the extent of the selected text.

Cursor to bottom / Cursor to top
This option causes the search to be performed from the text cursor onward, according
to the current direction. The search ends when either the top or bottom of the file is
reached.

Wrap around
This option causes the search to be performed from the cursor onward, according to the
current direction. When either the top or bottom of file is reached, the search wraps
around, and continues to the original cursor position.

When Find Next or Find Previous are used in wrap around mode, a message appears
on the status bar when the search has wrapped back to the location of the first
match. An option on the Configure | Preferences | Messages dialog page can be
used if you prefer that this event be reported in a pop-up message box instead.

Top to bottom / Bottom to top
This option causes the search to be performed from the top or bottom of file onward,
according to the current direction.

All open files
This option causes the search to be performed across all open files.

Active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Display Options

Boxer Text Editor506

Copyright © 1991-2010 by Boxer Software

Incremental search
This option causes the search process to begin as soon as a character is pressed, rather
than waiting for OK to be pressed. When typing long search strings, you may find that
the match is found before you're done, thereby saving typing. Just press Enter to
dismiss the dialog and remain at the displayed match.

This option is disabled when Perl Regular Expressions are in use, since it is often the
case that a regular expression cannot be properly evaluated until it has been
completely typed.

Select matched text
This option causes the matched string to be selected so that it can be operated upon by
any command that operates upon selected text. When this option is not used, the text
cursor is simply placed at the start of the matching string.

This option is incompatible with the Extend Selection option, and will therefore be
disabled when that checkbox is checked.

Highlight all matches
This option causes all instances of the matched string to be highlighted within the
current file, and within other edited files. The highlighting will persist until a new Find
operation is performed, or until the end of the editing session. Alternatively,
highlighting can be disabled altogether using the View | Text Highlighting command
(this also affects the general Text Highlighting feature). The foreground and background
colors used to highlight matches can be set on the Configure | Colors dialog.

This option is not available for searches which use Regular Expressions.

To permanently configure one or more text strings for highlighting, use the Text
Highlighting feature.

Extend Selection
This option can be used to extend an existing selection to the point of the matched
string.

This option is logically incompatible with the Select matched text option, and will
therefore be disabled when that checkbox is checked. This option will also be
disabled when the Scope has been set to Selected text.

Show at
This option controls the screen position at which matched strings are displayed. When
a new match is already on-screen, it will be shown in place, without redrawing the
screen. If the screen must be redrawn to show a new match, then the matching line will
be positioned at the designated screen location.

Notes

When the Incremental search and Select matched text options are both in use, the
Find Next and Find Previous commands can be issued from the keyboard (F3 and
Shift+F3, respectively) in order to display additional matches to the partially typed

Command Reference (alphabetically) 507

Copyright © 1991-2010 by Boxer Software

search string while the Find dialog is still open.

5.106 Find a Disk File

Menu: Search > Find a Disk File

Default Shortcut Key: none

Macro function: FindADiskFile()

The Find a Disk File command provides the ability to locate one or more disk files which
match a supplied filename or file pattern(s). Matching filenames are displayed in a
results window, and one or more files from the list can then be selected for editing.
The dialog box is non-modal and stay-on-top, so you can peruse the files opened and
later return to the dialog to open other files, without losing the search results.

A range of options are provided to control how the search is conducted, and what
drives, directories and files should be considered:

Boxer Text Editor508

Copyright © 1991-2010 by Boxer Software

Disk drive to search on
This drop-down list allows you to specify the disk drive to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Directory to search in
This drop-down list allows you to specify the directory to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Use the folder icon with the red square in it to jump to the directory of the current
file.

File or file pattern(s) to search for
This edit box allows you to specify the filename and/or file pattern(s) to search for. A
list of common file patterns has been supplied in the drop-down list, or you can type
your own. When specifying multiple patterns, separate the patterns with a semi-colon
and do not use intervening spaces.

Options

Search all drives and directories
If this option is selected all drives and subdirectories will be searched, except that
removable drives may be exempted using the option below.

Ignore removable drives
If this option is selected drives with removable media (such as floppy drives and mass
storage cartridges) will not be searched.

Search subdirectories
If this option is selected all subdirectories below the selected directory will also be
searched.

Consider Hidden bit files
If this option is selected, files whose Hidden attribute bit is set will be considered during
the file search. The Hidden attribute causes a file to become invisible to many directory
listing programs, and is often used together with the System file attribute.

Consider System bit files
If this option is selected, files whose System attribute bit is set will be considered
during the file search. The System attribute is sometimes used by the operating
system to distinguish files which should not be altered or deleted.

Consider Archive bit files

If this option is selected, files whose Archive attribute bit is set will be considered
during the file search. The Archive attribute is used by the operating system to flag
those files which have been changed since the previous backup operation. Backup
programs will typically reset a file's Archive bit after saving the file to a backup device.
In most cases you will want to leave this checkbox active to ensure that recently
changed files will be searched.

Command Reference (alphabetically) 509

Copyright © 1991-2010 by Boxer Software

5.107 Find and Count

Menu: Search > Find and Count

Default Shortcut Key: none

Macro function: FindAndCount()

The Find and Count command can be used to count the number of occurrences of a
specified text string within the current file, or within all edited files. Find and Count is a
passive operation, it simply reports the number of matches found for the specified
string, within the specified range.

The search options that appear in the Find and Count dialog box are the same as those
which appear in the Replace dialog box. See the Replace topic for full details.

The Find and Count command reports its result using a read-only edit box so that
the value can be copied to the Windows clipboard.

5.108 Find Differing Lines

Menu: Search > Find Differing Lines

Default Shortcut Key: Ctrl+D

Macro function: FindDifferingLines()

The Find Differing Lines command can be used to locate differing lines among two or
more similar files. After the command is issued, the text cursor will be advanced in

Boxer Text Editor510

Copyright © 1991-2010 by Boxer Software

each open file to the next line whose text is not identical in among all open files.

This command will be most efficient when used as follows: open the files to be
compared and select Window | Tile Across or Window | Tile Down to arrange the
windows in a left-to-right or top-to-bottom arrangement. Position the text cursor in
each file to line 1, or to a line just before where the comparison is to begin. In any
case, the text on each starting line should be identical among all the files being
compared. When the Find Differing Lines command is issued, the text cursor will be
advanced in each file until a line is found which differs among the open files.

The first differing column in the line will be highlighted, and the operation is complete.
You can make any corrections that might be needed and then issue the command again
to find the next difference. If the difference that was found involves the addition or
deletion of one or more lines, the files will need to be re-synchronized manually before
proceeding. That is, the text cursor must be moved in each file to a line with identical
content so that a new comparison can begin.

Find Differing Lines ignores minimized files during its operation, so if there are any
files open which should not be compared they can be minimized before beginning.

5.109 Find Distinct Lines

Menu: Search > Find Distinct Lines

Default Shortcut Key: none

Macro function: FindDistinctLines()

The Find Distinct Lines command can be used to isolate all distinct lines within the
current file. The distinct lines are copied, with line numbers, into an untitled file. No
change is made to the current file during the operation.

If a range of lines is selected, Find Distinct Lines will operate only on that portion of the
file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

The effect of this command is similar to the Find Unique Lines command, with an
important difference: Find Unique Lines omits from its report any lines which are
duplicated. Find Distinct Lines includes duplicated lines, but places just a single
instance of such lines in its report. An example will clarify:

Original File's Content... Find Unique Lines gives... Find Distinct Lines gives...

AAA AAA AAA

BBB DDD BBB

BBB EEE CCC

CCC FFF DDD

Command Reference (alphabetically) 511

Copyright © 1991-2010 by Boxer Software

CCC EEE

DDD FFF

EEE

FFF

This command can be useful for isolating distinct entries in a list. For example: a
file contains lists of email address that were merged from multiple sources. Find
Distinct Lines could be used to create a new list that contains one occurrence of
each distinct email address. (Following the same example, a similar result could be
obtained using the Delete Duplicate Lines command.)

5.110 Find Duplicate lines

Menu: Search > Find Duplicate Lines

Default Shortcut Key: none

Macro function: FindDuplicateLines()

The Find Duplicate Lines command can be used to locate all lines within the current file
which are duplicated elsewhere in the file. The duplicate lines are copied, with line
numbers, into an untitled file. No change is made to the current file during the
operation.

If a range of lines is selected, Find Duplicate Lines will operate only on that portion of
the file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

If you need to delete duplicate lines, use the Delete Duplicate Lines command.

This command can be useful for finding duplicate items within a list which is
expected to contain only unique entries. For example: given a list of charitable
donor names, Find Duplicate Lines could be used to find those parties who have
contributed more than once.

5.111 Find Fast

Menu: Search > Find Fast

Default Shortcut Key: Ctrl+F3

Macro function: FindFast()

The Find Fast command can be used to quickly search for the next occurrence of the

Boxer Text Editor512

Copyright © 1991-2010 by Boxer Software

word beneath the text cursor. The search is performed in the forward direction, toward
the end of file. The search options from the Find command dialog box are used, even if
the Find command has not yet been used in the current edit session.

5.112 Find Mate

Menu: Search > Find Mate

Default Shortcut Key: Ctrl+]

Macro function: FindMate()

The Find Mate command locates the mating parenthetical element to the parenthetical
element at the text cursor, and moves the text cursor ahead (or back) to that position.
The search begins at the text cursor and will continue all the way to the start or end of
the file, as may be needed.

If the text cursor is sitting on an opening parenthetical character such as (, [, <, or {
, the cursor will be moved ahead to the corresponding closing mate, with consideration

given to nesting. If the cursor is situated on a closing parenthetical character such as)
,], >, or }, the cursor will be moved backward to the corresponding opening mate,

again with consideration given to nesting.

The Find Mate command also recognizes text strings as parenthetical elements, and
many of the most common parenthetical pairs have been pre-defined. For example: if
the cursor is sitting on begin, Find Mate will locate end. If the cursor is sitting on <i>
(the HTML code to begin italics), Find Mate will find </i>. If the cursor is sitting on

while, Find Mate will find endwhile.

The Find Mate command can be used to extend an existing text selection to a closing
element. For example, to select a parenthesized block of text, select the opening
parenthesis and issue the Find Mate command. The selection will be extended to
include all of the text up to and including the closing parenthesis.

The parenthetical pairs recognized by Find Mate can be viewed and/or defined on the
Configure | Preferences | Editing 1 options page. The name of the option is Set mating
pairs for Find Mate.

When editing a file for which syntax highlighting information is available, Find Mate
will ignore parenthetical elements that occur within block comments, end-of-line
comments, character constants and quoted strings. If syntax highlighting is
disabled, or unavailable, this feature cannot be performed.

Find Mate can also be used to test for unmated parenthetical elements, since a
request to find a mate for an unbalanced element will result in a report that the
closing mate could not be found.

When defining Find Mate pairs for tagged languages such as HTML, remember that
commands which include parameters will need different treatment than commands

Command Reference (alphabetically) 513

Copyright © 1991-2010 by Boxer Software

that cannot use parameters. For example, if you were to define 'table' using the
definition <table>=</table>, Boxer would not be able to find matches when

'table' was used with parameters, such as <table width="200">. For this

reason, a definition of the form <table=</table> should be used instead, without

the closing > character.

Find Mate is not able to handle mating pairs whose beginning or ending element is
shared by other parenthetical pairs. For example, the definitions #if=#endif,

#ifdef=#endif and #ifndef=#endif all share the same closing element,

#endif. The nesting complexities that could arise from such definitions is beyond

the scope of the Find Mate command.

5.113 Find Next

Menu: Search > Find Next

Default Shortcut Key: F3

Macro function: FindNext()

The Find Next command is used to repeat the most recent search in a forward direction.
The new search will obey all of the search options which were used when the search
was first initiated with the Find command.

When the Incremental search and Select matched text options are both in use, the
Find Next command can be issued from the keyboard in order to display additional
matches to the partially typed search string while the Find dialog is still open.

5.114 Find Previous

Menu: Search > Find Previous

Default Shortcut Key: Shift+F3

Macro function: FindPrevious()

The Find Previous command is used to repeat the most recent search in a backward
direction. The new search will obey all the of search options which were used when the
search was first initiated with the Find command.

When the Incremental search and Select matched text options are both in use, the
Find Previous command can be issued from the keyboard (Shift+F3) in order to
display additional matches to the partially typed search string while the Find dialog
is still open.

Boxer Text Editor514

Copyright © 1991-2010 by Boxer Software

5.115 Find Text in Disk Files

Menu: Search > Find Text in Disk Files

Default Shortcut Key: none

Macro function: FindTextInDiskFiles()

The Find Text in Disk Files command provides the ability to search for a text string
across a specified range of drives, directories and files. Lines which contain the desired
string are presented in a results window, and the file containing a match can be opened
by pressing Enter or double clicking on the line.

Regular Expressions can be used when specifying the search string, and one or more
file patterns can be used to search within an entire class of files.

The results window is non-modal, so you can peruse the files opened and later return to
the window to open other files, without losing the search results. The results window
has a Copy All button which allows its results to be copied to the current clipboard.
The Copy Selected button will copy only those lines that have been selected. The Open
All button will automatically open all files in which matching lines were found.

A wide range of options are provided to control how the search is conducted, and what
drives, directories and files should be searched:

Disk drive to search on

Command Reference (alphabetically) 515

Copyright © 1991-2010 by Boxer Software

This drop-down list allows you to specify the disk drive to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled.

Directory to search in
This drop-down list allows you to specify the directory to be searched. When the
Search all drives and directories checkbox is selected, this list is disabled. Note that a
double-click is required to select a directory; a single-click will not suffice.

Use the folder icon with the red square in it to jump to the directory of the current
file.

Favorite directories
This control can be used to recall other directories that have been used in the past.

File(s) or file pattern(s) to search within
This edit box allows you to specify the filename and/or file pattern(s) to search within.
A list of common file patterns has been supplied in the drop-down list, or you can type
your own. When specifying multiple patterns, separate the patterns with a semi-colon (

;) and do not use intervening spaces.

The file patterns that appear in the drop-down list are shared with the File Open
dialog. The file patterns which appear in this dialog are user-definable via the
Configure | Preferences | File I/O options page.

Regardless of whether or not such files match the supplied filename(s) or file
pattern(s), binary files will not be searched by this command.

Text to search for
This edit box is used to specify the text string to be found. Regular Expressions can
used if desired. The associated drop-down list can be used to recall previous search
strings.

The Delete key can be used while the drop-down list is displayed to delete the
selected entry from the history list.

Special characters can be entered into the Text to search for edit box using the
technique described in the Help topic Inserting Special Characters.

Insert Tab
Use this button to insert a tab character into the Text to search for edit box.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Sort List
If this box is checked the history list will be maintained in alphabetic order, rather than
in the order the strings were entered.

Boxer Text Editor516

Copyright © 1991-2010 by Boxer Software

When switching to an alphabetically sorted list, the chronological ordering of the list
will be lost, and cannot be restored by unchecking the checkbox.

File Search Options

Search all drives and directories
If this option is selected all drives and subdirectories will be searched, except that
removable drives may be exempted using the option below.

Ignore removable drives
If this option is selected drives with removable media (such as floppy drives and mass
storage cartridges) will not be searched.

Search subdirectories
If this option is selected all subdirectories below the selected directory will also be
searched.

Consider Hidden bit files
If this option is selected, files whose Hidden attribute bit is set will be considered during
the search. The Hidden attribute causes a file to become invisible to many directory
listing programs, and is often used together with the System file attribute.

Consider System bit files
If this option is selected, files whose System attribute bit is set will be considered
during the search. The System attribute is sometimes used by the operating system to
distinguish files which should not be altered or deleted.

Consider Archive bit files
If this option is selected, files whose Archive attribute bit is set will be considered
during the search. The Archive attribute is used by the operating system to flag those
files which have been changed since the previous backup operation. Backup programs
will typically reset a file's Archive bit after saving the file to a backup device. In most
cases you will want to leave this checkbox active to ensure that recently changed files
will be searched.

Stop searching after n matches are found
Use this option to stop the search after a specified number of matches have been
found.

Scope

Search within the file set specified to the left
Use this option to search a file set which has been designated in the disk, directory and
file controls at the left side of the dialog.

Search within all open files
Use this option to restrict the search to those files that are currently open for editing.

Search the active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Command Reference (alphabetically) 517

Copyright © 1991-2010 by Boxer Software

Text Search options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Report Options

Show matching files/lines
If this option is selected, the text of the matching lines will be shown in the results
window, grouped by file.

Show matching files
If this option is selected, the filenames in which matching lines occurred will be
reported, but the matching lines will not be shown..

Show files that do not contain the search text
If this option is selected, the filenames in which matching lines do not appear will be
reported..

Show line numbers
If this option is selected, line numbers will be displayed to the left of each matching
line.

Boxer Text Editor518

Copyright © 1991-2010 by Boxer Software

Show count of matches
If this option is selected, the count of matches found in each file will be shown in the
results window.

Show divider bars

If this option is selected, divider bars will be used within the results window to separate
one file's matches from another.

If you prefer that the Find Text in Disk Files dialog automatically start in the
directory of the current file, use the relevant option on the Configure | Preferences |
File I/O dialog page.

5.116 Find Unique Lines

Menu: Search > Find Unique Lines

Default Shortcut Key: none

Macro function: FindUniqueLines()

The Find Unique Lines command can be used to locate all lines within the current file
which are not duplicated elsewhere in the file. The unique lines are copied, with line
numbers, into an untitled file. No change is made to the current file during the
operation.

If a range of lines is selected, Find Unique Lines will operate only on that portion of the
file.

The results are presented in alphabetic order. The Sort Lines command can be used to
sort by line numbers, if desired.

The effect of this command is similar to the Find Distinct Lines command, with an
important difference: Find Unique Lines omits any lines which are duplicated from its
report. Find Distinct Lines includes duplicated lines, but places just a single instance of
such lines in its report. An example will clarify:

Original File's Content... Find Unique Lines gives... Find Distinct Lines gives...

AAA AAA AAA

BBB DDD BBB

BBB EEE CCC

CCC FFF DDD

CCC EEE

DDD FFF

Command Reference (alphabetically) 519

Copyright © 1991-2010 by Boxer Software

EEE

FFF

This command can be useful for finding items within a list which are not duplicated
elsewhere in the list. For example: given a list of zip codes to which deliveries must
be made, Find Unique Lines could be used to find those zip codes for which only one
delivery must be made, allowing special arrangements to be made.

5.117 Flip Case

Menu: Edit > Flip Case

Default Shortcut Key: Shift+Ctrl+F

Macro function: FlipCase()

The Flip Case command flips (toggles, inverts) the case of the character at the text
cursor, and moves the cursor to the next character in the line. Use this command to
quickly convert a short string of lowercase characters to uppercase, or uppercase
characters to lowercase, by issuing the command repeatedly to move through the
string.

5.118 Format XML / XHTML

Menu: Tools > Format XML / XHTML

Default Shortcut Key: none

Macro function: FormatXML()

The Format XML / XHTML command can be used to apply formatting to XML-compliant
files. If you've ever worked with XML files, you may have noticed that these files often
lack line enders and indenting. When these files are opened in Boxer, the text appears
as a single long line, and flows off-screen and out of sight at the right edge of the
window. The absence of formatting presumably provides some efficiency to the software
programs that process these files, but does so at the expense of human readability.
The Format XML / XHTML command can neatly format these files with line enders and
proper indentation.

The Unformat XML / XHTML command can be used to remove formatting.

By default, the formatting operation is applied to the whole file. If a range of lines is
selected, formatting will be performed on the range of lines selected.

A variety of options are provided on the Format XML dialog to control the formatting
process:

Boxer Text Editor520

Copyright © 1991-2010 by Boxer Software

Formatting

Indentation
Three options are provided: indent with tabs, indent with n spaces, don't indent at all.
If tabs are used, the display value of a tab is governed by the Tab Display Size
command. A large indent value can make it easier to see the structure of the data file.
But if a document contains deeply nested data blocks, a more modest indent value may
need to be used to preserve space.

Right Margin
This option controls the nominal margin at which lines will be split in order to maintain
the width of the document. Please note that double-quoted strings will not be split in
an attempt to stay within the margin. Lines will be split only at legal break points
between or within tags.

Split text that exceed right margin
This options controls whether or not text data will be split/wrapped in order to maintain
the right margin.

Command Reference (alphabetically) 521

Copyright © 1991-2010 by Boxer Software

Split tags that exceed right margin
This options controls whether or not tags (with spaces) will be split/wrapped in order to
maintain the right margin.

Insert a blank line before comments
This option can be used to force an empty line to appear before a comment line, or a
group of comment lines.

Inline tags
This option can be used to list those tags which will be treated as inline tags. When an
inline tags is closed, a newline is not added to the output. Inline tags are typically
those tags that might be used to apply formatting to a word or phrases, and are not
those tags that begin a block of data which will include other tags.

Automation

A variety of options are offered to control when and whether XML formatting should be
applied automatically.

Apply formatting automatically to all XML files
If this option is checked, formatting will be applied to all XML files as they are opened,
whether formatted or not, without asking.

Apply formatting automatically to unformatted XML files
If this option is checked, formatting will be applied to unformatted XML files as they are
opened, without asking. Formatted XML files with be opened without modification.

Ask whether to format when opening all XML files
If this option is checked, Boxer will ask whether formatting should be applied each time
an XML file of any kind is opened.

Ask whether to format unformatted XML files
If this option is checked, Boxer will ask whether formatting should be applied each time
an unformatted XML file is opened. Formatted XML files with be opened without
modification.

Never format automatically and never ask
If this option is checked, Boxer will never ask about formatting XML files, and will never
format them. In this case, the Format XML could be invoked manually in order to
initiate formatting.

When formatting is applied due to the options above, perform Unformat
automatically before the file is saved
Use this option to ensure that any formatting that is applied due to the automation
options is removed before a file is saved. Please note: if the Format XML dialog is
summoned manually to add formatting, you'll need to manually remove formatting
with Unformat XML, if desired.

XML file types
This option lists the file extensions of those files which are consider XML files, for
purpose of automated formatting.

Boxer Text Editor522

Copyright © 1991-2010 by Boxer Software

Statistics

When formatting is applied manually (ie, not via automation), a statistics dialog is
displayed upon completion:

The dialog can be helpful in locating mismatched or unclosed tags. In particular, the
task of converting HTML files to XHTML (XML-compliant HTML) can be aided
considerably by using the Format XML command. By using the statistics dialog, and
watching for inconsistent indenting, you'll be able to locate which tags are preventing
your HTML file from being XML-compliant. A proper XHTML file should start and end at
zero indent. If the indent level grows over the course of the document, this is probably
an indication that one or more self-closing tags have not been closed. For example,

 needs to be changed to
.

 Text found within <script> and </script> tags (or within <? and ?>) will not be

formatted by this command. Embedded scripting code may be sensitive to indentation
and wrapping, so Format XML will not process such text during its operation.

5.119 FTP Open

Menu: File > FTP Open

Default Shortcut Key: Shift+Alt+O

Macro function: none

The FTP Open command provides the ability to open files on a remote computer system
for viewing and/or editing. A custom dialog is used to display the files on the remote
system and to provide access to the various FTP functions:

Command Reference (alphabetically) 523

Copyright © 1991-2010 by Boxer Software

This help topic is not intended to be a primer on the subject of FTP (File Transfer
Protocol) communications. Some familiarity with FTP is assumed on the part of the
reader.

Edit Accounts Dialog

The first step to opening files on a remote system is to provide Boxer with the
information necessary to establish an FTP connection. The Edit Accounts button will
present the following dialog:

Boxer Text Editor524

Copyright © 1991-2010 by Boxer Software

Initially the dialog will not show any accounts in the Accounts listbox at the left. Click
New to create a new account. Use the Rename button to rename the new account as
desired.

The Copy button can be used to make a copy of the selected account. The Delete
button can be used to delete a selected account.

Host Domain / IP Address
This field holds the domain name or IP address of the site you wish to connect to.

User
This field holds the user name for the account you have at the remote site. Up to 40
characters are permitted.

Password
This field holds the password for the account you have at the remote site. For security
purposes, the field will be displayed with asterisks as it is typed. If the password field
is left blank, you will be prompted for the password at connect-time. Up to 40
characters are permitted

If the Save password option is selected, the password you enter will be stored in
the Windows registry along with Boxer's other settings. For security purposes, the
password entry will be encrypted in the registry.

Initial Directory
This field holds the name of the directory you would like to be positioned in on the

remote system.

Command Reference (alphabetically) 525

Copyright © 1991-2010 by Boxer Software

If the system you connect to has several directories with different functions, you
might choose to create several accounts that differ only in the Initial Directory field.
This makes it easier to connect directly to the required directory location. The Copy
button makes it easy to create copies of existing accounts.

FTP port
This field holds the port number to be used for the FTP connection. Unless you have

reason to do otherwise, the value should remain at its default setting of 21.

Remark
This field can be used to add a comment about the FTP account being configured.

If you prefer that your password be visible, and security is not an issue, the Remark
field can be used to note the password.

Save Password
Use this option to dictate whether or not the Password field will be saved from session
to session. If this option is not selected, the value of the Password field will persist only
for the current session.

Anonymous Login
Use this option to configure for a system which permits Anonymous login. Selecting
this option causes the User field to be set to 'anonymous'. The Password field is not
required, but some systems suggest that your email address be supplied as the
password.

Passive Connection
Use this option to request that the FTP session use a passive connection. A passive
connection may be required by some firewalls.

ASCII transfers
Use this option to indicate that file transfers are to be performed in ASCII mode. If this
option is not selected transfers will be made in Binary mode.

Line ender conversion issues can arise when transferring files from Unix systems. If
the results you are seeing are unsatisfactory, try switching the sense of the ASCII
transfers option.

Advanced Settings
The advanced settings dialog tab is reserved for future use.

FTP Open Dialog

Account
The Account list provides a drop-down list of all defined accounts. Select the desired
account before clicking Connect.

Connect / Disconnect
The Connect button is used to initiate an FTP connection. Once the connection is
established, the label of this button changes to Disconnect.

Boxer Text Editor526

Copyright © 1991-2010 by Boxer Software

File List
The File List display shows the names of the files on the remote system. The format of
this list will depend on the remote system. Boxer does not coerce the data supplied by
the remote system into a new format. Likewise, the method used to indicate directory
names will vary from system to system. The most common formats use either a 'd' in
column one, or the string '<DIR>' somewhere near the filename.

File entries on the remote system which are 'links' or 'redirects' will not be shown in
the File List. The knowledge of where a link points to is maintained on the remote
system. Opening a link via FTP does not have the expected results.

Activity Log
At the lower left of the dialog is the Activity Log. This scrolling list maintains a record
of the functions that have been performed during the FTP session. The log can be
cleared with the Clear Log button that appears in the Extra Functions panel.

Show directories in list
Use this option to dictate whether or not directory names should appear in the File List.

Put directories at top of list
Use this option to dictate whether or not directory names should be placed at the top of
the File List. If directories are not placed at the top they will appear sorted among the
filename entries.

Show files starting with '.'
Use this option to control whether or not filenames that begin with a period should be
displayed in the File List. On some systems such files are used for configuration and
should not be disturbed.

Keep dialog open after transfer
Use this option to control whether the FTP dialog should remain open after the transfer
is completed. This may be desirable if multiple files are to be opened from different
remote directories.

Send NOOPs to keep session open
Use this option to request that an FTP session be kept open by sending NOOPs (NO
Operation commands) to the remote system. This option could be used to defeat a
system which enforced an automatic logout after a period of inactivity.

Some systems will not interpret NOOPs as legitimate FTP activity and will proceed
with automatic logout.

Extra Functions
The Extra Functions button will toggle on and off a panel that displays additional FTP
functions. The following functions are available:

Change To
Use this function to change to the selected directory.

The Enter and Right Arrow keys can also be used to descend into a selected
directory.

Command Reference (alphabetically) 527

Copyright © 1991-2010 by Boxer Software

Up Dir
Use this function to change to the parent directory.

The Left Arrow can also be used to ascend to a parent directory.

Make Dir
Use this function to create a new directory.

Rename
Use this function to rename a remote file or directory.

Delete
Use this function to delete a remote file or directory. A confirmation will be required

before the deletion is performed.

Power Copy
The Power Copy function will copy all local files that are open in the editor to the
current remote directory. If any of these files have been modified they will be saved
automatically. A confirmation is required before the Power Copy operation is
performed.

This function can be very useful when editing local copies of website files.

Refresh View
Use this function to refresh the File List display. This might be required if you suspect
that another program or process has made changes to the remote system that affect
the file listing.

Clear Log
Use this function to clear the content of the Activity Log window.

Notes

Once a remote file is opened for editing, the name and path of that file will be displayed
in the title bar of its edit window. The FTP Filepath includes the information that Boxer
needs in order to be able to save the file, or to reopen it at a later time. An FTP
Filepath has the form:

ftp://(AccountName)/remote_dir/remote_filename.ext

Many different areas of Boxer have been enhanced to recognize and process FTP
filepaths:

File Save
When the Save command is issued an FTP connection to the remote system will be
established automatically so that the file can be saved.

Command Line
When an FTP Filepath appears on Boxer's command line it will automatically be opened
for editing when the edit session begins.

Boxer Text Editor528

Copyright © 1991-2010 by Boxer Software

Wildcard file specifications are not supported in this context.

Project Files
An FTP Filepath can be placed within a Project file so that it can be opened along with
other files named in the Project file.

Most Recently Used Files
When an FTP Filepath is recalled from the Recent Files list near the bottom of the File
menu, it will be opened automatically.

Restored Session
When a previous edit session is restored, any remote files that were open in that
session will be opened automatically.

Filename at Cursor
If an FTP Filepath is found beneath the text cursor, the Open Filename at Cursor
command will open the file automatically.

Spaces are permitted within an FTP account name, but you might wish to avoid
using them. Doing so will make it easier to use FTP Filepaths on the command line,
or with the Open Filename at Cursor command, since double quoting of the filepath
will not be required.

5.120 FTP Save As

Menu: File > FTP Save As

Default Shortcut Key: Shift+Alt+F12

Macro function: none

The FTP Save As command is used to save the current file to a remote computer using
a new filename. The file will remain on disk under its old name (except when an
untitled file is being saved), and a copy of the file will be saved to the new name and
location provided. Boxer will then record the file's new name so that all future save
operations are made to the new name.

Boxer's FTP dialog will be used to initiate the connection to the remote computer. For
full details about this dialog please see the FTP Open command.

If you are editing a remote file and wish to save a copy locally, use the Save As
command.

5.121 Go to Byte Offset

Menu: Jump > Byte Offset

Default Shortcut Key: none

Command Reference (alphabetically) 529

Copyright © 1991-2010 by Boxer Software

Macro function: GoToByteOffset()

The Go to Offset command can be used to jump immediately to a specified byte offset
within the current file. Options are also provided in the Go to Offset dialog box to move
backward or forward by the value specified, or to treat the value as a percentage. For
example, specifying 50% would result in movement to a character midway through the
file.

When viewing a file in Hex Mode, the Go to Byte Offset command will adjust itself to
provide the expected movement to positions within the hex display. A hexadecimal
offset can be specified by prefixing the value entered with an 'x'.

If text is selected when this command is issued, an option will be available to extend
the selection to the new location.

The Go To Offset dialog also recognizes the following syntax: +10 to jump ahead 10
bytes; -15 to jump back 15 bytes, and 45% to move to the 45 percent position in
the file. The use of this syntax overrides the mode indicated by the radiobutton
options.

5.122 Go to Column

Menu: Jump > Go to Column

Default Shortcut Key: Shift+Ctrl+G

Macro function: GoToColumn()

The Go to Column command can be used to jump immediately to a specified column
number on the current line. Options are also provided in the Go to Column dialog box
to move left or right by the value specified, or to treat the value as a percentage. For
example, specifying 25% would result in movement to column 25 in a line with 100
characters.

If text is selected when this command is issued, an option will be available to extend

Boxer Text Editor530

Copyright © 1991-2010 by Boxer Software

the selection to the new location.

The current column number is always displayed on the Status Bar, next to the 'C' label.
The Go to Column command can also be issued by double clicking within the column
number display in the Status Bar.

The Go To Column dialog also recognizes the following syntax: +10 to jump ahead
10 columns; -15 to jump back 15 columns, and 45% to move to the 45 percent
position along the current line. The use of this syntax overrides the mode indicated
by the radiobutton options.

5.123 Go to Line

Menu: Jump > Go to Line

Default Shortcut Key: Ctrl+G

Macro function: GoToLine()

The Go to Line command can be used to jump immediately to a specified line number in
the current file. Options are also provided in the Go to Line dialog box to move up or
down by the value specified, or to treat the value as a percentage. For example,
specifying 50% would result in movement to a line midway through the current file.

If text is selected when this command is issued, an option will be available to extend
the selection to the new location.

Command Reference (alphabetically) 531

Copyright © 1991-2010 by Boxer Software

The current line number is always displayed on the Status Bar, next to the 'L' label.
The Go to Line command can also be issued by double clicking within the line number
display in the Status Bar.

The Go To Line number dialog also recognizes the following syntax: +10 to jump
ahead 10 lines; -15 to jump back 15 lines, and 45% to move to the 45 percent
position in the file. The use of this syntax overrides the mode indicated by the
radiobutton options.

5.124 Go to Paragraph

Menu: Jump > Go to Paragraph

Default Shortcut Key: none

Macro function: GoToParagraph()

The Go to Paragraph command can be used to jump immediately to a specified
paragraph number in the current file. The distinction between lines and paragraphs
relates to the Visual Wrap feature. When Visual Wrap is active, lines with soft line
enders are wrapped to width of the window, or to some other wrapping margin. In
Visual Wrap mode, a single physical line of text might occupy more than one line on the
screen; screen line 11 might correspond to paragraph 4.

Go to Paragraph can be used to move easily among paragraphs:

 The distinction between lines and paragraphs will become more obvious if the View

Boxer Text Editor532

Copyright © 1991-2010 by Boxer Software

Line Numbers option is active.

5.125 Harden Line Enders

Menu: Paragraph > Harden Line Enders

Default Shortcut Key: none

Macro function: HardenLineEnders()

The Harden Line Enders command converts soft line enders to hard line enders. If a
selection is present, the operation is restricted to the selected range of lines. If a
selection is not present, the operation is performed across the whole file. A
confirmation dialog will appear before the operation is performed:

The concept of "soft" and "hard" line enders relates to the Visual Wrap command. A
line with one or more spaces at the end is considered to have a soft line ender. Lines
without trailing spaces are considered to have hard line enders. When Visual Wrap
mode is active, lines with soft line enders are eligible to be merged with the content of
lines below, allowing text to be reformatted to fit within the window width (or whatever
other wrapping margin is chosen).

Applying the Harden Line Enders command to a file has the effect of making the current
on-screen formatting permanent... until or unless the Soften Line Enders command is
used to reverse this operation. If you apply the Harden Line Enders command to a
selected range of lines, these lines will be ineligible for wrapping by the Visual Wrap
command.

See also: Visual Wrap, Visual Wrap Options, Soften Line Enders

5.126 Help

Menu: Help > Boxer Help

Default Shortcut Key: F1

Command Reference (alphabetically) 533

Copyright © 1991-2010 by Boxer Software

Help is available at any time within Boxer by pressing F1. In most cases, the help topic
presented will be sensitive to the context in which help was requested.

While cursoring within the main menu or a context menu Help will be presented for the
highlighted menu item.

Most dialog boxes contain a Help button which presents the help topic dealing with that
dialog box.

When editing a source code file for which Syntax Highlighting has been defined, the
Help command can be used to summon language-specific help information for the word
beneath the text cursor. The pathname of the help file which is associated with the
language is defined in the Help File parameter of the Syntax Highlighting information
for that language. See the Syntax Highlighting topic for more information about this
capability.

5.127 Help On

Menu: Help > Help On

Default Shortcut Key: Shift+F1

The Help On command is used to activate a special mode in which the mouse cursor is
changed to a help icon with an arrow cursor. In this mode the mouse is relieved of its
conventional duties, and Help information will be displayed for the next object or menu
item clicked upon.

The mouse arrow cursor will change to a 'no' cursor when atop an item for which help is
not available, or not applicable.

5.128 Hex Mode

Menu: View > Hex Mode

Default Shortcut Key: Shift+Alt+X

Macro function: ViewHexMode()

Use the View Hex Mode command to switch from normal text mode into a read-only hex
mode display:

Boxer Text Editor534

Copyright © 1991-2010 by Boxer Software

The hex mode display uses a special format which has three sections. At the left, the
byte offset into the file is shown in hexadecimal format. In the center, sixteen bytes
are displayed as two-byte hexadecimal values. At the far right the same sixteen bytes
are displayed as characters, except in cases where the character cannot be so
represented.

The hex mode display can be exited by issuing this command again, or by pressing
Escape.

When switching between normal editing mode and hex mode display, the relative
location of the text cursor is maintained. This makes the View Hex Mode command
useful for studying the hex values characters at or near the text cursor.

The representation of the sixteen characters at the right depends upon whether an
ANSI or OEM screen font is in use. The screen font can be changed with the Screen
Font command.

Ordinary text files can be opened for editing and then toggled between normal and hex
mode display using this command. To open a file for hex mode viewing directly--as is
required for the display of binary files--use the Open Hex Mode command instead.

5.129 Hex Ruler

Menu: View > Hex Ruler

Default Shortcut Key: none

Macro function: ViewHexRuler()

Command Reference (alphabetically) 535

Copyright © 1991-2010 by Boxer Software

The View Hex Ruler command is used to toggle on or off the horizontal ruler at the top
of the editing window.

The Hex Ruler labels the column numbers of the file being displayed in hexadecimal
format. Clicking on a column number within the ruler will move the text cursor to that
column on the current line.

The current byte offset and column number are also displayed in the Status Bar.

To enable the display of line numbers, use the View Line Numbers command.

Clicking on the Hex Ruler with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the Hex Ruler.

5.130 Horizontal Scroll Bar

Menu: View > Horizontal Scroll Bar

Default Shortcut Key: none

Macro function: ViewHScrollBar()

The View Horizontal Scroll Bar command is used to toggle on or off the scroll bar at the
bottom edge on the editing window.

When the current file has no lines which exceed the width of the window, the Horizontal
Scroll Bar disappears automatically.

Clicking on the scroll bar with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the scroll bar.

5.131 HTML Color Chart

Menu: Tools > HTML Color Chart

Default Shortcut Key: none

Macro function: ColorChart()

The HTML Color Chart command presents a pop-up dialog that allows color values to be

Boxer Text Editor536

Copyright © 1991-2010 by Boxer Software

viewed and adjusted by varying the Red, Green and Blue components. RGB values are
shown in both hexadecimal and decimal format..

The current color is displayed in a rectangle at the left, along with sample text in black
and white to show the contrast that would result for those color combinations. The
value required to display the current color is shown in the box labeled HTML Code. The
drop-down list holds a history list of recently used color codes. You can type an HTML
color value directly into the HTML Code combobox, if you wish.

The Use Chart button can be used to summon the standard Windows color dialog so
that a selection can be made from a color palette. The Insert Code button is used to
insert the HTML Code into the current text file.

If the HTML Color Chart is left on screen when Boxer is closed, it will be
automatically reopened if the edit session is later restored.

5.132 Increment

Menu: Edit > Math > Increment

Default Shortcut Key: none

Macro function: Increment()

The Increment command can be used to increment an integer value (ie, a whole
number, not a floating point value) at the text cursor by another integer value. A
dialog box will appear to retrieve the value to be added. After clicking 'OK' the
arithmetic is performed, and the old value is replaced by the result.

If the text cursor is situated on a character rather than a numeric value, the supplied
value will be added to the character at the cursor and the new character will be
displayed. If the resultant character value is out of range, an error message will be

Command Reference (alphabetically) 537

Copyright © 1991-2010 by Boxer Software

given.

5.133 Indent one Space

Menu: Block > Indent One Space

Default Shortcut Key: Ctrl+Space

Macro function: IndentOneSpace()

The Indent One Space command causes a selected range of lines to be indented by one
space. On lines which already contain one or more Tab characters of indent, the space
character will be applied to the right of the existing indent so that the expected effect is
achieved.

If no lines are selected, indentation will be performed on the current line only.

Regardless of the shortcut key assigned to this command, the Space key will always
perform a block indent when a range of lines is selected. If a small selection is
present on a single line the selection will be replaced with a Space character.

5.134 Indent one Tabstop

Menu: Block > Indent One Tabstop

Default Shortcut Key: Shift+Tab

Macro function: IndentOneTabstop()

The Indent one Tabstop command causes a selected range of lines to be indented by
one tabstop. Tab options may be set using the Configure | Preferences | Tabs options
page.

If no lines are selected, indentation is performed on the current line only.

Pressing the key assigned to the Insert Tab command will also serve to indent a
selected range of lines. In most of the keyboard layouts which accompany Boxer
the Tab key is assigned to the Insert Tab command.

5.135 Indent with String

Menu: Block > Indent with String

Default Shortcut Key: none

Macro function: IndentWithString()

Boxer Text Editor538

Copyright © 1991-2010 by Boxer Software

The Indent with String command can be used to simultaneously indent a range of
selected lines, and fill the indent region with a user-specified text string.

5.136 Insert Character

Menu: Edit > Insert > Character(s)

Default Shortcut Key: none

Macro function: InsertCharacter()

The Insert Character(s) command can be used to insert one or more characters by
specifying their numeric values. The values to be entered are typed into a popup dialog
box. This command is useful for entering characters which are not readily typed from
the keyboard, such as those values below the Space (character value 32), and those
above 127.

The ANSI Chart and OEM Chart can also be used to insert non-standard characters into
a file. After locating the desired character in the chart, simply press Enter or double
click on the selected entry.

When the need to insert a special character or symbol arises frequently, consider using
the Insert Symbols feature rather than the Insert Character command. The Insert
Symbols feature permits a defined character to be entered using a single keystroke.

For additional information, see the Inserting Special Characters topic.

Boxer's Value at Cursor command can be used to verify the value of the character at
the cursor.

On most PCs, a character can be entered from the keyboard by typing its numeric
value in a special way. With the Numlock key on, depress and hold the Alt key.

Command Reference (alphabetically) 539

Copyright © 1991-2010 by Boxer Software

Then type the 0 (zero) on the numeric keypad, followed by the decimal value of the
character to be inserted. Finally, release the Alt key. The character whose value
was typed will appear at the text cursor.

5.137 Insert Filename

Menu: Edit > Insert > Filename

Default Shortcut Key: Tab

Macro function: InsertFilename()

The Insert Filename command inserts the full filepath of the current window into the
edited text.

To copy the filepath of the current window to the clipboard, use the Copy Filename
command.

When editing source code, use this command to quickly place the name of the file
into a program comment.

5.138 Insert Formfeed

Menu: Edit > Insert > Formfeed

Default Shortcut Key: none

Macro function: Formfeed()

The Insert Formfeed command can be used to quickly insert the formfeed, character
value 12, at the current text cursor location. The formfeed character is recognized by
printers as a request to eject the current page and advance to (or load) a new page.

When printing a text file from within Boxer, a formfeed character can be placed in
column one--or in the last position on a line--to indicate that a new page should begin
at that point. The footer of the page--if one has been defined--will be printed and the
page will eject. A formfeed in any other column will be ignored by Boxer's printing
service.

5.139 Insert HTML Image Tag

Menu: Edit > Insert > HTML Image Tag

Default Shortcut Key: none

Macro function: HTMLImageTag()

The Insert HTML Image Tag command can be used to insert an HTML image tag into the
current file for a selected graphics file. The image tag will use the filename, image

Boxer Text Editor540

Copyright © 1991-2010 by Boxer Software

height, and image width of the selected image file. The following image file formats are
supported: BMP, GIF and JPEG.

A dialog will appear so that the name of the image file can be selected. If you like,
multiple image files can be selected at the same time.

Before the image tag is created, a dialog appears to confirm the operation, and to
provide access to the image template:

You can control the format of the image tag by editing the HTML Image Tag Template in
the upper edit box. The format of the template string can be changed freely, so long as
the %1, %2 and %3 sequences appear in the string, and remain associated with the

filename (src), width and height properties, respectively. The image tag that will be

inserted appears in the lower edit box. Buttons are provided to quickly convert the tag
to uppercase or lowercase, as well as a Reset to Default button that will restore the
template string to its original form.

You can also activate the Insert HTML Image Tag feature by dragging and dropping
images onto Boxer.

5.140 Insert Line Above

Menu: Edit > Insert > Line Above

Default Shortcut Key: Shift+Ctrl+Enter

Macro function: InsertLineAbove()

The Insert Line Above command can be used to create a new line above the current
line. The effect of this command is the same as moving the cursor to the end of the
previous line and pressing Enter, while in Insert mode.

Command Reference (alphabetically) 541

Copyright © 1991-2010 by Boxer Software

5.141 Insert Line Below

Menu: Edit > Insert > Line Below

Default Shortcut Key: Ctrl+Enter

Macro function: InsertLineBelow()

The Insert Line Below command can be used to create a new line beneath the current
line. The effect of this command is the same as moving the cursor to the end of line
and pressing Enter while in Insert mode.

5.142 Insert Long Date

Menu: Edit > Insert > Long Date

Default Shortcut Key: Shift+Ctrl+F11

Macro function: InsertLongDate()

The Insert Long Date command can be used to insert a text string representing the
current date, in long date format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Long Date menu
entry.

The format used to display the long date is in accordance with the regional settings for
date display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Date.

5.143 Insert Long Time

Menu: Edit > Insert > Long Time

Default Shortcut Key: Shift+Ctrl+F12

Macro function: InsertLongTime()

The Insert Long Time command can be used to insert a text string representing the
current time, in long time format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Long Time menu
entry.

The format used to display the long time is in accordance with the regional settings for
time display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Time.

Boxer Text Editor542

Copyright © 1991-2010 by Boxer Software

5.144 Insert Short Date

Menu: Edit > Insert > Short Date

Default Shortcut Key: Shift+F11

Macro function: InsertShortDate()

The Insert Short Date command can be used to insert a text string representing the
current date, in short date format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Short Date menu
entry.

The format used to display the short date is in accordance with the regional settings for
date display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Date.

Double clicking atop the date display on the Status Bar will also issue the Insert Short
Date command.

5.145 Insert Short Time

Menu: Edit > Insert > Short Time

Default Shortcut Key: Shift+F12

Macro function: InsertShortTime()

The Insert Short Time command can be used to insert a text string representing the
current time, in short time format. A preview of the string which will be inserted is
displayed on the Status Bar when the menu cursor is moved onto the Short Time menu
entry.

The format used to display the short time is in accordance with the regional settings for
time display as defined on your computer. To change these settings, see Start Menu |
Settings | Control Panel | Regional Settings | Time.

Double clicking atop the time display on the Status Bar will also issue the Insert Short
Time command.

5.146 Insert Tab

Menu: Edit > Insert > Tab

Default Shortcut Key: Tab

Macro function: Tab()

Command Reference (alphabetically) 543

Copyright © 1991-2010 by Boxer Software

The Insert Tab command inserts a Tab (character value 9) at the text cursor location.
After insertion, the text cursor moves to the next tabstop, as determined by the Tab
Display Size.

If the Tab key has been configured to insert Spaces, an equivalent number of Spaces
will be inserted instead of a Tab. The option which controls this behavior appears on
the Configure | Preferences | Tabs options page. The option is titled Tab key inserts
spaces.

The Configure | Preferences | Tabs page also contains an option for the Tab key to
insert Spaces and obtain its tabstops from the line above. When this option is used,
the Tab key will advance the text cursor to the next field of data as determined from
the line above the current line. This option is especially useful when editing tabular
data within a table or chart.

Boxer's default Tab Display Size is 4, which permits program source code with several
indent levels to be displayed without exceeding the screen width. Many other
programs, and most printers, will treat Tabs as having a display size of 8. You may
need to make adjustments in order to print or display files with another program which
does not use a Tab display size of 4. One remedy could be to use the Tabs to Spaces
command to convert a copy of the file before using it with the other program. Note that
Boxer's Print command will automatically convert Tabs to Spaces before sending its
data to the printer, so there will be no such difficulty when printing files from within
Boxer.

Tabs, Spaces and Newline characters can be made visible with the Visible Spaces
command.

If the Insert Tab command is issued when a range of lines is selected, the Indent
one Tabstop command will be performed. If a small selection is present on a single
line the selection will be replaced with a Tab character.

5.147 Invert Lines

Menu: Block > Invert Lines

Default Shortcut Key: none

Macro function: InvertLines()

The Invert Lines command can be used to invert a range of selected lines. The last
selected line will become first, and the first selected line will become the last.

For example, the text:

 1. Colorado Springs, CO
 2. Denver, CO
 3. Eugene, OR
 4. Las Vegas, NV
 5. Los Angeles, CA

Boxer Text Editor544

Copyright © 1991-2010 by Boxer Software

 6. Oakland, CA
 7. Phoenix, AZ
 8. Portland, OR
 9. Pueblo, CO
10. Riverside, CA

would become:

10. Riverside, CA
 9. Pueblo, CO
 8. Portland, OR
 7. Phoenix, AZ
 6. Oakland, CA
 5. Los Angeles, CA
 4. Las Vegas, NV
 3. Eugene, OR
 2. Denver, CO
 1. Colorado Springs, CO

5.148 Justification Style

Menu: Paragraph > Justification Style

Default Shortcut Key: Ctrl+J

Macro function: JustificationStyle()

The Justification Style command is used to set the justification style used by the
Reformat, Typing Wrap and Quote and Reformat commands. There are four justification
styles to choose from:

The paragraphs below show examples of each justification style:

Left Justified - text will be justified flush
against the left edge, with the right edge being
left ragged.

 Center Justified - text will be centered within

Command Reference (alphabetically) 545

Copyright © 1991-2010 by Boxer Software

 the current text width, with the left and
 right edges being ragged.

 Right Justified - text will be justified flush
 against the right edge, with the left edge being
 left ragged.

Smooth Justified - text will be flush against both
the left and right margins. Spaces are inserted
alternately in the left, center, and right
portions of a line to minimize the appearance of
'rivers and valleys' in the justified text.

5.149 Keyboard

Menu: Configure > Keyboard

Default Shortcut Key: none

Macro function: ConfigureKeyboard()

The Configure Keyboard command provides the ability to assign key sequences to any
of Boxer's commands. With over 450 editor commands, and over 400 key sequences,
it's easy to think that keyboard configuration might be a complex undertaking. Not so.
Boxer's Configure Keyboard dialog automates the process by providing lists from which
Commands, Assigned keys and Unassigned keys can be selected, and by allowing key
assignments to be typed directly from the keyboard.

Boxer Text Editor546

Copyright © 1991-2010 by Boxer Software

A thorough coverage of the features of the Configure Keyboard dialog box is presented
further below. In the paragraphs that immediately follow, a sample configuration
session is presented which illustrates how several common changes can be made to the
default keyboard layout.

Goal
Create a new keyboard layout which duplicates the default layout, but with a few
selected changes.

Discussion
Rather than making changes to a pre-defined keyboard layout, it's always advisable to
create a new layout with the Copy or New button. Future upgrades to Boxer will
overwrite the default keyboard layout BOXERWIN.KBD and other pre-defined layouts.

Custom changes should not be made to these files. The New button will create a nearly
empty layout, but that's not what we want now. Instead, click Copy to create a copy of
the active keyboard layout, and then click Rename to provide the new layout with a
name of your choice. You might choose to simply use your first name.

Change One
The Auto-Number command has no key assignment in the default keyboard layout, and
you'd like it to have one. Click on the Auto-Number entry in the Commands listbox.
The Assigned keys listbox is updated to show 'No Assignment'. Find a suitable key
sequence in the Unassigned keys listbox, and click on it. The name of the key
sequence selected appears in the edit box beneath the Commands listbox. Click the
Change button to change the assignment for Auto-Number from 'No Assignment' to the

Command Reference (alphabetically) 547

Copyright © 1991-2010 by Boxer Software

selected key sequence.

Change Two
The Align Right command is assigned to Ctrl+F9, but you'd like to use that key for
another command instead. Click on the Align Right entry in the Commands listbox.
Click on the Clear button to relieve the command of its key assignment. The Assigned
keys listbox is updated to show 'No Assignment', and the Ctrl+F9 key is added to the
Unassigned keys listbox.

Change Three
The Calculator command is assigned to F11, but you'd like it to also be available using
the Ctrl+F9 sequence, which was just freed by Change Two above. Click on the
Calculator entry in the Commands listbox. Its current assignment of F11 is displayed in
the Assigned keys listbox. Click in the edit box beneath the Commands listbox to give
it focus. Press the Ctrl+F9 key sequence from the keyboard, and watch its name
appear in the edit box. (Whenever you prefer, a key can be pressed in the edit box as
an alternative to locating it in the Unassigned keys listbox.) Finally, click the Add
button to create this additional assignment for the Calculator command. A duplicate
entry is created for Calculator in the Commands listbox, reflecting the fact that there
are now two distinct key assignments for this command.

Active Layout listbox

The Active Layout listbox displays a list of the available keyboard layouts, and
highlights the active layout. Boxer comes with several pre-defined layouts which can
make Boxer more closely match the key assignments of another editor or word
processor.

If you develop a keyboard layout that matches the key assignments of another popular
program, please consider sending it to us at info@boxersoftware.com so that we can
make it available to other Boxer users. Keyboard layout files are kept in Boxer's data
folder, and are given a .KBD file extension.

New button
Use the New button to create a new keyboard layout. The new layout will contain only
the most fundamental key assignments, such as Up, Down, Left, Right, etc. The new
layout is created with the name 'New'; use the Rename button to supply the name of
your choice.

Rename button
Use the Rename button to change the name of the selected layout to a name of your
choice.

Copy button
Use the Copy button to make a copy of the active keyboard layout. The new layout will
be given the name 'Copy of', prefixed to the name of the active layout. Use the
Rename button to supply a new name, if desired. Use of the Copy button is
recommended when you will be making a small number of changes to an existing
layout.

mailto:info@boxersoftware.com

Boxer Text Editor548

Copyright © 1991-2010 by Boxer Software

Delete button
Use the Delete button to delete the selected keyboard layout. A confirmation is
required before the layout will be deleted. Once a layout is deleted it cannot be
recovered, even if Cancel is later selected.

Make List button
The Make List button creates a file in a new editor window which lists all of the
command key assignments in the selected layout. This file could be printed to create a
command chart, or saved to disk for later reference.

Commands listbox

The Command listbox displays an alphabetical list of all commands which can be
reassigned. Clicking on an entry in the Commands listbox displays its current
assignment in the Assigned keys listbox. When the listbox has focus, pressing the first
letter of a command will jump the selection bar to that command.

When a command has multiple key assignments, an entry will appear in the Commands
listbox for each such assignment.

The number of commands displayed in the listbox is shown in parentheses at the top of
the list.

Assigned Keys listbox

The Assigned Keys listbox displays an alphabetical list of all key sequences which are
currently in use. Clicking on an entry in the Assigned Keys listbox displays the
associated command in the Commands listbox. The 'No Assignment' entry does not
normally map to a single command, and therefore will not display its associations.

When the listbox has focus, pressing the first letter of a command will jump the
selection bar to that command.

The number of key sequences displayed in the listbox is shown in parentheses at the
top of the list.

Type new key in this box

This is the edit box where a new key sequence is entered. The edit box can be filled by
clicking on an available key sequence from the Unassigned Keys listbox, or by pressing
a key sequence from the keyboard while the edit box has focus. When a key sequence
is entered, its disposition is reported in a message just above the edit box. It might be
reported as available, not available, in use, or as being used by the System.

Change button
The Change button is used to change the key assignment for the currently selected
command to the key sequence displayed in the edit box. The Change button will
remain disabled until a key which is eligible for assignment has been entered into the
edit box.

Command Reference (alphabetically) 549

Copyright © 1991-2010 by Boxer Software

Force button
The Force button is used to change the key assignment for the currently selected
command and simultaneously remove its assignment from another command.

Add button
The Add button is used to create an additional assignment for the selected command.
The Add button will remain disabled until a key which is eligible for assignment has
been entered into the edit box. There is no limit to the number of duplicate key
assignments that a command may have.

Clear button
The Clear button is used to release a key assignment from the currently selected
command. The Clear button will be disabled when the current command has no
assignment.

Disable hot letters in main menu bar to gain extra keys
This option can be used gain access to the Alt+letter key sequences which would
otherwise be used to activate the main menu entries. When this option is selected the
key sequences Alt+F, Alt+E, Alt+B, etc. become available for assignment to other
commands. When the Configure Keyboard dialog is dismissed, the main menu will be
redrawn without its hot letters underlined.

Alt+letter sequences which are not otherwise assigned will remain assigned to their
respective menus. For example: if this option is selected, but Alt+F is not otherwise
assigned, it will remain as the key assignment for dropping the File menu.

Regardless of the state of this option, the main menu hot letters will remain functional
when the main menu has been activated by tapping the Alt key.

When loading a keyboard layout file, Boxer will look for key assignments which
conflict with the main menu hot letters in order to determine if this option needs to
be checked. If you select this option, but fail to assign any of the Alt+letter
sequences to other commands, Boxer will sense this when the layout is next loaded,
and the option will revert to unchecked. Conversely, if you load a layout which
contains one or more key assignments which conflict with the main menu hot
letters, Boxer will force this option to checked.

Unassigned Keys listbox

The Unassigned Keys listbox displays those key sequences which are available for
assignment. Clicking on a key within this listbox causes the key to be displayed in the
edit box beneath the Commands listbox.

The keys which are to be shown in the listbox can be controlled with various
checkboxes:

Show alphabetic keys
Use this option to include the A-Z keys, in all their various shift states.

Show numeric keys
Use this option to include the 0-9 keys, in all their various shift states.

Boxer Text Editor550

Copyright © 1991-2010 by Boxer Software

Show F1 to F12 keys
Use this option to include the F1-F12 keys, in all their various shift states.

Show F13 to F24 keys
Use this option to include the F13-F24 keys, in all their various shift states. Some new
keyboards are now offering these additional functional keys.

Show cursor pad keys
Use this option to include the keys from the cursor motion pad, in all their various shift
states.

Show other keys
Use this option to include keys which do not group into the categories above.

Show multi-shift keys
Use this option to control whether or not key sequences with multiple shifts should
appear in the list.

Notes

You might notice that the controls in this dialog box do not have hot letters, as do
other dialog boxes. This is because the edit box into which key sequences are typed
must be able to receive all possible key sequences without losing focus to another
control.

Assigning a key sequence to run a macro is a two-step process. One step is to make
the desired assignment to the Run Macro n command using the Configure Keyboard
dialog. The other step is ensure that the macro itself is numbered accordingly. See
the Macros topic for further information.

It is not possible to use multi-key sequences, such as Ctrl+K, Ctrl+B in a key
assignment.

When a given command has more than one key assignment it will have multiple
entries in the Commands listbox. The first assignment that appears in the
Commands listbox is called the primary command assignment. Additional entries
for that command are referred to as secondary command assignments. The key
sequence associated with the primary command assignment is the one which will be
displayed in the main menu next to the command.

When an Alt+Letter sequence is used as a secondary command assignment, you will
likely notice a beep when that key sequence is pressed. The beep occurs because
the Alt+Letter sequence does not map to an underlined hot letter on the main menu
bar, and it does not appear as a shortcut key in any of the main menu entries. The
beep can be silenced by making the Alt+Letter sequence the primary command
assignment, and letting the existing assignment become the secondary assignment.
To do this, the existing primary assignment must be cleared, so the Alt+Letter
assignment becomes the primary assignment. Then, the other assignment can be
added back as the secondary assignment. The only effective difference between a

Command Reference (alphabetically) 551

Copyright © 1991-2010 by Boxer Software

primary assignment and a secondary assignment is that the primary assignment is
displayed in the main menu.

Because they appear in the main menu, primary command assignments are
available whenever Boxer is running. Secondary command assignments do not
appear in the main menu, and are therefore available only when a child editor
window is open. Since most commands are meant to operate on text, this rarely
poses a problem. But there are instances where trouble can arise. For example:
assume that Ctrl+N is the primary command assignment for the File | New
command, and Shift+Alt+N is its secondary assignment. If all child editor windows
are closed, the Shift+Alt+N assignment will be non-functional. The primary
assignment, Ctrl+N, would need to be used.

The Configure Keyboard dialog recognizes the numeric keypad keys as distinct keys
in all of their shifted and unshifted states. These keys appear in the Unassigned
keys listbox as Keypad 1, Keypad 2, etc.

5.150 Left Window Edge

Menu: Jump > Left Window Edge

Default Shortcut Key: none

Macro function: LeftWindowEdge()

The Left Window Edge command positions the text cursor to the left edge of the current
window. If the file has been scrolled to the right, the amount of scroll will not be
affected.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

5.151 Line Drawing

Menu: Tools > Line Drawing

Default Shortcut Key: Ctrl+F12

Macro function: LineDrawing()

The Line Drawing command can be used to enter a mode in which the arrow keys are
used to draw lines in a selected frame style, or with a specified character. A dialog box
appears from which the drawing style is selected:

Boxer Text Editor552

Copyright © 1991-2010 by Boxer Software

A drawing style is selected by checking the radio button which corresponds to the
desired style. Options are also provided to draw with some other character, and either
the ANSI Chart or OEM Chartcan be summoned to assist in character selection.

When using an OEM Screen Font, several additional drawing styles may be used. The
bottom eight styles offered in the dialog box require the use of an OEM screen font for
proper display. The ANSI character set does not contain these characters, so using
these styles with an ANSI Screen Font will produce undesirable results.

Once OK is clicked, Line Drawing mode is active. Use the arrow keys to create lines or
boxes as desired. Use Esc to cancel Line Drawing mode.

When drawing atop lines which contain Tab characters, the Tabs will be automatically
converted to Spaces to ensure proper display. When Line Drawing occurs past the end
of a line, the line will be automatically extended with Spaces. If the end of file is
encountered, additional blank lines will be added automatically so that Line Drawing can
proceed.

When printing files which contain drawing characters from the OEM character set, be
sure to use a Printer Font which also uses the OEM character set.

5.152 Line Numbers

Menu: View > Line Numbers

Default Shortcut Key: Alt+F3

Command Reference (alphabetically) 553

Copyright © 1991-2010 by Boxer Software

Macro function: ViewLineNumbers()

The View Line Numbers command is used to toggle on or off the line numbers in a
region to the left of the editing area.

In order to optimize the amount of screen space available for editing, the area allocated
to the display of line numbers changes dynamically. If a file grows in size, such that
the largest line number requires more space to be displayed, the line number margin
will expand automatically. If a file shrinks in size, the line number margin will likewise
be adjusted.

When Visual Wrap mode is active, the line number display will be adjusted to display
paragraph numbers.

Leading zeros can be displayed on line numbers using an option on the Configure |
Preferences | Display options page. The option is titled Display leading zeros on line
numbers.

The display of Line Numbers is a visual aid and does not result in any changes to the
file being edited. To insert line numbers into the file itself, use the Auto-Number
command.

Clicking in the Line Number region with the right mouse button provides access to its
context menu. Options are available to toggle on and off the display of leading zeros,
and to turn off the viewing of line numbers.

The current line number is also displayed in the Status Bar.

To enable the display of a ruler which labels screen columns, use the View Column
Ruler command.

5.153 Line Spacing

Menu: Block > Line Spacing

Default Shortcut Key: none

Boxer Text Editor554

Copyright © 1991-2010 by Boxer Software

Macro function: LineSpacing()

The Line Spacing command allows a range of selected lines to be converted to single-,
double- or triple-spaced format. If no selection is present, the operation will be
performed across the entire file.

If you simply need to adjust the line spacing of the printed document, you might
wish to do so using the line spacing option on the Page Setup dialog.

5.154 Load Key Recording

Menu: Tools > Load Key Recording

Default Shortcut Key: none

Macro function: none

The Load Key Recording command can be used to load an existing key recording from
disk. A dialog will appear that allows a name to be selected. By default, key recordings
are loaded from Boxer's 'Key Recordings' subdirectory.

Command Reference (alphabetically) 555

Copyright © 1991-2010 by Boxer Software

Once a key recording has been loaded, use the Playback Keys command to playback the
recording.

5.155 Macros

Menu: Tools > Macros

Default Shortcut Key: F8

Macro function: none

Boxer includes a powerful macro language than can be used to automate repetitive
editing tasks, or to perform specialized processing on the text files you edit. Macros
can be created in one of two ways: Macros can be recorded 'by example' by typing
commands and/or insertable text within the macro dialog. When this is done, the
macro code is written automatically, on-the-fly, in the editor window of the macro
dialog. For more complex macros, the edit window can be used to write a macro by
hand, or to make refinements to a macro that was recorded by example.

Boxer's macro language is similar in style to the C programming language, and will be
quickly understood by anyone who has programmed in a high-level language, or in
other macro/scripting languages. The macro dialog contains built-in lists of all the
language's keywords, functions and operators, along with instant help information for
each entry (see screen shots below). Boxer has been supplied with numerous example
macros which are meant to illustrate the use of the language, as well as to provide
genuinely useful services. For example, the ExampleApplyHTML macro will apply the

necessary HTML declarations to make a simple text file into an HTML document.

Some people will want to dive right in, so here's a quick example:

Simple Macro Example, Step One

Boxer Text Editor556

Copyright © 1991-2010 by Boxer Software

You've got a file that needs some repetitive editing. You need to delete the first four
characters from the start of every third line. The file to be processed is open for editing,
and the text cursor is sitting on the first line that needs adjustment. Here's how to
create a macro to perform the editing required:

Issue the Tools|Macros command from the Main Menu
Click New
Press the Delete key four times
Press the Down Arrow key three times
Click Save
Enter a name for the macro
Click Run, as required

The resulting macro looks like this:

macro newmacro()
{
Delete;
Delete;
Delete;
Delete;
Down;
Down;
Down;
}

Simple Macro Example, Step Two

That's great, you say, but maybe your file is 300 lines long. Or 30,000 lines long. How
can we make this macro work on the whole file?

In Step One, the macro was written for you automatically, as you typed the editing
commands. To handle a file of arbitrary length, we'll need to add a little code. Edit your
macro to look like this:

macro newmacro()
{
int i;

for (i = 1; i <= LineCount(); i += 3)
 {
 Delete;
 Delete;
 Delete;
 Delete;
 Down;
 Down;
 Down;
 }
}

Click Save, and then Run. This macro loops through the file, counting by three,

Command Reference (alphabetically) 557

Copyright © 1991-2010 by Boxer Software

performing the necessary adjustments. Because it calls the function LineCount(), it

will work for a file of any size.

See the following help topics for additional information about macros: Macro Language
Reference, Macro Function Reference and Macro Examples.

The sections below cover the Macro Dialog in further detail...

List Tab

New
Use the New button to start a new macro. A new macro is created and control will
switch to the Edit Tab. You will be able to name the macro later when you select the
Save option.

Copy
The Copy button will create a copy of the selected macro. You can then use the
Rename button to rename the copy, if desired.

Rename
Use the Rename button to rename the selected macro.

Delete
Use the Delete button to delete the selected macro. A confirmation prompt will be
supplied before the macro is deleted.

Boxer Text Editor558

Copyright © 1991-2010 by Boxer Software

Edit Tab

The Edit Tab contains controls that can be used when composing a macro. If the macro
is to be recorded 'by example', simply type the desired keys in the edit box at the top of
the panel. You'll notice that the code of the macro is written automatically, as you
type, in the editor window at the right. Feel free to switch to the edit window if
changes are needed to the macro code. You can resume recording 'by example' at any
time by positioning the text cursor in the editor window and returning focus to the edit
box at the top left.

When composing a macro by hand, the lists on the Edit Tab will prove useful for
recalling the macro language function names, keywords, and operators. Each time an
entry is selected in a list, the help window at the bottom of the panel displays relevant
information about the selected entry. You can insert the selected entry into the editor
window by pressing Enter or by double-clicking.

The All tab contains a list of all functions that are available in the macro language,
regardless of their logical category. The Editor, Macro, String and Math tabs display
function lists for each of those respective categories. Editor contains functions that
map to commands available within the editor proper. Macro contains functions that are
unique to the macro language. String contains functions that can be used to
manipulate strings. Math contains functions that support mathematical operations.

Command Reference (alphabetically) 559

Copyright © 1991-2010 by Boxer Software

The Language Tab contains lists of statements, keywords, constants and operators.

The editor window is used to edit the macro being composed. The macro is displayed
with color syntax highlighting, just as if it were being edited in the editor proper.
Although the macro editor window looks like a normal Boxer editing window, it is not.
You will find that the standard editing and cursor movement commands are available
within this window, but Boxer's advanced editing commands are not. If you are
composing a complex macro, you might prefer to edit your macro within a normal
editing window. For this reason, the editor offers an Open in Boxer command on its
context menu.

The macro editor window has built-in help for the macro language. You can press F1
when the cursor is sitting on a function name to view pop-up information for that
function.

Boxer Text Editor560

Copyright © 1991-2010 by Boxer Software

Additional editor functionality is available on the context menu by right clicking in the
editor window when the Edit Tab is active.

Debug Tab

The Debug Tab contains Boxer's integrated macro debugger. The debugger can be used

Command Reference (alphabetically) 561

Copyright © 1991-2010 by Boxer Software

to control the execution of a macro and view a macro's variables as the macro is
executed. The Watch Window shows a macro's variables, arranged by type, in both
decimal and hexadecimal format. As the macro is executed, the Watch Window updates
to show the current value of each variable. Note that there is no need to designate a
variable as a watch variable; all variables are automatically added to the Watch Window
each time the macro is debugged.

To begin debugging a macro, click the Step button. The Step button is used to execute
a single line of code. You can click Step repeatedly to walk through the macro, line by
line. To jump ahead in the macro, position the cursor in the editor window on the line
of interest and click the Run to Cursor button. Execution will continue until the desired
line is reached. The Run to Cursor button can be thought of as a one-time breakpoint.
To ensure that execution will stop on a selected line every time, use the Set Breakpoint
button. The line of interest will be highlighted in the editor window with a 'B'. To run
the macro without single-stepping, click the Run button. Run causes the macro to run
without interruption, until a breakpoint is hit. If no breakpoints are encountered, the
macro will run to completion. Use the Halt button to terminate the execution of a
macro.

Additional debugger functionality is available on the context menu by right clicking in
the editor window when the Debug tab is active (see context menu above).

Assigning a Macro to a Key Sequence

There is theoretically no limit to the number of macros that can be created. All of the
macros in Boxer's 'Macros' directory will be displayed in the macro list that appears on
the List tab, and these macros can be run by clicking the nearby Run button. In
addition, up to 50 macros will be displayed on the Tools | Run Macro submenu, and
these macros can be executed directly from that menu. When more than 50 macros
are present, those which sort lowest alphabetically will be the first to be omitted from
the Run Macro submenu. If you want to force a certain macro to appear in the menu,
you can do so by changing its filename to one that will rank higher in an alphabetic

Boxer Text Editor562

Copyright © 1991-2010 by Boxer Software

sort.

You may wish to assign commonly used macros to a key assignment to make them
easier to execute. There are 50 editor commands available for this use, named Run
Macro 1 to Run Macro 50. These commands appear in the command list on the
Configure | Keyboard dialog. In order to make a macro eligible for key
assignment, its filename must end with a value from 1 to 50. For example, if you
name a macro ProcessPayroll24.bm, that macro can later be run by the key

sequence that has been assigned to the Run Macro 24 command.

Initially, the 50 Run Macro N commands are unassigned. Assigning a macro to a given
key sequence is thus a two-step process:

1. Make sure that the filename of the macro ends with a value in the range 1-50, and
does not conflict with other numbered macros.

2. Use the Configure | Keyboard dialog to assign a key sequence to the corresponding
Run Macro N command.

If you rename a macro filename from MyMacro4.bm to MyMacro12.bm, the

associated key assignment does not move automatically. The key assignment for
the Run Macro 4 command will always run whatever macro is numbered as 4.
Therefore, you will need to visit the Configure | Keyboard dialog to make an
adjustment after changing a macro's number.

A macro cannot be run from its assigned key sequence if that macro does not
appear in the Tools | Run Macro submenu.

Running a Macro from the Command Line

A macro file can be run by naming it on the command line using the -M command line
option flag. Please see the notes in that section for full details on this capability.

Running a Macro Automatically on Startup

There may be times when you want Boxer to perform a series of commands--or react to
one or more configuration changes--every time the editor is launched. If a macro of
the name startup.bm is found in the macros directory, it will be run automatically on

startup.

Running a Series of Macros in Batch Mode

For some editing tasks it may be desirable to develop a series of macros to perform the
necessary conversions. This approach may be desirable when the overall conversion is
too complex to implement in a single macro, or when some steps of the conversion will
need to be applied selectively on a case-by-case basis. If you have developed a set of
macros, say step1.bm, step2.bm and step3.bm, these macros can be run in series

from a macro batch file -- which might be named do_it_all.bm -- and which names

these files in succession:

step1.bm

Command Reference (alphabetically) 563

Copyright © 1991-2010 by Boxer Software

step2.bm
step3.bm

Blank lines may appear within a macro batch file, but all other lines must contain the
name of an existing macro file which is to be run.

For a clever tip that tells how to make use of your old Boxer/DOS, Boxer/TKO or
Boxer/OS2 macros from within the Windows version of Boxer, see the tip near the
bottom of the User Tools topic.

Storing Macro Variables From Run to Run

After a macro has completed, its variables are no longer available for study or use. Two
macro functions can be used to store and recall macro variables so that they can be
used again at a later time:

int WriteValue(string name, char/int/string/float val)
 Writes 'val' to the macro variable storage area named 'name'.
 'name' will be visible to other macros, so be careful to choose
 a unique identifier. Returns 1 for success or -1 for error.
 See also ReadValue(), EraseValue().

int ReadValue(string name, char/int/string/float val)
 Reads a value from the macro variable storage area named 'name'
 and places it into variable 'val'. The type of 'val' must agree
 with the type used when the value was written using WriteValue().
 Returns 1 for success or -1 for error.
 See also WriteValue(), EraseValue().

5.156 Macro Examples

The following example macros show the syntax of Boxer's macro language, while also
suggesting useful methods of attack for common programming tasks:

Move cursor to bottom of paragraph

// move the cursor to the bottom line of the current paragraph

macro BottomOfParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber+1))
 Down;
}

Move cursor to top of previous paragraph

Boxer Text Editor564

Copyright © 1991-2010 by Boxer Software

// move the cursor to the top line of the previous paragraph

macro TopOfPreviousParagraph()
{
Up;

while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))
 Up;

StartOfLine;
}

Move cursor to top of current paragraph

// move the cursor to the top line of the current paragraph

macro TopOfCurrentParagraph()
{
while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))
 Up;
}

Move cursor to top of next paragraph

// move the cursor to the first line of the next paragraph

macro TopOfNextParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber))
 Down;

Down;
StartOfLine;
}

Add a newline after every closing angle bracket

// add a newline after each closing angle (>) character
// unless the angle already appears at end of line

Command Reference (alphabetically) 565

Copyright © 1991-2010 by Boxer Software

macro AddNewlineAfterCloseAngle()
{
int line, i, j;
string str;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // get the index of the closing angle
 j = strchr(str, '>');

 // if the character was found and was not at end-of-line...
 if (j != -1 && str[j+1] != '\0')
 {
 GotoLine(line);
 GotoColumn(1);

 // advance the cursor to the character
 while (ValueAtCursor() != '>')
 Right;

 // and past the character
 Right;

 // insert a newline
 Enter;

 // process this line again in case other tags exist
 line--;
 }
 }
}

Apply HTML markup to a simple text file

// apply HTML markup to a simple text file
// also converts double quote, ampersand, and
// angle brackets to HTML equivalents

macro ApplyHTMLMarkup()
{

Boxer Text Editor566

Copyright © 1991-2010 by Boxer Software

int prevlen, len, i;
string str;
int numchanges;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the text of line 'i' into 'str'
 GetLineText(i, str);

 // reset the change counter
 numchanges = 0;

 // convert sensitive characters to HTML codes
 numchanges += ChangeString(str, "&", "&");
 numchanges += ChangeString(str, "<", "<");
 numchanges += ChangeString(str, ">", ">");
 numchanges += ChangeString(str, "\"", """);

 // if changes were made, replace the line's text
 if (numchanges > 0)
 PutLineText(i, str);
 }

// move to top of file
StartOfFile;
Down;

// loop on all lines in the file, starting on line 2
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

 // get the length of this line
 len = LineLength(i);

 // if this line is empty, and the previous line isn't...
 // apply
 markers to the end of the line
 if (len == 0 && prevlen != 0)
 {
 Up;
 EndOfLine;
 PutString("

");
 StartofLine;
 Down;

Command Reference (alphabetically) 567

Copyright © 1991-2010 by Boxer Software

 }

 Down; // move down to the next line
 }

StartOfFile;

PutString("<html>\n");
PutString("<head>\n");
PutString("<title></title>\n");
PutString("</head>\n\n");
PutString("<body>\n");

EndOfFile;
EndOfLine;
PutString("\n");
PutString("</body>\n");
PutString("</html>\n");

// place cursor between title and /title
GotoLine(3);
GotoColumn(8);
}

Display an ASCII chart in a new file

// ASCII chart example

macro ASCIIchart(void)
{
char i;

// open a new file
New;

// loop from space to 255 to show all chars
for (i = ' '; i <= 255; i++)
 printf("The ASCII value of '%c' is %d\n", i, i);
}

Convert comma-separated-value (CSV) data

// convert comma-separated-value (CSV) data on the current

Boxer Text Editor568

Copyright © 1991-2010 by Boxer Software

// line so that each field is placed on its own line

macro ConvertCSV()
{
string str;
int numquotes, numcommas;

// get the count of quotes/commas on this line
numquotes = LineContains(linenumber, "\"");

numcommas = LineContains(linenumber, ",");

// if this appears to be CSV data...
if (numcommas+1 == numquotes / 2)
 {
 // get the text of the current line
 GetLineText(linenumber, str);

 // remove any empty data fields
 ChangeString(str, "\"\",", "");

 // convert "," to a newline
 ChangeString(str, "\",\"", "\n");

 // remove the first and last quotes
 ChangeString(str, "\"", "");

 // select the line
 GoToColumn(1);
 SelectToEndOfLine;

 // replace the selection
 PutString(str);
 }

// position for next line
Down;
StartOfLine;
}

Cut lines containing a user-defined string

// cut lines containing a user-defined string to the Windows clipboard

Command Reference (alphabetically) 569

Copyright © 1991-2010 by Boxer Software

macro CutLinesContaining();
{
int line;
int len;
string str;
int numcut = 0;

// get the string from the user
len = GetString("Cut lines containing this string:", str);

if (len == 0)
 return;

// make the Windows clipboard the active clipboard
SetClipboard(0);

// clear the Windows clipboard
ClearClipboard(0);

// move cursor to start of file
StartOfFile();

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 GotoLine(line);
 CutAppend();
 numcut++; // tally the cut
 line--; // stay here for next line
 }
 }

// report the results
if (numcut == 1)
 message("Results", "1 line was cut to the Windows clipboard");
else
 message("Results", numcut,
 " lines were cut to the Windows clipboard");
}

Delete blank lines

Boxer Text Editor570

Copyright © 1991-2010 by Boxer Software

// delete blank lines in the current file

macro DeleteBlankLines(void)
{
int i, len;

// start at the top of the file
StartOfFile;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the length of this line
 len = LineLength(i);

 // is this line empty?
 if (len == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #
 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Delete lines containing a user-defined string

// deletes lines containing a user-defined string

macro DeleteLinesContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines containing this string:", str);

Command Reference (alphabetically) 571

Copyright © 1991-2010 by Boxer Software

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Delete lines NOT containing a user-defined string

// deletes lines NOT containing a user-defined string

macro DeleteLinesNotContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that do NOT contain this string:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (!LineContains(line, str))

Boxer Text Editor572

Copyright © 1991-2010 by Boxer Software

 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Compute return on a deposited amount

// Compute result of amount left on deposit with continuous
// compounding. Uses the formula: P = pe^rt

macro ComputeDeposit()
{
float amt, newamt, rate, years;
string str;

GetFloat("Enter the amount on deposit:", amt);

GetFloat("Enter the interest rate:", rate);

// if user entered 5, make it .05, for example
if (rate > 1.0)
 rate /= 100.0;

GetFloat("Enter the number of years on deposit:", years);

newamt = amt * pow(e, rate * years);

sprintf(str, "The amount with interest applied is: %.2f", newamt);
Message("Result", str);
}

Add blank lines after lines ending with !.?

Command Reference (alphabetically) 573

Copyright © 1991-2010 by Boxer Software

// add a blank line after any line that ends with !.?

macro AddBlankLines(void)
{
char ch;
int i;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // make sure this line is not empty
 if (LineLength(i) > 1)
 {
 // move the cursor to this line
 GotoLine(i);

 // move to the end of the line
 EndOfLine;

 // backup off newline and onto last char
 Left;

 // get the value of char at the cursor
 ch = ValueAtCursor();

 // if it's a line ender, add Enter
 if (ch == '.' || ch == '?' || ch == '!')
 {
 EndOfLine;
 Enter;
 }
 }
 }
}

Double space and reformat

// double space and reformat the text on the clipboard
// prepares a web document for printing

macro DoubleSpaceAndReformat(void)
{
int i;
int numlines;

Boxer Text Editor574

Copyright © 1991-2010 by Boxer Software

// save various editor settings
SaveSettings;

// open a new file and paste from clipboard
New;
Paste;

// set Text Width to 96
TextWidth(96);

// delete all blank lines
DeleteBlankLines;

// record the number of lines BEFORE we start adding lines
numlines = LineCount - 1;

// go to the top
StartOfFile;

// double space the file
for (i = 1; i <= numlines; i++)
 {
 Down;
 PutString("\n");
 }

// reformat the whole file
SelectAllText;
Reformat;

// remove any small indents that might be present
SelectAllText;
for (i = 1; i <= 12; i++)
Unindent;

// release the selection
Deselect;

// restore various editor settings
RestoreSettings;
}

Extract email addresses

Command Reference (alphabetically) 575

Copyright © 1991-2010 by Boxer Software

// extract email addresses from all lines within the current file
// and append them to the end of the file

macro ExtractEmailAddresses()
{
int i, line, origlinecount;
int inword, isdelim;
int atsigns, dots;
int startword, endword;
string linetext, email;
char c;

// note the linecount before we start adding more lines
origlinecount = LineCount;

// loop on all lines in the file
for (line = 1; line <= origlinecount; line++)
 {
 // get the text of the whole line into the string 'linetext'
 GetLineText(line, linetext);

 // add a space to make end-of-line handling smoother
 strcat(linetext, " ");

 // loop on all characters in 'linetext'
 for (inword = FALSE, i = 0; linetext[i] != 0; i++)
 {
 c = linetext[i];

 // set a flag if this character is one that delimits words
 if (isalnum(c) || (strchr("_@.-", c) != -1))
 isdelim = FALSE;
 else
 isdelim = TRUE;

 // decide whether this character starts a new word,
 // or ends an existing word
 if (inword && isdelim)
 {
 inword = FALSE;
 endword = i-1;

 // we've just left a word: see if it had both
 // the required characters
 if (atsigns == 1 && dots >= 1)
 {

Boxer Text Editor576

Copyright © 1991-2010 by Boxer Software

 // get the linetext address into a string
 SubString(email, linetext, startword, endword-startword+1);

 // add it to the end of the file
 EndOfFile;
 EndOfLine;
 Enter;
 PutString(email);
 }
 }
 else if (!inword && !isdelim)
 {
 inword = TRUE;
 startword = i;
 atsigns = 0;
 dots = 0;
 }

 // tally whether or not we see the required chars while we're in a
 if (inword)
 {
 if (linetext[i] == '@')
 atsigns++;

 if (linetext[i] == '.')
 dots++;
 }
 }
 }
}

Hex to Decimal

// shows hex to decimal conversion technique

macro HexToDecimal()
{
string str;
int x = 0;
int i, val;
char ch;

GetString("Enter a hexadecimal string", str);

Command Reference (alphabetically) 577

Copyright © 1991-2010 by Boxer Software

for (i = 0; str[i] != '\0'; i++)
 {
 ch = str[i];

 if (!isxdigit(ch))
 {
 message("Error", "Invalid character encountered: ", ch);
 return;
 }

 ch = toupper(ch);

 if (isalpha(ch))
 val = ch - 'A' + 10;
 else
 val = ch - '0';

 x = x * 16;
 x = x + val;
 }

message("Result", "The decimal value is ", x);
}

Obfuscate the selected text with HTML codes

// convert the word selected into its HTML coded format

// this can be used to convert phone numbers and email addresses
// in web pages to frustrate automated crawlers from harvesting
// your information for spam lists

macro Obfuscate()
{
int i;
string str;
string result;
string tmp;

if (!TextIsSelected)
 {
 Message("Error",
 "Please select a word before\nrunning the macro.\n");
 return;

Boxer Text Editor578

Copyright © 1991-2010 by Boxer Software

 }

GetSelection(str);

// loop on all characters in 'str'
for (i = 0; str[i] != '\0'; i++)
 {
 sprintf(tmp, "&#%03d;", str[i]);
 strcat(result, tmp);
 }

PutSelection(result);
}

Display 24-hour time

// display the current time in 24-hour time format

macro Print24HourTime()
{
int h, m, s;

GetTime24(h, m, s);
printf("%d:%02d:%02d", h, m, s);
}

Reduce blank lines

// reduce multiple blank lines to one blank line

macro ReduceBlankLines(void)
{
int thislen, prevlen, i;

// position cursor to line 2
StartOfFile;
Down;

// loop on all lines in the file (starting with line 2)
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

Command Reference (alphabetically) 579

Copyright © 1991-2010 by Boxer Software

 // get the length of this line
 thislen = LineLength(i);

 // are both previous and this line empty?
 if (prevlen == 0 && thislen == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #
 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Reformat to an alternative text width

// Reformat the current paragraph to 70 characters, regardless
// of what the current Text Width setting is

macro ReformatAlternative()
{
SaveSettings;
TextWidth(70);
Reformat;
RestoreSettings;
}

Extract double quoted strings

// extract double quoted strings from the current file
// and append them at the bottom of the file

macro ExtractStrings()
{
string s, s1, s2, s3;
int i, j, k;
int found = 0;
int original_linecount = LineCount();

Boxer Text Editor580

Copyright © 1991-2010 by Boxer Software

// loop on all lines in the current file
for (i = 1; i <= original_linecount; i++)
 {
 // does this line have two or more double quotes?
 while (LineContains(i, "\"") >= 2)
 {
 // tally number of strings found
 found++;

 // get the text of line 'i' into string 's'
 GetLineText(i, s);

 // get the offset of the first double quote
 j = strchr(s, '\"');

 // get the index of the second double quote
 for (k = j + 1; s[k] != '\"'; k++)
 ;

 // get the first portion into 's1'
 SubString(s1, s, 0, j);

 // get the second portion (the string) into 's2'
 SubString(s2, s, j, k-j+1);

 // get the third portion into 's3'
 SubString(s3, s, k+1, 2048);

 // build the new line and replace it
 s = s1;
 s += s3;
 PutLineText(i, s);

 // gather the strings at the bottom of the current file
 EndOfFile();
 EndOfLine();
 printf("\n%s", s2);
 }
 }

// report the results
if (found == 1)
 printf("\n\n%d string was found and removed\n", found);
else
 printf("\n\n%d strings were found and removed\n", found);
}

Command Reference (alphabetically) 581

Copyright © 1991-2010 by Boxer Software

Reverse the text of each line

// reverse the text on every line in the file
// "abcdefg" becomes "gfedcba"

macro ReverseLineText()
{
int i, len, line;
string str;
char tmp;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 len = linelength(line);

 // ignore lines too short/long
 if (len >= 2 && len < 2000)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // loop through half this line
 for (i = 0; i < len/2; i++)
 {
 // swap the characters...
 tmp = str[i];
 str[i] = str[len-1-i];
 str[len-1-i] = tmp;
 }

 // replace line with reversed line
 PutLineText(line, str);
 }
 }
}

Reverse names: Smith.Bob to Bob.Smith

// changes a list of "Smith.Bob" entries to "Bob.Smith"

Boxer Text Editor582

Copyright © 1991-2010 by Boxer Software

macro ReverseNames()
{
int line, i;
string str;
string first, last;
string newstring;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // look for a '.' within 'str'
 i = strstr(str, ".");

 if (i != -1)
 {
 // 'last' gets 'i' chars from 'str' starting at index 0
 SubString(last, str, 0, i);

 // 'first' gets up to 100 chars from 'str' starting at index i+1
 SubString(first, str, i+1, 100);

 // build a new string from 'first' and 'last'
 sprintf(newstring, "%s.%s", first, last);

 // replace the text of the line
 PutLineText(line, newstring);
 }
 }
}

Truncate lines after a user-defined string

// truncate lines after a user-defined string

macro TruncateLineAfterString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user

Command Reference (alphabetically) 583

Copyright © 1991-2010 by Boxer Software

len = GetString("Truncate lines after this string:", str);

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j+len);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;
 }
 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Truncate lines at a user-defined string

// truncate lines at a user-defined string

macro TruncateLineAtString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user
len = GetString("Truncate lines at this string:", str);

Boxer Text Editor584

Copyright © 1991-2010 by Boxer Software

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;
 }
 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Delete lines that begin with a user-defined string

// deletes lines that begin with a user-defined string

macro DeleteLinesThatBeginWith()
{
int line, len;
string str, linestr;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that begin with:", str);

Command Reference (alphabetically) 585

Copyright © 1991-2010 by Boxer Software

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {

// get the text of line 'line' into 'linestr'
GetLineText(line, linestr);
 // does this line start with 'str'?
if (strncmp(linestr, str, len) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
}

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Delete lines that end with a user-defined string

// deletes lines that end with a user-defined string

macro DeleteLinesThatEndWith()
{
int line, len, linelen;
string str, linestr, str2;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that end with:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into 'linestr'

Boxer Text Editor586

Copyright © 1991-2010 by Boxer Software

 linelen = GetLineText(line, linestr);

 // if the line is too short, do nothing
 if (linelen < len)
 {
 ;
 }
 // does this line end with 'str' ?
 else
 {
 // isolate the tail of the line into a string
 SubString(str2, linestr, linelen - len, len);

 if (strcmp(str2, str) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Call MapQuest to show a map

// get an address from the user and call it up on MapQuest

macro CallMapQuest()
{
string city, state, address, country, url;
int zoom = 7;

// get information from the user
GetString("Enter street address:", address);
GetString("Enter city/town:", city);
GetString("Enter state/province:", state);
GetString("Enter country:", country);

Command Reference (alphabetically) 587

Copyright © 1991-2010 by Boxer Software

// state level maps are better at zoom level 3
if (city == "")
 zoom = 3;

// country level maps are better at zoom level 1
if (state == "")
 zoom = 1;

// convert embedded spaces to plus signs
ChangeString(address, " ", "+");
ChangeString(city," ", "+");
ChangeString(state, " ", "+");
ChangeString(country, " ", "+");

// build the URL that will be used
sprintf(url,
"http://www.mapquest.com/maps/map.adp?city=%s&state=%s&address=%s&c
ountry=%s&zoom=%d" , city, state, address, country, zoom);

// send the URL to Windows so the default browser is run
OpenURL(url);
}

Convert British English punctuation to American English punctuation

// Convert British English punctuation to American English punctuation
// (in Britain, periods and commas are placed outside double quotes)

macro BritishPunctuation()
{
// notice that the double quote character must be escaped with a
// backslash when it appears within a string

// change ". to ."
ReplaceAll("\".", ".\"");

// change ", to ,"
ReplaceAll("\"\,", ",\"");
}

Boxer Text Editor588

Copyright © 1991-2010 by Boxer Software

5.157 Macro Function Reference

Function Prototype and Description

abs() int abs(int n)
Returns the absolute value of 'n'.

acos() float acos(float x)
Returns the arc cosine of 'x' in radians. 'x' must be
in the range -1 to 1.

ActiveClipboard int ActiveClipboard
Returns the number of the active clipboard. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

ActiveSpellChecking() int ActiveSpellCheck(int mode)
Enables or disables Active Spell Checking according
to 'mode'.

AlignCenter Issues the Align Center command

AlignLeft Issues the Align Left command

AlignRight Issues the Align Right command

AlignSmooth Issues the Align Smooth command

ANSIChart Issues the ANSI Chart command

ANSItoOEM Issues the ANSI to OEM command

Append Append
Append the selected text to the current clipboard. If
no text is selected, the current line is appended to
the clipboard.

AppendToClipboard() int AppendToClipboard(string str, int n)
Appends string 'str' to Clipboard 'n'. Returns the
total length of the text on the clipboard, or -1 for
error. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

See also PutClipboardText().

ApplyHighlighting Issues the Apply Highlighting command

ArrangeIcons Issues the Arrange Icons command

ASCIItoEBCDIC Issues the ASCII to EBCDIC command

asin() float asin(float x)
Returns the arc sine of 'x' in radians. 'x' must be in
the range -1 to 1.

atan() float atan(float x)
Returns the arc tangent of 'x' in radians.

Command Reference (alphabetically) 589

Copyright © 1991-2010 by Boxer Software

atof() float atof(string str)
Returns the floating point value of the number
described by string 'str'.

atoi() int atoi(string str)
Returns the integer value of the decimal number
described by string 'str'.

AutoNumber Issues the Auto-Number command

Backspace Issues the Backspace command

Backtab Issues the Backtab command

Beep() Beep(int freq, int duration)
Makes a sound through the PC speaker using the
supplied values for frequency and duration.
Frequency is in Hz and duration is in milliseconds.
Beep(1000, 300) produces a standard beep.

BookmarkManager Issues the Bookmark Manager command

BottomOfPage Issues the Bottom of Page command

BringUserListsToTop Issues the Bring User Lists to Top command

BrowseForFilename() BrowseForFilename(string fn, int mustexist)
Browse for a filename using a standard Windows
open dialog and place the selected filename in 'fn'. If
'mustexist' is non-zero, the selected filename must
already exist. If 'mustexist' is 0, a new filename can
be selected. Returns 1 for success or -1 for error.

ByteCount int ByteCount
Returns the number of characters in the current file.

Calculator Issues the Calculator command

Calendar Issues the Calendar command

Cascade Issues the Cascade command

CascadeHorizontal Issues the Cascade Horizontal command

CascadeVertical Issues the Cascade Vertical command

CaseInvert Issues the Case Invert command

CaseLower Issues the Case Lower command

CaseSentences Issues the Case Sentences command

CaseTitle Issues the Case Title command

CaseUpper Issues the Case Upper command

CaseWords Issues the Case Words command

ceil() float ceil(float x)
Returns (as a float) the smallest integer not less
than 'x'. Example: ceil(1.5) returns 2.0.

Boxer Text Editor590

Copyright © 1991-2010 by Boxer Software

ChangeString() int ChangeString(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case sensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringi() int ChangeStringi(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case insensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringRE() int ChangeStringRE(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
sensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

ChangeStringREi() int ChangeStringREi(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
insensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

CheckWord Issues the Check Word command

ClearAllBookmarks Issues the Clear All Bookmarks command

ClearAllClipboards Issues the Clear All Clipboards command

ClearClipboard() ClearClipboard(int n)
Clears the content of Clipboard 'n'. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

ClearClosedTabsList Issues the Clear Closed Tabs List

ClearRecentFilesList Issues the Clear Recent Files List command

ClearRecentProjectsList Issues the Clear Recent Projects List command

ClearUndo Issues the Clear Undo command

Close Issues the Close command

CloseAll Issues the Close All command

CloseAllButActive Issues the Close All But Active command

ColorChart Issues the HTML Color Chart command

Command Reference (alphabetically) 591

Copyright © 1991-2010 by Boxer Software

Column int Column
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is
1-based, not 0-based, and does not give
consideration to the display value of any tabs that
may appear in the line.

See also DisplayColumn().

Comment Issues the Comment command

ConfigureColors Issues the Configure Colors command

ConfigureCtagsFunctionInde
xing

Issues the Configure Ctags Function Indexing
command

ConfigureKeyboard Issues the Configure Keyboard command

ConfigurePreferences Issues the Configure Preferences command

ConfigurePrinterFont Issues the Configure Printer Font command

ConfigureScreenFont Issues the Configure Screen Font command

ConfigureSyntaxHighlightin
g

Issues the Configure Syntax Highlighting command

ConfigureTemplates Issues the Configure Templates command

ConfigureTextHighlighting Issues the Configure Text Highlighting command

ConfigureToolbar Issues the Configure Toolbar command

ConfigureUserTools Issues the Configure User Tools command

Copy Copy
Copy the selected text to the current clipboard. If
text is not selected, the current line is copied to the
clipboard.

CopyFile() int CopyFile(string oldname, string newname)
Copies the file 'oldname' to the file 'newname',
overwriting the output file if it already exists.
Returns 1 for success or -1 for error.

CopyFilename Issues the Copy Filename command

cos() float cos(float x)
Returns the cosine of 'x'. The angle 'x' must be in
radians.

cosh() float cosh(float x)
Returns the hyperbolic cosine of 'x'. The angle 'x'
must be in radians.

CreateDirectory() int CreateDirectory(string dir)
Creates a new directory according to the fully
qualified filepath in 'dir'. Returns 1 for success or -1
for error.

Boxer Text Editor592

Copyright © 1991-2010 by Boxer Software

CtagsFunctionIndex Issues the Ctags Function Index command

Cut Cut
Cut the selected text to the current clipboard. If text
is not selected, the current line is cut to the
clipboard.

CutAppend CutAppend
Cut the selected text and append it to the current
clipboard. If text is not selected, the current line is
cut and appended to the clipboard.

Declaration Issues the Declaration command

Decrement() int Decrement(int n)
Subtracts 'n' from the value at the text cursor and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Decrement dialog will appear when the macro is
run.

Delete Delete
Deletes the character at the text cursor, or the
selected text.

DeleteBlankLines Issues the Delete Blank Lines command

DeleteBookmarkedLines Issues the Delete Bookmarked Lines command

DeleteDuplicateLines Issues the Delete Duplicate Lines command

DeleteFile() int DeleteFile(string name)
Deletes the fully qualified filepath 'name' from the
disk, without requesting confirmation. Returns 1 for
success or -1 for error.

DeleteLine int DeleteLine(int n)
Deletes line 'n' in the current file. Returns 1 for
success or -1 for error. If 'n' is not supplied, the
current line is deleted.

DeleteLinesThatBeginWith int DeleteLinesThatBeginWith(string str)
Delete lines that begin with the string 'str'. Returns
1 for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatContain int DeleteLinesThatContain(string str)
Delete lines that contain the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatDoNotBegin
With

int DeleteLinesThatDoNotBeginWith(string str)
Delete lines that do not begin with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotConta
in

int DeleteLinesThatDoNotContain(string str)
Delete lines that do not contain the string 'str'.

Command Reference (alphabetically) 593

Copyright © 1991-2010 by Boxer Software

Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotEndW
ith

int DeleteLinesThatDoNotEndWith(string str)
Delete lines that do not end with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatEndWith int DeleteLinesThatEndWith(string str)
Delete lines that end with the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteNextWord Issues the Delete Next Word command

DeletePreviousWord Issues the Delete Previous Word command

DeleteToEndOfLine Issues the Delete to End of Line command

DeleteToStartOfLine Issues the Delete to Start of Line command

Deselect() Deselect(int mode)
Releases the text selection, if one exists. If 'mode' is
0, the text cursor is placed at the beginning of the
selection. If 'mode' is 1, the text cursor is placed at
the end of the selection. If 'mode' is 2, the current
position of the text cursor is maintained. Returns 1
for success or -1 for error.

DisplayColumn int DisplayColumn
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is
1-based, not 0-based, and gives consideration to the
display value of any tabs that may appear in the
line.

See also Column().

Divide() int Multiply(int n)
Divides the value at the text cursor by 'n' and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Divide dialog will appear when the macro is run.

Down int Down(int n)
Issues the Down command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

DuplicateAndIncrement Issues the Duplicate and Increment command

DuplicateLine Issues the Duplicate Line command

e float e
Returns the value of Euler's number 'e', which is
approximately 2.7182818285.

Boxer Text Editor594

Copyright © 1991-2010 by Boxer Software

EBCDICtoASCII Issues the EBCDIC to ASCII command

EditClipboard() EditClipboard(int n)
Opens Clipboard 'n' in a window for editing. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

EndOfFile Issues the End of File command

EndOfLine Issues the End of Line command

Enter Issues the Enter command

EraseValue() int EraseValue(string name)
Erases the variable 'name' from the macro variable
storage area. Returns 1 for success or -1 for error.

See also ReadValue(), WriteValue(), ValueExists().

ErrorChart Issues the Error Chart command

Exit Exit
Issues the File|Exit command to close the editor. If
one or more files have not been saved a prompt will
appear when the macro is run.

exp() float exp(float x)
Returns the value 'e' raised to the 'x'.

ExploreDataFolder Issues the Explore Data Folder command

ExploreProgramFolder Issues the Explore Program Folder command

ExtractDrive() int ExtractDrive(string str)
Converts the string 'str' so that it contains only the
drive designation portion of itself (eg 'C:'). Returns
the length of 'str' or -1 for error.

ExtractFileExt() int ExtractFileExt(string str)
Converts the string 'str' so that it contains only the
file extension portion of itself. The leading '.' is
retained in the resulting string. Returns the length
of 'str' or -1 for error.

ExtractFileNameAndExt() int ExtractFileNameAndExt(string str)
Converts the string 'str' so that it contains the
filename.ext portion of itself. Returns the length of
'str' or -1 for error.

ExtractFileNameOnly() int ExtractFileNameOnly(string str)
Converts the string 'str' so that it contains only the
filename portion of itself. Returns the length of 'str'
or -1 for error.

ExtractFilePath() int ExtractFilePath(string str)
Converts the string 'str' so that it contains only the
filepath portion of itself. The trailing backslash is
retained in the resulting string. Returns the length

Command Reference (alphabetically) 595

Copyright © 1991-2010 by Boxer Software

of 'str' or -1 for error.

fabs() float fabs(float x)
Returns the absolute value of 'x'.

factorial() int factorial(int x)
Returns the value of x factorial, also known as x!
Returns -1 for error or overflow.

FastFrame() int FastFrame(int style)
Surrounds the columnar selection with a frame
according to 'style'. When 'style' is in the range 1 to
11, a corresponding line style from the Fast Frame
dialog is used. If 'style' is not supplied the Fast
Frame dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

FileCount int FileCount
Returns the number of files currently open in the
editor.

FileExists() int FileExists(string filepath)
Returns 1 if 'filepath' exists, 0 if it does not exists,
or -1 for error.

FileName int FileName(string fn)
Fills 'fn' with the full path of the current file. Returns
the length of the filepath or -1 for error.

FilePicker Issues the File Picker command

FileProperties Issues the File Properties command

FileTabsBottom Issues the File Tabs Bottom command

FileTabsTop Issues the File Tabs Top command

FillWithString() int FillWithString(string str)
Fills the selected region with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the Fill
with String dialog will appear when the macro is
run.

Find() int Find(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Find() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Findi(), FindRE() and FindREi().

FindADiskFile Issues the Find a Disk File command

FindAndCount() int FindAndCount(string str)
Searches for occurrences of 'str' and returns the

Boxer Text Editor596

Copyright © 1991-2010 by Boxer Software

number found. If 'str' is not supplied the Find and
Count dialog will appear when the macro is run.

FindDifferingLines int FindDifferingLines()
Issues the Find Differing Lines command and
returns 1 if a mismatch is found, or 0 if no
additional mismatches exist.

FindDistinctLines Issues the Find Distinct Lines command

FindDuplicateLines Issues the Find Duplicate Lines command

FindFast Issues the Find Fast command

Findi() int Findi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Findi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Find(), FindRE() and FindREi().

FindMate int FindMate
search for a mate to the parenthetical sequence at
the text cursor. Returns TRUE if found, FALSE if not
found.

FindNext int FindNext
Returns 1 if the string is found, 0 if not found, -1 for
error.

FindPrevious int FindPrevious
Returns 1 if the string is found, 0 if not found, -1 for
error.

FindRE() int FindRE(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindRE() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option
ON.

See also Find(), Findi() and FindREi().

FindREi() int FindREi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindREi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option

Command Reference (alphabetically) 597

Copyright © 1991-2010 by Boxer Software

OFF.

See also Find(), Findi() and FindRE().

FindTextInDiskFiles Issues the Find Text in Disk Files command

FindUniqueLines Issues the Find Unique Lines command

FlipCase Issues the Flip Case command

floor() float floor(float x)
Returns (as a float) the largest integer not greater
than 'x'. Example: floor(1.5) returns 1.0.

FormatXML Issues the Format XML command

Formfeed Issues the Formfeed command

FTPOpen() int FTPOpen(string fn)
Opens the FTP file 'fn' for editing. If 'fn' is already
open for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

GetChar() int GetChar(string prompt, char c)
Displays a message box with 'prompt' and fills 'c'
with the character entered by the user. Returns 1
for success or -1 for error.

See also PressChar().

GetClipboardText() int GetClipboardText(string str, int n)
Fills 'str' with the text of Clipboard 'n'. Returns the
length of the text installed or -1 for error. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

GetCurrentDirectory() int GetCurrentDirectory(string str)
Retrieves the current directory for the active process
and places it in 'str'. Returns 1 for success or -1 for
error.

See also SetCurrentDirectory().

GetDataDirectory() int GetDataDirectory(string str)
Fills 'str' with the full path of the data directory.
Returns 1 for success or -1 for error.

See also GetProgramDirectory().

GetDate() int GetDate(int y, int m, int d)
Gets the current date and fills 'y', 'm' and 'd' with
the year, month and date, respectively. Returns 1
for success or -1 for error.

GetDayName() int GetDayName(string str, int n)
Fills 'str' with the 3-character name of weekday

Boxer Text Editor598

Copyright © 1991-2010 by Boxer Software

number 'n' (1-7). The string returned is sensitive to
the local language. Returns 1 for success or -1 for
error.

GetEditMode() int GetEditMode()
Returns the edit mode of the current file. Returns 0
if the edit mode is Insert, or 1 if the edit mode is
Typeover. Returns -1 if a file is not open.

GetEnv() int GetEnv(string str1, string str2)
Fills 'str1' with the content of the environment
variable named in 'str2'. Returns 1 for success or -1
for error.

GetFloat() int GetFloat(string prompt, float x)
Displays a message box with 'prompt' and fills 'x'
with the value entered by the user. Returns 1 for
success or -1 for error.

GetGMTDateTime() int GetGMTDateTime(int y, int m, int d, int hh, int
mm, int ss)
Gets the current date and time at GMT (Greenwich
Mean Time) and fills 'y', 'm', 'd', 'hh', 'mm' and 'ss'
with year/month/day/hour/minute/second,
respectively. Hours will be in 24-hour format.
Returns 1 for success or -1 for error.

GetInt() int GetInt(string prompt, int n)
Displays a message box with 'prompt' and fills 'n'
with the value entered by the user. Returns 1 for
success or -1 for error.

GetLineText() int GetLineText(int n, string str)
Fills 'str' with the text of line 'n'. Returns the length
of line 'n' or -1 for error.

GetMonName() int GetMonName(string str, int n)
Fills 'str' with the 3-character name of month
number 'n' (1-12). The string returned is sensitive
to the local language. Returns 1 for success or -1 for
error.

GetMonthName() int GetMonthName(string str, int n)
Fills 'str' with the full name of month number 'n'
(1-12). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetProgramDirectory() int GetProgramDirectory(string str)
Fills 'str' with the full path of the program directory.
Returns 1 for success or -1 for error.

See also GetDataDirectory().

GetReadOnly int GetReadOnly
Returns the read-only state of the current file.
Returns 1 if the file is read-only, 0 if the file is not

Command Reference (alphabetically) 599

Copyright © 1991-2010 by Boxer Software

read-only, or -1 for error.

See also: ToggleReadOnly()

GetSelection() int GetSelection(string str)
Fills 'str' with the currently selected text. Returns
the length of the selection or -1 for error.

See also: ActiveClipboard

GetSelectionBounds() int GetSelectionBounds(int l1, int c1, int l2, int c2)
Fills l1, c1, l2, c2 with the bounds of the currently
selected text. Returns 1 for success or -1 for error.

GetSelectionMode() int GetSelectionMode()
Returns 0 if the current selection mode is Stream, 1
if the current selection mode is Columnar

GetSelectionSize int GetSelectionSize
Returns the number of character currently selected,
0 if a selection is not present, or -1 for error.

GetShortName() int GetShortName(string shortname, string
fullname)
Fills 'shortname' with the 8.3/DOS format short
filename that corresponds to 'longname'. Returns 1
for success, or -1 for error.

GetString() int GetString(string prompt, string result [, string
default])
Displays a message box with 'prompt' and fills
'result' with the string entered by the user. If the
optional third parameter 'default' is present, it is
suggested as the default entry string. Returns the
length of 'result' or -1 for error.

GetTextWidth int GetTextWidth
Returns the current Text Width value.

GetTime12() int GetTime12(int h, int m, int s, int pm)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 12-hour format. If the time is PM, 'pm' is set
to 1, else it is set to 0. Returns 1 for success or -1
for error.

GetTime24() int GetTime24(int h, int m, int s)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 24-hour format. Returns 1 for success or -1 for
error.

GetWeekday() int GetWeekday(int y, int m, int d)
Returns the number of the weekday associated with
the date 'y', 'm', 'd'. Returns 1-7 for success or -1
for error.

Boxer Text Editor600

Copyright © 1991-2010 by Boxer Software

GetWeekdayName() int GetWeekdayName(string str, int n)
Fills 'str' with the full name of weekday number 'n'
(1-7). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetWindowNumber() int GetWindowNumber(string fn)
Returns the window number that holds the file 'fn'.
Returns -1 for error, 0 if the named file is not open,
or a postive value if the file's window is located.

See also Filename(), SwitchToWindow().

GetWord() int GetWord(string str)
Fills 'str' with the word at the text cursor. Returns
the length of the word found or -1 for error.

See also SelectWord().

GetWordDelimiters() int GetWordDelimiters(string str)
Fills 'str' with a string that contains the characters
considered to be word delimiters for the current file.
Returns 1 for success or -1 for error.

GetYesNo() int GetYesNo(string title, string query)
Gets a Yes or No reply from the user. Displays a
message box with title 'title' and message 'query'.
Returns 1 if the user clicks Yes, 0 if the user clicks
No.

GoToByteOffset() int GoToByteOffset(int n OR string str)
Go to offset 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "+25" will cause the cursor
to be moved ahead 25 bytes. If a parameter is not
provided the Go to Byte Offset dialog will appear
when the macro is run.

GoToColumn() int GoToColumn(int n OR string str)
Go to column 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "-12" will cause the cursor
to be moved 12 columns to the left. If a parameter
is not provided the Go to Column dialog will appear
when the macro is run.

GoToLine() int GoToLine(int n or string str)
Go to line 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "+50" will cause the cursor
to be moved ahead 50 lines. If a parameter is not
provided the Go to Line dialog will appear when the
macro is run.

GoToParagraph() int GoToParagraph(int n)
Go to paragraph 'n' in the current file. Returns 1 for

Command Reference (alphabetically) 601

Copyright © 1991-2010 by Boxer Software

success or -1 for error. If a parameter is not
provided the Go to Paragraph dialog will appear
when the macro is run.

HardenLineEnders Issues the Harden Line Enders command.

HTMLImageTag() int HTMLImageTag(string fn)
Inserts an HTML 'IMG' tag for the image file 'fn'.
BMP, GIF and JPG images are supported. Returns 1
for success or -1 for error.

Increment() int Increment(int n)
Adds 'n' to the value at the text cursor and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Increment dialog will appear when the macro is run.

IndentOneSpace Issues the Indent One Space command

IndentOneTabstop Issues the Indent One Tabstop command

IndentWithString() int IndentWithString(string str)
Indents the selected lines with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the
Indent with String dialog will appear when the
macro is run.

InsertCharacter() int InsertCharacter(char ch)
Inserts character 'ch' into the edited text. Returns
the ASCII value of 'ch' or -1 for error. (This
command is identical to PutChar.)

InsertFile() int InsertFile(string str)
Insert file 'str' into the current file. Returns 1 for
success or -1 for error. If 'str' is not provided the
Insert File dialog will appear when the macro is run.

InsertFilename Issues the Insert Filename command

InsertLineAbove Issues the Insert Line Above command

InsertLineBelow Issues the Insert Line Below command

InsertLongDate Issues the Insert Long Date command

InsertLongTime Issues the Insert Long Time command

InsertMode InsertMode
Switches the edit mode to Insert in the current file.

See also ToggleEditMode().

InsertShortDate Issues the Insert Short Date command

InsertShortTime Issues the Insert Short Time command

InvertLines Issues the Invert Lines command

isalnum() int isalnum(char c)

Boxer Text Editor602

Copyright © 1991-2010 by Boxer Software

Returns non-zero if character 'c' is alphanumeric.

isalpha() int isalpha(char c)
Returns non-zero if character 'c' is alphabetic.

isascii() int isascii(char c)
Returns non-zero if character 'c' is in the range
0-127.

IsBookmarked() int IsBookmarked(int n)
Returns 1 if line 'n' is bookmarked, 0 if not, or -1 for
error. If 'n' is not supplied, the current line is
assumed.

iscntrl() int iscntrl(char c)
Returns non-zero if character 'c' is a control
character (0-31 or 127).

isdigit() int isdigit(char c)
Returns non-zero if character 'c' is a digit.

islower() int islower(char c)
Returns non-zero if character 'c' is lowercase.

ispunct() int ispunct(char c)
Returns non-zero if character 'c' is punctuation.

isspace() int isspace(char c)
Returns non-zero if character 'c' is whitespace
(space, tab, newline, etc.).

isupper() int isupper(char c)
Returns non-zero if character 'c' is uppercase.

isxdigit() int isxdigit(char c)
Returns non-zero if character 'c' is a hex digit (A-F,
a-f, 0-9).

JustificationStyle() int JustificationStyle(int n)
Sets the current text justification style according to
'n': 1=Left, 2=Center, 3=Right, 4=Smooth. If 'n' is
not supplied the Justification Style dialog will appear
when the macro runs. Returns 1 for success or -1
for error.

LastCharacter() int LastCharacter(string str)
Returns the last character in 'str' or 0 if 'str' is an
empty string.

Left int Left(int n)
Issues the Left command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

LeftWindowEdge Issues the Left Window Edge command

LineContains() int LineContains(int n, string str)

Command Reference (alphabetically) 603

Copyright © 1991-2010 by Boxer Software

Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
sensitive. Regular expressions are not recognized.

LineContainsi() int LineContainsi(int n, string str)
Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
insensitive. Regular expressions are not recognized.

LineContainsRE() int LineContainsRE(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case sensitive.
Regular expressions ARE recognized.

LineContainsREi() int LineContainsREi(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case insensitive.
Regular expressions ARE recognized.

LineCount int LineCount
Returns the number of lines in the current file.

LineDrawing() int LineDrawing(int style)
Initiates or terminates Line Drawing mode. If 'style'
is 1 to 11, a corresponding line style from the Line
Drawing dialog is activated. The Up, Down, Left and
Right commands can then be used to draw lines and
boxes. When 'style' is 0, Line Drawing mode is
terminated. If 'style' is not supplied the Line
Drawing dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

LineIsEmpty() int LineIsEmpty(int n)
Returns TRUE if line 'n' is empty. Note: a line
containing only whitespace is considered empty.

LineLength() int LineLength(int n)
Returns the number of characters in line 'n'.

LineNumber int LineNumber
Returns the current line number in the current file
or -1 for error.

LineSpacing int LineSpacing(int mode)
Formats the range of selected lines, or the whole
file, according to 'mode'. 'mode' can be 1, 2 or 3,
which produces single, double or triple spacing,
respectively. Returns 1 for success or -1 for error.

log() float log(float x)
Returns the natural log of 'x'. 'x' must be a positive
value greater than 0.

log10() float log(float x)
Returns the base 10 log of 'x'. 'x' must be a positive
value greater than 0.

Boxer Text Editor604

Copyright © 1991-2010 by Boxer Software

MakeLineBottom Issues the Make Line Bottom command

MakeLineCenter Issues the Make Line Center command

MakeLineTop Issues the Make Line Top command

max() int max(int n1, int n2)
Returns the greater of 'n1' and 'n2'.

Maximize Maximize the current editing window.

MaximizeAll Issues the Maximize All command

Message() Message(string str, ...)
Displays a pop-up message box with title 'str' and a
message that is built from all arguments that follow.
Example:
Message("Results", n, " removed;", m, " remain.");

min() int min(int n1, int n2)
Returns the lesser of 'n1' and 'n2'.

Minimize Minimize the current editing window.

MinimizeAll Issues the Minimize All command

Modified int Modified
Returns 1 if the current file has been modified, else
0. Returns -1 for error.

See also SetModified().

MoveLineDown Issues the Move Line Down command

MoveLineUp Issues the Move Line Up command

Multiply() int Multiply(int n)
Multiplies the value at the text cursor by 'n' and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Multiply dialog will appear when the macro is
run.

New Issues the New command

NextBookmark Issues the Next Bookmark command

NextFunction Issues the Next Function command

NextParagraph Issues the Next Paragraph command

OEMChart Issues the OEM Chart command

OEMtoANSI Issues the OEM to ANSI command

Open() int Open(string fn)
Opens the file 'fn' for editing. If 'fn' is already open
for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

Command Reference (alphabetically) 605

Copyright © 1991-2010 by Boxer Software

OpenEmail() int OpenEmail(string str)
Initiates an email message to the address in 'str'
using the default email client. Returns 1 for success
or -1 for error.

See also OpenEmailAtCursor.

OpenEmailAtCursor Issues the Open Email at Cursor command

OpenFileInBrowser Issues the Open File in Browser command

OpenFilenameAtCursor Issues the Open Filename at Cursor command

OpenHeaderFile Issues the Open Header File command

OpenHex() int OpenHex(string fn)
Opens the file 'fn' for hex mode viewing and editing.
Returns 1 for success or -1 for error. Remember: \\
must be used to denote \ within 'fn'.

OpenProgramAtCursor Issues the Open Program at Cursor command

OpenRecentFile() OpenRecentFile(int n)
Opens recent file number 'n'. When a sufficient file
history exists, 'n' can range from 1 to 24.

OpenRecentProject() OpenRecentProject(int n)
Opens recent project number 'n'. When a sufficient
project history exists, 'n' can range from 1 to 16.

OpenSystemFiles Issues the Open System Files command

OpenURL() int OpenURL(string str)
Opens the URL described in 'str' in the default
internet browser. Returns 1 for succes or -1 for
error.

See also OpenURLAtCursor.

OpenURLAtCursor Issues the Open URL at Cursor command

PageDown Issues the Page Down command

PageLeft Issues the Page Left command

PageRight Issues the Page Right command

PageSetup Issues the Page Setup command

PageUp Issues the Page Up command

Paste Issues the Paste command

PasteAs Issues the Paste As command

PasteClipboard() PasteClipboard(int n)
Pastes the content of Clipboard 'n' into the current
file. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

Boxer Text Editor606

Copyright © 1991-2010 by Boxer Software

Pause Pause
Pauses macro execution by displaying a message
box and waiting for it to be closed.

pi float pi
Returns the value of pi, which is approximately
3.1415926536.

PlaySound() int PlaySound(string filepath)
Plays the .WAV file described in 'filepath'. Returns 1
for success or -1 for error.

pow() float pow(float x, float y)
Returns the value of 'x' raised to the power 'y'.

PressChar() int PressChar(string prompt, char c)
Displays the message 'prompt' on the status bar and
fills 'c' with the next character pressed by the user.
A popup dialog does NOT appear. A file must be
open in order for PressChar to operate. Returns 1
for success or -1 for error.

Note: PressChar will not wait for a character when
run in Debug mode.

See also GetChar().

PreviousBookmark Issues the Previous Bookmark command

PreviousFunction Issues the Previous Function command

PreviousParagraph Issues the Previous Paragraph command

Print Issues the Print command

PrintAll Issues the Print All command

PrintAllColor Issues the Print All Color command

PrintAllMonochrome Issues the Print All Monochrome command

PrintColor Issues the Print Color command

printf() int printf(string format, ...)
Processes 'format' and inserts a string into the
edited text, in accordance with the formatting
commands used in 'C'. Returns the number of
characters inserted. See the online help for more
information.

PrintMonochrome Issues the Print Monochrome command

PrintPreview Issues the Print Preview command

PrintPreviewColor Issues the Print Preview Color command

PrintPreviewMonochrome Issues the Print Preview Monochrome command

PrintSetup Issues the Print Setup command

Command Reference (alphabetically) 607

Copyright © 1991-2010 by Boxer Software

ProjectAddAll Issues the Project Add All command

ProjectAddOne Issues the Project Add One command

ProjectAutoUpdate() int ProjectAutoUpdate(int mode)
Toggles the Auto-Update feature on or off for the
active project according to 'mode'. Returns 1 for
success or -1 for error.

ProjectClose Issues the Project Close command

ProjectDelete() int ProjectDelete(string name)
Deletes the project file described by 'name'. A
confirmation prompt will be presented. Returns 1 for
success or -1 for error.

ProjectEditActive Issues the Project Edit Active command

ProjectEditOther() int ProjectEditOther(string name)
Opens the project file described by 'name' for
editing. If 'name' does not exist an empty file will be
opened. Returns 1 for success or -1 for error.

ProjectName() int ProjectName(string fn)
Fills 'fn' with the full path of the active project file.
Returns the length of the filepath or -1 for error.

ProjectNew Issues the Project New command

ProjectOpen() int ProjectOpen(string name)
Open the project file described by 'name'. Returns 1
for success or -1 for error.

ProjectRemove Issues the Project Remove command

ProjectUpdateAll Issues the Project Update All command

ProjectUpdateOne Issues the Project Update One command

PutChar() int PutChar(char ch)
Inserts character 'ch' into the edited text. Returns 1
for success or -1 for error.

PutClipboardText() int PutClipboardText(string str, int n)
Fills Clipboard 'n' with string 'str'. Returns the length
of the text installed or -1 for error. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

See also AppendToClipboard().

PutFloat() int PutFloat(float x)
Inserts the value of 'x' into the edited text. Two
decimal places will be used. Returns 1 for success or
-1 for error. Use printf() if special formatting is
required.

PutInt()
int PutInt(int n)

Boxer Text Editor608

Copyright © 1991-2010 by Boxer Software

Inserts the value of 'n' into the edited text. Returns
1 for success or -1 for error.

PutLineText() int PutLineText(int n, string str)
Replaces the text of line 'n' with 'str'. Returns the
length of 'str' or -1 for error.

PutMany() int PutMany(...)
Inserts the supplied argument(s) into the edited
text. Example:
PutMany(5, " is a number", '\n');

PutSelection() int PutSelection(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error. PutSelection() is the
complement to GetSelection(), and it should be used
instead of PutString to ensure proper insertion of
column-selected text.

PutString() int PutString(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error.

PutWordDelimiters() int PutWordDelimiters(string str)
Sets the word delimiters for the current file to the
characters contained in 'str'. Returns 1 for success
or -1 for error.

QuoteAndReformat Issues the Quote and Reformat command

Random() int Random(int n)
Returns a random number between 0 and n-1 or -1
for error.

ReadValue() int ReadValue(string name, char/int/string/float val)
Reads a value from the macro variable storage area
named 'name' and places it into variable 'val'. The
type of 'val' must agree with the type used when the
value was written using WriteValue(). Returns 1 for
success or -1 for error.

See also WriteValue(), EraseValue(), ValueExists().

Redo Issues the Redo command

RedoAll Issues the Redo All command

Reference Issues the Reference command

Reformat Issues the Reformat command

ReloadFile Issues the Reload File command

RenameFile() int RenameFile(string oldname, string newname)
Renames the file or directory named 'oldname' to
'newname'. Files can be renamed across drives;
directories must be on the same drive. The target
'newname' must not exist. Returns 1 for success or

Command Reference (alphabetically) 609

Copyright © 1991-2010 by Boxer Software

-1 for error.

Replace() int Replace(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replace() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Replacei().

ReplaceAgain Issues the Replace Again command

ReplaceAll() int ReplaceAll(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm
replacements. ReplaceAll() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the Match
Case option ON.

See also ReplaceAlli().

ReplaceAlli() int ReplaceAlli(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm
replacements. ReplaceAlli() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the the
Match Case option OFF.

See also ReplaceAll().

ReplaceAllRE() int ReplaceAllRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllREi().

ReplaceAllREi() int ReplaceAllREi(string str1, string str2)

Boxer Text Editor610

Copyright © 1991-2010 by Boxer Software

Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllRE().

Replacei() int Replacei(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replacei() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Replace().

ReplaceLineEnders() int ReplaceLineEnders(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'. 'str1'
and 'str2' may use the sequence \n (if within a
quoted string) to represent a line ender. Returns the
number of replacements made or -1 for error. The
user will be NOT prompted to confirm replacements.
If 'str1' and 'str2' are not supplied the Replace Line
Enders dialog will appear when the macro is run.
ReplaceLineEnders() will use the current settings on
the Replace Line Enders dialog.

ReplaceRE() int ReplaceRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also Replace(), Replacei() and ReplaceREi().

ReplaceREi() int ReplaceREi(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for

Command Reference (alphabetically) 611

Copyright © 1991-2010 by Boxer Software

error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also Replace(), Replacei() and ReplaceRE().

Restore Restore the current window from a minimized or
maximized state.

RestoreAll Issues the Restore All command

RestoreSettings RestoreSettings
Restores a variety of editor settings which were
earlier noted using SaveSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
restored: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active
Clipboard and Word Delimiters.

Right int Right(int n)
Issues the Right command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

RightWindowEdge Issues the Right Window Edge command

ROT5 Applies a ROT5 (rotation 5) conversion to the
selected text

ROT13 Applies a ROT13 (rotation 13) conversion to the
selected text

ROT18 Applies a ROT18 (rotation 18) conversion to the
selected text

ROT47 Applies a ROT47 (rotation 47) conversion to the
selected text

Round() float Round(float x, int n)
Returns the value of 'x' rounded to 'n' decimal
places.

RunProgram() int RunProgram(string fn, string params, string
workdir, int wait)
Runs the named program, document or folder in 'fn'
by passing it to the ShellExecuteEx Windows API
call. Command line parameters can be passed in
'params'. The program's working directory can be
passed in 'workdir'. If 'wait' is 1, macro execution
will be suspended until the program has been

Boxer Text Editor612

Copyright © 1991-2010 by Boxer Software

closed. Returns the completion code of
ShellExecuteEx: non-zero for success, zero for error.

See also OpenProgramAtCursor().

Save Issues the Save command

SaveACopyAs() int SaveACopyAs(string fn)
Saves a copy of the current file to the file 'fn'. The
name of the current file is not changed. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveAll Issues the Save All command

SaveAs() int SaveAs(string fn)
Saves the current file to the file 'fn'. The name of
the current file is changed to 'fn'. Returns 1 for
success or -1 for error. Remember: \\ must be used
to denote \ within 'fn'.

SaveSelectionAs() int SaveSelectionAs(string fn)
Saves the current selection to the file 'fn'. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveSettings SaveSettings
Records a variety of editor settings for later
restoration using RestoreSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
saved: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active
Clipboard and Word Delimiters.

ScrollDown Issues the Scroll Down command

ScrollLeft Issues the Scroll Left command

ScrollRight Issues the Scroll Right command

ScrollUp Issues the Scroll Up command

SelectAllText Issues the Select All Text command

SelectColumnar Issues the Select Columnar command

SelectDown Issues the Select Down command

SelectLeft Issues the Select Left command

SelectPageDown Issues the Select Page Down command

SelectPageLeft Issues the Select Page Left command

SelectPageRight Issues the Select Page Right command

SelectPageUp Issues the Select Page Up command

SelectRight Issues the Select Right command

Command Reference (alphabetically) 613

Copyright © 1991-2010 by Boxer Software

SelectStream Issues the Select Stream command

SelectToBottomOfPage Issues the Select to Bottom of Page command

SelectToEndOfFile Issues the Select to End of File command

SelectToEndOfLine Issues the Select to End of Line command

SelectToStartOfFile Issues the Select to Start of File command

SelectToStartOfLine Issues the Select to Start of Line command

SelectToTopOfPage Issues the Select to Top of Page command

SelectUp Issues the Select Up command

SelectWithoutShift Issues the Select without Shift command

SelectWord int SelectWord(string str)
Selects the word at the text cursor and places it in
'str'. Returns the length of the word selected or 0 if
no word could be found to select.

See also GetWord().

SelectWordLeft Issues the Select Word Left command

SelectWordRight Issues the Select Word Right command

SetClipboard() SetClipboard(int n)
Sets the active clipboard to Clipboard 'n'. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

SetClipboardNext Issues the Set Clipboard Next command

SetClipboardPrevious Issues the Set Clipboard Previous command

SetCurrentDirectory int SetCurrentDirectory(string str)
Sets the current directory for the active process to
'str'. Returns 1 for success or -1 for error.

See also GetCurrentDirectory().

SetModified SetModified
Sets the modifed state of the current to true. This
might be used to force a Save operation even when
a file has not been modified. Returns 1 for success
or -1 for error.

See also Modified().

ShadedTabZones() int ShadedTabZones(int mode)
Enables or disables the Shaded Tab Zones display
mode according to 'mode'.

sin() float sin(float x)
Returns the sine of 'x'. The angle 'x' must be in
radians.

Boxer Text Editor614

Copyright © 1991-2010 by Boxer Software

sinh() float sinh(float x)
Returns the hyperbolic sine of 'x'. The angle 'x' must
be in radians.

SoftenLineEnders Issues the Soften Line Enders command.

SortFileTabsByExt() int SortFileTabsByExt(int mode)
Enables or disables the sorting of File Tabs by
extension according to 'mode'. If 'mode' is 1 the
feature is enabled. If 'mode' is 0 the feature is
disabled.

SortFileTabsByName() int SortFileTabsByName(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortFileTabsByUse() int SortFileTabsByUse(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortLines Issues the Sort Lines command

Space Issues the Space command. If a range of lines is
selected, the range will be indented.

SpacesToTabs Issues the Spaces to Tabs command

SpellChecker Issues the Spell Checker command

SplitHorizontal Issues the Split Horizontal command

SplitVertical Issues the Split Vertical command

sprintf() int sprintf(string str1, string format, ...)
Processes 'format' and builds an output string in
'str1', in accordance with the formatting commands
used in 'C'. Returns the length of 'str1' or -1 for
error. See the online help for more information.

sqrt() float sqrt(float x)
Returns the positive square root of 'x'.

StartOfFile Issues the Start of File command

StartOfLine Issues the Start of Line command

StatusMessage() StatusMessage(...)
Displays a message in the status bar that is built
from all arguments that follow. Example:
StatusMessage(n, " were removed;", m, " remain.");

strcat() int strcat(string str1, string str2)
Concatenates 'str2' to 'str1'. Returns the length of
'str1' or -1 for error.

strchr() int strchr(string str, char c)
Returns the offset at which the character 'c' appears

Command Reference (alphabetically) 615

Copyright © 1991-2010 by Boxer Software

in 'str' or -1 if 'c' does not appear.

See also strrchr().

strcmp() int strcmp(string str1, string str2)
Compares 'str1' to 'str2' with case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcmpi() int strcmpi(string str1, string str2)
Compares 'str1' to 'str2' without case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcpy() int strcpy(string str1, string str2)
Copies 'str2' to 'str1'. Returns the length of 'str1' or
-1 for error.

StripHTMLTags Issues the Strip HTML/XML Tags command

StripLeadingSpaces Issues the Strip Leading Spaces command

StripTrailingSpaces Issues the Strip Trailing Spaces command

strlen() int strlen(string str)
Returns the length of 'str'.

strlwr() int strlwr(string str)
Converts the string 'str' to lowercase. Returns the
length of 'str'.

strncat() int strncat(string str1, string str2, int n)
Concatenates up to 'n' characters from 'str2' to
'str1'. Returns the length of 'str1' or -1 for error. A
NULL byte is added after the characters added.

strncmp() int strncmp(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2' with
case sensitivity. Returns 0 if the strings are equal.
Returns < 0 if 'str1' is less than 'str2'. Returns > 0 if
'str1' is greater than 'str2'.

strncmpi() int strncmpi(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2'
without case sensitivity. Returns 0 if the strings are
equal. Returns < 0 if 'str1' is less than 'str2'.
Returns > 0 if 'str1' is greater than 'str2'.

strncpy() int strncpy(string str1, string str2, int n)
Copies up to 'n' characters from 'str2' to 'str1'.
Returns the length of 'str1' or -1 for error. A NULL
byte is added after the characters copied.

strrchr() int strrchr(string str, char c)
Returns the offset at which the character 'c' last

Boxer Text Editor616

Copyright © 1991-2010 by Boxer Software

appears in 'str' or -1 if 'c' does not appear.

See also strchr().

strrev() int strrev(string str)
Reverses the string 'str' in place. Example:
The string 'Boxer' would be converted to 'rexoB'.

strstr() int strstr(string str1, string str2)
Searches string 'str1' for the substring 'str2' with
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strstri() int strstri(string str1, string str2)
Searches string 'str1' for the substring 'str2' without
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strupr() int strupr(string str)
Converts the string 'str' to uppercase. Returns the
length of 'str'.

SubString() int SubString(string str1, string str2, int index, int
len)
Fills 'str1' with up to 'len' characters from 'str2',
starting at offset 'index'. The first character in a
string is referred to by offset 0. Returns the new
length of 'str1' or -1 for error.

If 'index' is negative, and 'len' is positive, 'str1' will
be filled with 'len' characters starting 'index'
characters in from the end of 'str2'.

If 'len' is negative, the value of 'index' is ignored,
and 'str1' is filled with the rightmost 'len' characters
from 'str2'.

SwapLines Issues the Swap Lines command

SwapWords Issues the Swap Words command

SwitchToWindow() SwitchToWindow(int n)
Makes window 'n' active. Windows are numbered
from 1 to the number of open files.

See also FileCount.

See also GetWindowNumber().

SyntaxHighlightAs Issues the Syntax Highlight As command

Tab Issues the Tab command. If a range of lines is
selected, the range will be indented.

TabDisplaySize() int TabDisplaySize(string str)
Sets the Tab Display Size for the current file

Command Reference (alphabetically) 617

Copyright © 1991-2010 by Boxer Software

according to 'str'. If a single value appears in 'str',
tabs are set to fixed width with the value in 'str'. If a
series of comma-separated values are found in 'str',
variable width tab stops will be used. Returns TRUE
for success, -1 for error. If 'str' is not supplied the
Tab Display Size dialog will appear when the macro
is run.

TabsToSpaces Issues the Tabs to Spaces command

tan() float tan(float x)
Returns the tangent of 'x'. The angle 'x' must be in
radians.

tanh() float tanh(float x)
Returns the hyperbolic tangent of 'x'. The angle 'x'
must be in radians.

Templates Issues the Templates command

TextIsSelected int TextIsSelected
Returns 1 if a stream selection is present, 2 if a
columnar selection is present, or 0 if no selection is
present. Returns -1 for error.

TextWidth() int TextWidth(int n)
Sets the Text Width to 'n'. Returns TRUE for success
or -1 for error. If 'n' is not supplied the Text Width
dialog will appear when the macro is run.

TileAcross Issues the Tile Across command

TileDown Issues the Tile Down command

ToggleBookmark() int ToggleBookmark(int n, int state)
Sets bookmark 'n' according to 'state'. Returns TRUE
for success, -1 for error. If 'state' is ON, bookmark
'n' is placed on the current line. If 'state' is OFF
bookmark 'n' is cleared, where ever it is.

ToggleEditMode() ToggleEditMode(int state)
Toggles the edit mode according to 'state'. If 'state'
is 1, Insert mode is used. If 'state' is 0, Typeover
mode is used.

See also the functions InsertMode() and
TypeoverMode().

ToggleReadOnly() ToggleReadOnly(int state)
Toggle read-only mode according to 'state'. If 'state'
is 1, read-only mode is set. If 'state' is 0, read-only
mode is released.

tolower() int tolower(char c)
Returns the lowercase mate to character 'c'.

ToolbarBottom Issues the Toolbar Bottom command

Boxer Text Editor618

Copyright © 1991-2010 by Boxer Software

ToolbarLeft Issues the Toolbar Left command

ToolbarRight Issues the Toolbar Right command

ToolbarTop Issues the Toolbar Top command

TopLine int TopLine
Returns the line number of the first line in the editor
window. Returns -1 for error.

TopOfPage Issues the Top of Page command

TotalAndAverage Issues the Total and Average command

TouchFile() int TouchFile(string name)
Touch (ie, update the timestamp of) the file named
'name'. Returns 1 for success or -1 for error.

toupper() int toupper(char c)
Returns the uppercase mate to character 'c'.

Trim() int Trim(string str)
Removes leading and trailing blanks from 'str'.
Returns the new length of 'str'.

TrimLeft() int TrimLeft(string str)
Removes leading blanks from 'str'. Returns the new
length of 'str'.

TrimRight() int TrimRight(string str)
Removes trailing blanks from 'str'. Returns the new
length of 'str'.

Trunc() float Trunc(float x, int n)
Returns the value of 'x' truncated to 'n' decimal
places.

TypeoverMode TypeoverMode
Switches the edit mode to Typeover in the current
file.

See also ToggleEditMode().

Uncomment Issues the Uncomment command.

Undo Issues the Undo command.

UndoAll Issues the Undo All command.

UndoAllClosedTabs Issues the Undo All Closed Tabs command.

UndoClosedTab() UndoClosedTab(int n)
Reopens recently closed file tab number 'n'. When a
sufficient closed tab list exists, 'n' can range from 1
to 10.

UndoCloseTab Issues the Undo Close Tab command.

Unformat Issues the Unformat command.

Command Reference (alphabetically) 619

Copyright © 1991-2010 by Boxer Software

UnformatXML Issues the Unformat XML command.

UnhighlightMatches Issues the Unhighlight Matches command.

Unindent Issues the Unindent command.

Up int Up(int n)
Issues the Up command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

UserList() UserList(int n)
Opens User List window 'n'.

UserTool() UserTool(int n)
Runs User Tool number 'n'.

UserToolWait() UserTool(int n)
Runs User Tool number 'n' and waits for it to
complete execution.

ValueAtCursor int ValueAtCursor
Returns the ASCII value of the character at the
cursor, or -1 if a character is not available at the
cursor.

ValueExists() int ValueExists(string name)
Looks for the variable 'name' in the macro variable
storage area. Returns 1 if it exists, 0 if it does not
exists, or -1 for error.

See also ReadValue(), WriteValue(), EraseValue().

ViewBookmarks() int ViewBookmarks(int mode)
Enables or disables the viewing of Bookmarks
according to 'mode'.

ViewFileTabs() int ViewFileTabs(int mode)
Enables or disables the viewing of File Tabs
according to 'mode'.

ViewHexMode() int ViewHexMode(int mode)
Enables or disables read-only hex mode viewing
according to 'mode'.

ViewHexRuler() int ViewHexRuler(int mode)
Enables or disables the viewing of the Hex Ruler
according to 'mode'.

ViewTextRuler() int ViewTextRuler(int mode)
Enables or disables the viewing of the Text Ruler
according to 'mode'.

ViewHScrollBar() int ViewHScrollBar(int mode)
Enables or disables the viewing of Horizontal Scroll
Bars according to 'mode'.

Boxer Text Editor620

Copyright © 1991-2010 by Boxer Software

ViewLineNumbers() int ViewLineNumbers(int mode)
Enables or disables the viewing of Line Numbers
according to 'mode'.

ViewRightMarginRule() int ViewRightMarginRule(int mode)
Enables or disables the viewing of the Right Margin
Rule according to 'mode'.

ViewStatusBar() int ViewStatusBar(int mode)
Enables or disables the viewing of the Status Bar
according to 'mode'.

ViewSyntaxHighlighting() int ViewSyntaxHighlighting(int mode)
Enables or disables the Syntax Highlighting feature
according to 'mode'.

ViewTextHighlighting() int ViewTextHighlighting(int mode)
Enables or disables the Text Highlighting feature
according to 'mode'.

ViewToolbar() int ViewToolbar(int mode)
Enables or disables the viewing of the Toolbar
according to 'mode'.

ViewVisibleSpaces() int ViewVisibleSpaces(int mode)
Enables or disables the viewing of Visible Spaces
according to 'mode'.

ViewVScrollBar() int ViewVScrollBar(int mode)
Enables or disables the viewing of Vertical Scroll
Bars according to 'mode'.

VisualWrap() int VisualWrap(int mode)
Enables or disables Visual Wrap according to 'mode'.

VisualWrapOptions Issues the Visual Wrap Options command.

Wait() int Wait(int n)
Delays macro execution for 'n' milliseconds. 1000
milliseconds equals 1 second. Returns 1 for success
or -1 for error.

WindowHeight int WindowHeight
Returns the number of lines that can be displayed in
the current window.

WindowLastVisited Issues the Window Last Visited command

WindowList Issues the Window List command

WindowNext Issues the Window Next command

WindowPrevious Issues the Window Previous command

WindowSkip int WindowSkip(int mode)
If 'mode' is 1, sets the skip status for the current
window to on. If mode is 0, skip status is turned off.
Returns 1 for success or -1 for error.

Command Reference (alphabetically) 621

Copyright © 1991-2010 by Boxer Software

WindowWidth int WindowWidth
Returns the number of columns that can be
displayed in the current window.

WordCount() int WordCount(int lines, int words, int chars)
Fills the supplied variables with the count of lines,
words and characters, respectively. Returns 1 for
success or -1 for error.

WordLeft int WordLeft(int n)
Issues the Word Left command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordRight int WordRight(int n)
Issues the Word Right command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordWrap() int WordWrap(int mode)
Enables or disables Typing Wrap according to
'mode'. Deprecated: see TypingWrap().

WriteValue() int WriteValue(string name, char/int/string/float val)
Writes 'val' to the macro variable storage area
named 'name'. 'name' will be visible to other
macros, so be careful to choose a unique identifier.
Returns 1 for success or -1 for error.

See also ReadValue(), EraseValue(), ValueExists().

xtoi() int xtoi(string str)
Returns the integer value of the hexadecimal
number described by string 'str'. Returns -1 for
error.

5.158 Macro Language Reference

Data Types

Boxer's Macro Language supports the following data types:

string
char
int
float

A string can hold a series of characters up to 2,048 bytes in length. The end of a

string is marked with a Null character (ASCII 0). A string constant is enclosed within
double quotes.

Boxer Text Editor622

Copyright © 1991-2010 by Boxer Software

The char data type is an 8-bit, unsigned data type which can hold values in the

range 0 to 255. A character constant is enclosed within single quotes.

The int data type is a 32-bit, signed data type which can hold integer values in the

range -2,147,483,648 to 2,147,483,647.

The float data type is a double precision, signed data type that can hold values in the

range 2.2250738585072014e-308 to 1.7976931348623158e+308.

Keywords

The following words are reserved keywords and may not be used as variable names:

break int true
continue char false
do string yes
else float no
for void on
goto off
if
macro
return
while

The keywords listed above are case sensitive, and must be entered in lowercase. The
symbolic constants in the third column (true, false, yes, no, on, off) are an

exception: they can appear in lowercase, uppercase, or even in mixed case.

Arithmetic Operators

The following arithmetic operators are supported:

Operator Meaning

 + addition

 - subtraction

 * multiplication

 / division

 % modulus

 ++ increment

 -- decrement

The modulus operator (%) returns the remainder from an integer division operation. For

example, the expression n = 7 % 4 will result in n receiving the value 3, since 7 /
4 leaves a remainder of 3.

The increment and decrement operators can be used to increase or decrease an integer

Command Reference (alphabetically) 623

Copyright © 1991-2010 by Boxer Software

variable by 1. The expression:

i++;

is equivalent to:

i = i + 1;

The ++ and -- operators can be used in either prefix or postfix location. If i has an

initial value of 3, the statement:

n = i++;

will leave n with the value of 3, while i is incremented to 4. The incrementing of i
occurs after the assignment due to the postfix location.

Assuming i again starts with a value of 3, the statement:

n = --i;

will leave n with a value of 2 and i with a value of 2. The decrementing of i occurs

before the assignment due to the prefix location.

The addition (+) operator has been overloaded to support string concatenation. The

following statements:

string s1 = "Boxer ";
string s2 = "Text Editor";
string s3 = s1 + s2;

would result in s3 having the value: "Boxer Text Editor"

Assignment Operators

The following assignment operators are supported:

Operator Meaning

 = assignment

 += addition assignment

 -= subtraction assignment

 *= multiplication assignment

 /= division assignment

 %= modulus assignment

 &= bitwise AND assignment

 |= bitwise OR assignment

Boxer Text Editor624

Copyright © 1991-2010 by Boxer Software

 ^= bitwise XOR assignment

 <<= left shift assignment

 >>= right shift assignment

The assignment operator (=) should be familiar to all. The other operators which each

conclude with = all represent a shorthand notation. For example, the statement:

i += 5;

is equivalent to:

i = i + 5;

The += operator has been overloaded to support string concatenation. The following

statements:

string str = "Boxer ";
str += "Text Editor";

would result in str having the value: "Boxer Text Editor"

The last five operators listed above are bitwise assignment operators. Their function is
analogous to the += operator; see the Bitwise Operators section of this topic for some

additional detail.

Boolean Operators

The following Boolean operators are supported:

Operator Meaning

 == equal

 != not equal

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 && logical AND

 || logical OR

 ! logical NOT (unary negation)

 ~= case insensitive string comparison

The operators ==, !=, <, >, <= and >= have been overloaded to allow operations

on strings. A string is considered greater than another string if it would appear higher

Command Reference (alphabetically) 625

Copyright © 1991-2010 by Boxer Software

in an alphabetic sort. In other words, the statement:

if ("apple" < "zebra")

evaluates to TRUE.

The first nine operators above are standard to most high-level languages. The last
operator is specific to Boxer's Macro Language, and permits strings to be compared
without case sensitivity. For example, the statement:

if ("MasterCard" ~= "mastercard")

would evaluate to TRUE.

Bitwise Operators

The following bitwise operators are supported:

Operator Meaning

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 << left shift

 >> right shift

 ~ one's complement (unary)

A full discussion of bitwise arithmetic would be beyond the scope of this language
reference. For those who are interested, any introductory book on the C programming
language would be a suitable reference. The information below will be sufficient to
remind those with prior experience of the function of each operator:

& Sets a bit to 1 in the result if and only if both of the corresponding bits in its

operands are 1, and to 0 if the bits differ or both are 0. Example: 9 & 1 yields 1.

| Sets a bit to 1 in the result if one or both of the corresponding bits in its operands

are 1, and to 0 if both of the corresponding bits are 0. Example: 9 | 2 yields 11.

^ Sets a bit in the result to 1 when the corresponding bits in its operands are

different, and to 0 when they are the same. Example: 7 ^ 4 yields 3;

<< Shifts the first operand the number of bits to the left specified in the second

operand, filling with zeros from the right. Example: 2 << 3 yields 16.

>> Shifts the first operand the number of bits to the right specified in the second

operand, discarding the bits that 'fall off' at the right. Example: 34 >> 2 yields 8.

Boxer Text Editor626

Copyright © 1991-2010 by Boxer Software

~ Inverts each bit in the operand, changing all ones to zeros and all zeros to ones.

Example: ~0xFFFF0000 yields 0x0000FFFF.

The large majority of users will never find a need for bitwise arithmetic, but it has
been included in the interest of completeness.

Operator Precedence

The following table summarizes operator precedence and order of evaluation for the
various operators supported by Boxer's Macro Language. Operators with the
strongest/highest precedence are listed first:

Operator Evaluates

() [] left to right

! ~ ++ -- - right to left

* / % left to right

 + - left to right

 << >> left to right

 < <= > >= left to right

 == != ~= left to right

 | left to right

 & left to right

 ^ left to right

 && left to right

 || left to right

 ? : right to left

 = += -= etc. right to left

 , left to right

Parentheses can be used when required to ensure that the order of evaluation occurs as
desired. For example:

n1 = 3 * 5 + 4;

assigns 19 to n1, while:

n1 = 3 * (5 + 4);

assigns 27 to n1.

Because the assignment operator (=) is evaluated from right to left, a construction

such as the following is possible:

Command Reference (alphabetically) 627

Copyright © 1991-2010 by Boxer Software

int i, j, k;
i = j = k = 0;

 k is assigned the value 0, j is assigned the value of k, and i is assigned the value

of j.

Character Constants

Boxer's Macro Language recognizes the standard character constants which have been
popularized by the C programming language:

Sequence Meaning Decimal Value

'\b' Backspace 8

'\f' Formfeed 12

'\n' Newline 10

'\r' Carriage Return 13

'\t' Tab 9

'\\' Backslash 92

'\'' Single Quote 39

'\"' Double Quote 34

'\0' Null 0

In addition, Boxer will recognize a backslash (\) followed by three octal digits as the

character whose ASCII value is given by the digits used. For example, '\101' could

be used to represent a capital A, since its ASCII value, in octal, is 101.

Character constants can be used in any place that a char data type is expected, or

within a double-quoted string: "this is a string with a newline at the
end.\n"

Numeric Constants

Numeric int constants can be specified in either decimal or hexadecimal format:

int n1 = 32;
int n2 = 0x20;

Each of these assignments supplies the value 32 to n1 or n2.

Numeric float constants can be specified in any of the following forms:

float x1 = 500;
float x2 = 500.0;
float x3 = 5e2;

Boxer Text Editor628

Copyright © 1991-2010 by Boxer Software

float x4 = 5e02;
float x5 = 5.0e2;
float x6 = 5.0e02;
float x7 = 5.0e+2;
float x7 = 5.0e+02;

Each of these assignments results in the value 500 being assigned to the variable being

declared.

For floating point values less than 1, the minus sign can be used to designate

exponentiation. All of the following examples represent the number .05:

.05
0.05
5e-2
5e-02
5.0e-2
5.0e-02

Symbolic Constants

The following symbolic constants are recognized:

Name Value

TRUE 1

FALSE 0

YES 1

NO 0

ON 1

OFF 0

These constants can be used in place of the values 0 and 1 to make a macro more

readable. For example, you can write:

ViewBookmarks(ON);

instead of:

ViewBookmarks(1);

Declaring Variables

Variable names can be up to 32 characters in length and must not conflict with the

names of any keywords or internal functions. Variable names can use alphanumeric
characters and the underscore (_), but they must not start with a digit. All variables

must be declared before use. Initialization of variables can be done at declaration-time,
but this is not required. Uninitialized variables will be zero-filled automatically.

Command Reference (alphabetically) 629

Copyright © 1991-2010 by Boxer Software

Boxer's Macro Language supports a flexible syntax for declaring variables. All of the
following examples are legal declarations when they appear at the top of a macro,
before other executable statements:

string s1;
string s2 = "Boxer";
string s3, s4, s5;
string s6 = "abc", s7, s8 = "def";

char c1;
char c2 = 'A';
char c3, c4, c5;
char c6, c7 = 'x', c8;

int n1;
int n2 = 10;
int n3, n4, n5;
int n6, n7 = -4, n8;

float x1;
float x2 = 1.05;
float x3 = 1.2e04;
float x4, x5, x6;
float x7, x8 = 7.75, x9;

In the spirit of the C programming language, Boxer's macro language also allows a

string variable to be declared as an array of characters. The declaration:

char str[100];

is (for most purposes) functionally equivalent to the declaration:

string str;

for declaring a variable which can hold a short string of characters. See the String
Subscripting section below for details on when the former style might be required.

Conditional Statements

Boxer's Macro Language supports three different conditional statements: if, if-else
and the ternary statement. An if statement will be executed if the expression in

parentheses evaluates to a non-zero result. Below are examples of the three
conditional statements:

if (LineCount() > 10000)
{
longfile = true;
}

if (LineCount() > 10000)
{

Boxer Text Editor630

Copyright © 1991-2010 by Boxer Software

longfile = true;
}

else
{
longfile = false;
}

longfile = (LineCount() > 10000) ? true : false;

In the first example, the variable longfile is set TRUE if the return from the function

LineCount() is greater than 10000. In the second example, an if-else statement

is used to additionally set longfile to FALSE if the condition is not met.

The final example illustrates the ternary statement, and its effect is identical to the

if-else example immediately above it. If the condition within parentheses evaluates

to TRUE, the expression immediately following the ? is evaluated. If not, the

expression after the : is evaluated. A ternary statement is effectively a compact

if-else statement.

The ternary statement in Boxer's Macro Language is modeled after that of the C
programming language, with one exception. In Boxer macros, the parentheses
around the conditional expression are required, in C these parentheses are optional.

When a single statement is conditional upon an if or if-else statement, as is

shown in the examples above, the use of curly braces { } is not required. Curly

braces are required when two or more statements are to be conditionally executed,
or when those statements are the subject of a looping statement.

Looping Statements

Boxer's Macro Language supports three different looping statements: for, while and

 do-while. A loop statement will continue looping so long as the 'test' expression in

parentheses evaluates to a non-zero result. Below are examples of each of these
statements:

// find the longest line in the file
for (line = 1, longest = 0; line <= LineCount(); line++)

if ((n = LineLength(line)) > longest)
longest = n;

// find the longest line in the file
line = 1;
longest = 0;
while (line <= LineCount())

{
if ((n = LineLength(line)) > longest)

longest = n;

Command Reference (alphabetically) 631

Copyright © 1991-2010 by Boxer Software

line++;
}

// find the longest line in the file
line = 1;
longest = 0;
do

{
if ((n = LineLength(line)) > longest)

longest = n;

line++;
}

while (line < LineCount());

The three loops above are functionally equivalent to one another, with one exception
that will be discussed below.

The for loop is the most compact, since it permits the three elements of a loop's

control to be specified on a single line: the initialization, the test, and the increment.
These are found within the parentheses of the for loop and are separated by

semi-colons. When a for loop is first executed, the initialization section is performed,

and the test section is evaluated. If the test evaluates to a non-zero result, the
statement(s) in the body of the loop are processed. At the end of the loop, the
increment section is processed. Control then passes again to to the test section, to the
body, and so on.

Boxer's Macro Language supports a very flexible for loop structure. The

initialization, test and increment sections are each optional. Moreover, multiple
initializations can be performed by separating the statements with the comma
operator.

The while loop is a simpler loop, in that the only required control element that must

be supplied is the test. For illustration purposes, the while loop above was written to

be identical in function to the for loop above it. In fact, every for loop can be

written as a while loop, and every while loop can be written as a for loop. A

for loop is typically used when one needs to initialize and increment a loop index. A

while loop is typically used when a single condition is sufficient to control the flow of

the loop.

A do-while loop is essentially an upside-down while loop. A do-while loop

tests at the bottom, whereas a while loop tests at the top. A do-while loop

should be used in those cases where the loop is always to be be executed at least once.
That leads us to why the do-while example above is not exactly equivalent to the

for and while loops above it. If the current file is empty, the for and while
loops above will not be executed. The LineCount() function will return 0 and the

initial test will fail. In the do-while loop, the LineCount() call isn't made until the

bottom of the loop. In the case of an empty file, the body of the loop would be
processed and the LineLength() call would fail because the line parameter would

Boxer Text Editor632

Copyright © 1991-2010 by Boxer Software

be out of range.

Sometimes the need arises to construct a 'forever' loop; one which will run until
some condition within the body of the loop is satisfied and a break statement is

executed. Both the for and while loops can be used for this purpose. Here are

two examples:

// loop until the user enters the right answer
for (;;)

{
GetString("What's the capital of Arizona?", answer);

if (answer ~= "Phoenix")
break;

}

// loop until the user enters the right answer
while (TRUE)

{
GetString("What's the capital of New Hampshire?", answer);

if (answer ~= "Concord")
break;

}

Notice that these examples used the ~= operator to ensure that the user's

response was not rejected due to improper case.

Alert readers might notice that the above examples could be more neatly implemented
using a do-while loop, since this is a case where the loop always wants to be run

once, and the test can be more logically placed at the bottom of the loop:

do
GetString("What's the capital of California?", answer);

while (strcmpi(answer, "Sacramento") != 0);

This example uses the strcmpi() function to perform a case insensitive string

comparison, because the ~= operator does not have a companion

string-does-not-match operator.

The break Statement

The break statement can be used to exit from a loop prematurely. Control passes to

the next statement following the loop which has been exited. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

break;

Command Reference (alphabetically) 633

Copyright © 1991-2010 by Boxer Software

}

// control passes to here after break
New;

The continue Statement

The continue statement can be used to jump to the bottom of a loop prematurely.

Control passes to an imaginary label at the end of the loop. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

continue;

// ... other processing ...

// continue jumps to here
}

The goto Statement

The goto statement can be used to jump unconditionally to a label. Control passes to

the next statement after the label. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

goto toolong;

// ... other processing ...

toolong:
// goto jumps to here

// ... other processing ...
}

The return Statement

The return statement can be used to end a macro prematurely. If a return statement

is not encountered, a macro will run until the closing curly brace in the body of the
macro is encountered.

Function Calls

Boxer's Macro Language includes a wide variety of functions that provide access to the
editor's commands, configuration settings, and to string and math libraries. The

Boxer Text Editor634

Copyright © 1991-2010 by Boxer Software

function set is documented in the Macro Function Reference, as well as in the Macro
Dialog itself.

When making a function call, care should be taken to ensure that the parameters
supplied to the function match the declared type(s) that the function expects to receive.
Boxer is able to trap missing and/or mismatched parameters in most cases, but
unexpected results can occur when invalid parameters are supplied.

Function names are not case sensitive; Boxer will accept function names that do not
match the function name with regard to character case.

If a function does not require parameters, it is not necessary to supply parentheses at
the end of the function name. For example:

LineCount();

and

LineCount;

are functionally equivalent, because the LineCount function does not require any

parameters. That said, the practice of using () on all function calls can help to

distinguish function names from variable names.

Simple expressions can be supplied to in a function call without difficulty, and they will
be evaluated as expected before being sent to the function for processing. For
example:

max(3 * 45, 4 * 90);

is a legitimate construction that might be used in calling the max() function. If you find

that you are getting unexpected results in a case like this, introduce a temporary
variable to hold the value of the expression, and then supply the variable to the
function in place of the expression.

String Subscripting

Arrays are not supported in the classical sense; it's not possible to declare an array of

int or float variables, for example. But Boxer's Macro Language does recognize a

string variable to be an array of elements of type char, and allows those elements

to be accessed individually through the use of subscripts. The first character within a
string is located at index 0, the second character is at index 1, etc. In the following

example:

string str = "BOXER";
char c1;
c1 = str[2];

the character variable c1 would be assigned the value 'X'.

Likewise, a string variable can be modified by assigning individual elements within

Command Reference (alphabetically) 635

Copyright © 1991-2010 by Boxer Software

the string using subscripting:

string s1 = "water";
s1[0] = 'w';
s1[1] = 'i';
s1[2] = 'n';
s1[3] = 'e';
s1[4] = '\0';

This code fragment has the effect of changing the content of string variable s1 from

"water" to "wine". Notice that the null character ('\0') was used to shorten the

string from five characters to four.

String subscripting makes it possible to use a string variable in the way that an
array might be used. Here's an example that totals the number of occurrences of
each letter within an input string:

macro array_example()
{
int i;
string input = "now is the time for all good men to come to the

aid of their country.";
char tally[256]; // note that all elements are initially

set to zero

// loop to process all characters in the input string
for (i = 0; input[i] != '\0'; i++)

tally[input[i]]++;

// open a new, untitled file
New;

// report the results for lowercase letters
for (i = 'a'; i <= 'z'; i++)

printf("letter %c occurred %d time(s)\n", i, tally[i]);
}

Had the tally array been declared as a string type, Boxer's built-in range

checking would have prevented the string from being used in the way that was shown
above. By declaring the string as a character array of sufficient size, the macro
processor is forewarned that the code may later index into the string beyond the
terminating null character.

Due to the capacity of the char data type (0-255), the utility of the above

technique is limited to applications in which the maximum number of occurrences
would be less than 256.

Type Conversions

Boxer's Macro Language will automatically convert between data types whenever
possible in order to resolve an expression that involves mismatched data types. Here
are some examples:

Boxer Text Editor636

Copyright © 1991-2010 by Boxer Software

string s1 = 'A'; // result: s1 gets "A" (char to string)
string s2 = 65; // result: s2 gets "A" (int to string)
string s3 = 65.0; // result: s3 gets "A" (float to string)

char c1 = 65; // result: c1 gets 'A' (int to char)
char c2 = "A"; // result: c2 gets 'A' (string to char)
char c3 = 65.0; // result: c3 gets 'A' (float to char)

int n1 = 'A'; // result: n1 gets 65; (char to int)
int n2 = "123"; // result: n2 gets 123 (string to int)
int n3 = 123.45; // result: n3 gets 123 (float to int)

float x1 = 'A' // result: x1 gets 65.0 (char to float)
float x2 = 65; // result: x2 gets 65.0 (int to float)
float x3 = "123.45"; // result: x3 gets 123.45 (string to

float)

Comments

Comments can be placed throughout a macro to help document the code. Two types of
comments are supported, block comments and end-of-line comments:

/* this is a multi-line
 block comment */

int n1 = 7; // this is an end-of-line comment

5.159 Make Line Bottom

Menu: Jump > Make Line Bottom

Default Shortcut Key: none

Macro function: MakeLineBottom()

The Make Line Bottom command causes the screen to be redrawn so that the current
line is at screen bottom. This command is useful for showing the text above the
current view without losing the current line.

If there is insufficient text to fill the window, the command will be disabled.

5.160 Make Line Center

Menu: Jump > Make Line Center

Default Shortcut Key: none

Command Reference (alphabetically) 637

Copyright © 1991-2010 by Boxer Software

Macro function: MakeLineCenter()

The Make Line Center command causes the screen to be redrawn so that the current
line is at the middle of the screen.

5.161 Make Line Top

Menu: Jump > Make Line Top

Default Shortcut Key: none

Macro function: MakeLineTop()

The Make Line Top command causes the screen to be redrawn so that the current line is
at the top of screen. This command is useful for showing the text below the current
view without losing the current line.

If there is insufficient text to fill the window, the command will be disabled.

5.162 Maximize All

Menu: Window > Maximize All

Default Shortcut Key: none

Macro function: MaximizeAll()

The Maximize All command can be used to maximize all editor windows. The current
window will consume the entire client area, and all other windows can be conceptualized
as having been placed behind the current window.

When an editor window is maximized, its Minimize/Maximize/Close icon set is moved
to the far right of the main menu bar. Once the window is minimized or restored,
its icons are moved back to its title bar.

5.163 Minimize All

Menu: Window > Minimize All

Default Shortcut Key: none

Macro function: MinimizeAll()

The Minimize All command can be used to quickly minimize all open editor windows.
Minimized windows are placed at the bottom of the client area in iconic form. The size
and position of each window is stored so that any window can assume its former
position once restored. Windows can be restored individually or with the Restore All

Boxer Text Editor638

Copyright © 1991-2010 by Boxer Software

command. To neatly arrange minimized icons which have become out of line, use the
Arrange Icons command.

5.164 Move Line Down

Menu: Edit > Line > Move Line Down

Default Shortcut Key: Shift+Alt+Down

Macro function: MoveLineDown()

The Move Line Down command moves the text of the current line to the line below, and
moves the text cursor to that line so it follows the line being moved. This command
can be useful when rearranging items in an ordered list, since it removes the need to
select, cut and then paste text from the clipboard as a means of reordering a series of
lines.

If the current line is the last line in the file, the command has no effect.

The effect of this command is similar to that of the Swap Lines command, which used to
reside in the Edit menu, and remains accessible via key assignment and its macro
function.

See also: Move Line Up

5.165 Move Line Up

Menu: Edit > Line > Move Line Up

Default Shortcut Key: Shift+Alt+Up

Macro function: MoveLineUp()

The Move Line Up command moves the text of the current line to the line above, and
moves the text cursor to that line so it follows the line being moved. This command
can be useful when rearranging items in an ordered list, since it removes the need to
select, cut and then paste text from the clipboard as a means of reordering a series of
lines.

If the current line is the first line in the file, the command has no effect.

See also: Move Line Down

5.166 Multiply

Menu: Edit > Math > Multiply

Default Shortcut Key: none

Command Reference (alphabetically) 639

Copyright © 1991-2010 by Boxer Software

Macro function: Multiply()

The Multiply command can be used to multiply an integer value (ie, a whole number,
not a floating point value) at the text cursor by another integer value. A dialog box will
appear to retrieve the value to multiply by. After clicking 'OK' the arithmetic is
performed, and the old value is replaced by the result.

If the text cursor is situated on a character rather than a numeric value, the character
value of the character at the cursor will be multiplied by the supplied value and the
resultant character will be displayed. If the resultant character value is out of range, an
error message will be given.

5.167 New (File)

Menu: File > New

Default Shortcut Key: Ctrl+N

Macro function: New()

The New command is used to create a new file for editing. The first new file opened in
the edit session will be given the name untitled.001, and successive new files will

use correspondingly higher file extensions to ensure uniqueness of the filename.

When a new file is first saved with either the Save or Save As command, a dialog box
will appear so that a permanent name can be supplied for the file.

The size and position of the newly created window depends upon the nature of other
open windows within Boxer. If other editing windows are maximized, the new window
will also be created in maximized mode and will obscure the other windows below it.
Otherwise, the new window will be created in 'normal' mode, and its size and position
will be determined automatically by Windows.

Untitled files are not added to the Recent Files, and will not be reopened if an edit
session is later restored.

You can request that new windows always be created in maximized mode with an option
on the Configure | Preferences | Display options page. This option is titled
Auto-maximize new windows when created.

If the desktop area within Boxer's main window is double-clicked, an empty/new file
will be opened.

5.168 New (Project)

Menu: Project > New

Boxer Text Editor640

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: none

Macro function: ProjectNew()

Boxer's Project feature provides a means of simultaneously loading a collection of files,
and restoring those files to their previous editing states. The Project | New command
creates a project file containing the names and editing options of all files that are
currently open.

The following editing options are maintained within a project file:

· window sizes and positions

· cursor location

· active file

· bookmarks

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

Once a project is open, the Add One, Add All and Remove commands can be used to
add and remove files from the active project. The Update One and Update All
commands can be used keep the project file up-to-date with the current editing options.
To keep the editing options up-to-date automatically, use the Auto-Update command.

When a project file is named on Boxer's command line, or when the icon of a project file
is dragged and dropped onto the Boxer window (or its icon), all of the files named
within that file will be loaded for editing. If you need to edit the content of the project
file itself, use the Edit Active or Edit Other command, as may be appropriate.

The project file is a text file that contains an informative series of comments that
explains the use of project files:

Command Reference (alphabetically) 641

Copyright © 1991-2010 by Boxer Software

In its simplest form, a project file is simply a text file whose file extension is .BP and

whose content consists of a list of filenames, one per line. Empty lines can be used
freely within a project file to separate filenames as may be appropriate. Lines
beginning with an asterisk (*) will be considered comment lines, and will not be

processed.

A project file can be used to maintain a list of filenames that relates to a given project
or document set, and to open those files quickly. For best results, the full
pathname--including the drive designator and directory path--should be used. This will
ensure that the project file functions properly regardless of the default directory in force
at the time it is used.

FTP filepaths can be placed within project files. See the FTP Open command for
more information.

Project files cannot be nested; if a project file is named within another project file an
error will occur.

If a file is open for read-only editing, that file's entry in the project file will be
automatically created with the -R command line option flag that designates

read-only status. Likewise, if a file is open for hex mode viewing, its entry will be
created with the -H command line option flag.

Within a project file, filepaths can be preceded with "exec:" to indicate that they be
opened using their default application. This allows other files that are associated
with a project to be opened when the project opens in Boxer. For example, a project
file's entries might be:

c:\myproject\source\main.cpp
exec:c:\myproject\docs\updates.doc
exec:http://www.mysite.com/index.htm
exec:c:\myproject\bitmaps\project_logo.bmp

The first file would open in Boxer, while the next three files would be opened by the
applications that are associated with their respective file types: DOC/HTM/BMP. If the
filepath to be opened contains embedded spaces, the entire line must be surrounded in
double quotes:

"exec:c:\my project\docs\monthly updates.doc"

A project file can be designated on Boxer's command line using the -P command

line option flag.

5.169 Next Bookmark

Menu: Jump > Next Bookmark

Default Shortcut Key: Shift+Ctrl+Down

Boxer Text Editor642

Copyright © 1991-2010 by Boxer Software

Macro function: NextBookmark()

The Next Bookmark command moves the text cursor to the nearest bookmark which
appears below the text cursor's current location. If the Next Bookmark command finds
no bookmarks below the current line, the text cursor will wrap around and be placed on
the first bookmark in the file.

Travel among bookmarks is based upon location, not bookmark number.

The Bookmark Manager can be used to view all bookmarked lines in a single view, and
navigate to, or delete, selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

If a selection exists when this command is issued, the selection will be extended to
the bookmarked location.

5.170 Next Function

Menu: Jump > Next Function

Default Shortcut Key: Ctrl+Alt+Down

Macro function: NextFunction()

The Next Function command moves the cursor to the next function (or procedure)
declaration within the current file. This command makes it possible to move through a
source code file on a function-by-function basis.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

 The Next Function command relies upon the Ctags Function Index feature to
perform its service. If the Ctags feature has been disabled, or if the file being
edited is not supported by Ctags, the Next Function command will be unavailable.

 The types of Ctags identifiers for which this command applies is user-configurable.
The default setting includes entries for "function", "procedure", "subroutine",
"method", etc. The full list can be viewed or changed on the Advanced tab of the
Configure | Ctags Function Indexing dialog.

5.171 Next Paragraph

Menu: Jump > Next Paragraph

Default Shortcut Key: none

Macro function: NextParagraph()

Command Reference (alphabetically) 643

Copyright © 1991-2010 by Boxer Software

The Next Paragraph command moves the text cursor to the start of the next paragraph.

 For purposes of this command, a paragraph is considered to be a block of lines with
one or more empty lines between them. Contiguous paragraphs which are denoted
by a change of indent on the first line, and not by an intervening blank line, will not
be recognized to be distinct paragraphs.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

5.172 OEM Chart

Menu: Tools > OEM Chart

Default Shortcut Key: none

Macro function: OEMChart()

The OEM Chart command provides access to a popup chart which displays characters 0
to 255 in the OEM (ASCII) character set. The character's visual representation is
shown in the leftmost column, followed by the character value in decimal, hexadecimal,
 octaland binary formats. In the two rightmost columns, the equivalent control letter
sequence and mnemonic expression are shown for values in the range 0 to 31. The
active code page is also displayed at the top of the dialog:

Boxer Text Editor644

Copyright © 1991-2010 by Boxer Software

To jump directly to a character of interest simply press that character on the keyboard.

The OEM Chart can be used to insert a character into the file being edited. Simply
double click on the entry for the desired character, or highlight the character in the
chart and press Enter. When the need to insert a special character or symbol arises
frequently, consider using the Insert Symbols feature rather than the OEM Chart
command. The Insert Symbols feature permits a defined character to be entered using
a single keystroke.

Right-clicking on a selected item summons the OEM Chart context menu. The context
menu provides an option to copy the selected character to the current clipboard.

The OEM Chart can also be used to convert between bases for values in the range 0 to
255. Simply locate the value to be converted in its proper column and read the
converted value from the column of the new base.

If you prefer that the OEM Chart remain atop other windows, select the Stay on top
option. The OEM Chart is a non-modal window, which allows it to remain on-screen
after focus has been returned to another editing window.

If the OEM Chart is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

Command Reference (alphabetically) 645

Copyright © 1991-2010 by Boxer Software

5.173 OEM to ANSI

Menu: Block > Convert Other > OEM to ANSI

Default Shortcut Key: none

Macro function: OEMtoANSI()

The OEM to ANSI command converts characters within the selected text from OEM
(ASCII) character encoding to ANSI character encoding. These character encoding
schemes share all the common alphabetic and numeric character mappings, but differ
in the area of accented and/or graphic characters. A conversion may be appropriate
when a file which was created with a DOS program must be prepared for use with a
Windows program. Note that not all characters will have equivalents in the destination
character set. In such cases, a conversion will not be made for that character.

Boxer's OEM Chart and ANSI Chart commands can be useful for viewing the character
assignments in each of these encoding schemes.

5.174 Open (File)

Menu: File > Open

Default Shortcut Key: Ctrl+O

Macro function: Open()

The Open command is used to load one or more files for editing. By default, Boxer will
present a custom File Open dialog with extra features not found in the standard
Windows File Open dialog.

Boxer Text Editor646

Copyright © 1991-2010 by Boxer Software

If you prefer to use the standard dialog, an option to do so can be found on the
Configure | Preferences File I/O dialog page.

Command Reference (alphabetically) 647

Copyright © 1991-2010 by Boxer Software

Standard Dialog or Custom Dialog

Opening a Single File
To select a single file for editing, click on the file's name within the display or type a
filename in the Filename edit box. Click Open or press Enter to complete the selection.

Opening Multiple Files
To select multiple files for editing, depress the Ctrl key while clicking on a filename to
add the new filename to the set of files to be opened. To select a series of adjacent files
for editing, click on the first file in the series, and then depress the Shift key while
clicking on the last file in the series.

Filtering Files
You can filter the files displayed by selecting a file filter from the drop-down list labeled
Files of type. The file types which appear in this dialog are user-definable via the
Configure | Preferences | File I/O options page. You can also filter the filenames
displayed by typing a wildcard file specification (such as m*.cpp or project.*) into

the Filename edit box.

Read-only Mode
To load a file for passive viewing, select the Open as read-only checkbox at the bottom
of the dialog. Boxer will then prevent changes from being made to the file(s) during
the edit session. This option can be used to protect against accidental changes to a file
whose content needs to be viewed, but must not be altered.

Renaming Files
To rename a file, single-click once to select the item. Single-click again on the filename
to place a text cursor into the filename. Type the new name for the file and press Enter
.

Deleting Files
To delete one or more files, first select the files to be deleted. Use Shift+Click to select
a range of files, and/or Ctrl+Click to select discontiguous files. When the files are
selected, press the Delete key to delete the files.

Important Note: the standard Windows dialog does not request confirmation
before deleting a file, but it does place the deleted file in the Windows Recycle Bin.
Boxer's custom dialog does require that file deletions be confirmed, but does not
place the deleted file(s) in the Recycle Bin.

Window Sizes
The size and position of the newly created window depends upon the nature of other
open windows within Boxer. If other editing windows are maximized, the new window
will also be created in maximized mode and will obscure the other windows below it.
Otherwise, the new window will be created in 'normal' mode, and its size and position
will be determined automatically by Windows.

You can request that new windows always be created in maximized mode with an option
on the Configure | Preferences | Display options page. This option is titled
Auto-maximize new windows when created.

Boxer Text Editor648

Copyright © 1991-2010 by Boxer Software

If you would prefer that changes made to the current directory not be reflected in
future visits to the dialog, an option is available on the Configure | Preferences | File
I/O options page. The option is titled File I/O dialogs preserve current directory;
ignore prior travel.

Custom Dialog Features

The following features are available only with Boxer's custom File Open dialog

Resize Dialog
Boxer's File Open dialog is resizeable, and its size and position are remembered from
session to session.

Current Directory
Use this icon to make the selected directory the current working directory.

Jump to the directory of the current file
Use this icon to make the directory of the current file the current working directory.

List View or Details View
Use these icons to select whether files are displayed in list view (simple), or with full
details. Unlike the standard Windows dialog, the view mode is remembered from the
previous dialog session.

Details View with Grid Lines
Click the icon to the left of the Copy button to enable a display mode in which light grid
lines will by used to separate file data.

Copy Directory Listing
Use the Copy button to copy the entire directory listing to the current clipboard.

Refresh Display
Click the Refresh button to refresh the file display. This option could be used if another
program or process has changed the file listing since the dialog was first opened.

Directory Count
A message at the top of the drive selection list shows the number of directories being
displayed in that list.

File Count
A message at the top of the filename display shows the number of files in the current
directory listing.

Selected File Count
A message at the top of the filename display shows the number of files currently
selected.

File Sorting

File information can be sorted by any field that appears at the top of the table:

Command Reference (alphabetically) 649

Copyright © 1991-2010 by Boxer Software

Click twice on a given field to reverse the direction of the sort. The current sort mode
is displayed in a message at the top of the filename display. Unlike the standard
Windows dialog, the sort mode and direction are remembered from the previous dialog
session.

The Name heading also offers the ability to sort filenames by extension. Clicking
the Name heading in succession yields the following sort modes: down by name, up
by name, down by extension, up by extension.

You can change the width of any field by dragging the divider line between fields to
a new position.

When sorting by Type, the file entries will be sorted first by type and then by file
extension within the type.

Short Name Field
In addition to the standard Name, Size, Type, Modified and Attribute fields, Boxer's
custom dialog also provides a Short Name field that displays the equivalent short
filename for each file.

Favorite Directories
When files are opened for editing, the directory name is saved in the Favorites list. Use
the Favorites drop-down list to quickly select a directory from among those recently
used. Once a directory is selected its position in the list is elevated to position one.

Boxer will automatically add the directory of the current file to the Favorite
Directories list when the Open dialog is activated.

When an existing entry in the Favorites Directory is found not to exist it will be
automatically deleted from the list.

Filename Completion
Boxer's custom dialog supports filename completion. When typing a filepath or
filename in the Filename field, press the Tab key to begin cycling through those
directories or filenames that match your partial entry. When you see the directory
name you were typing appear, continue typing the next few letters of the next directory
name in the filepath. Press Tab to complete, as required. If you press accidentally
press Tab too many times, press Shift+Tab to cycle backwards to a previously displayed
name.

The function of the Tab key for Filename Completion can be disabled with the
checkbox entitled Allow Tab to expand partial filename or path. In this case, the
Tab key can again be used to move away from the Filename box.

List the files that match a wildcard specification
Use this option if you prefer that files matching a wildcard specification first be shown in

Boxer Text Editor650

Copyright © 1991-2010 by Boxer Software

the file list, and not opened directly. With this option, typing *.XYZ and clicking Open

will cause the file list to be filtered to display only those files with a .XYZ extension.

Open the files that match a wildcard specification
Use this option if you prefer that files matching a wildcard specification be opened
directly. With this option, typing *.XYZ and clicking Open will cause all files with a

.XYZ extension to be opened for editing.

When entering a wildcard specification in the Filename box, the semi-colon (;) can

be used to separate multiple file patterns. For example, to display (or open,
depending on the above options) all files matching three different extensions, use
the following syntax: *.abc;*.def;*.ghi

Impose a fixed record length as the file is read
This option can be used to impose a fixed-length record format on the file selected for
opening. The record length is specified in the associated edit box. As the file is read,
line breaks will be inserted at column 'value'.

This option is useful for viewing or editing files that contain fixed-length records. When
the proper record size is entered, Boxer will display the file in a meaningful format, with
one record per line.

Note that if the file is saved, line enders will be added. The File | Properties dialog has
an option to request that line enders be removed when the file is saved.

The -F command line option flag can also be used to impose a fixed record length on
the file being opened.

Because this option is dangerous to use on files that do not contain fixed-length
records, the checkbox state and record length values are not recalled from the
previous dialog session. Rather, the checkbox always reverts to the safe, unchecked
state when the dialog is opened.

Break at end-of-record character
his This option provides support for editing files that use an end-of-record character, such

as ANSI X12 files. When this option is active, Boxer will watch for the designated
end-of-record character as the file is read, after which a conventional line ender will be
added. By default, the inserted line enders will be written to the file when it is saved.
To override this behavior, use the File Properties dialog to request that line enders be
removed at File-Save time.

The -E command line option flag can also be used to activate this option for the
next-named file on the command line.

File Preview
The Preview button enables you to view the content of a file without actually opening
the file for editing. A pop-up window will appear that displays the opening content of
the file. From this view you can decide if the file in question is the one you would like
to open. The pop-up Preview window disappears automatically as soon as the mouse
cursor is moved significantly.

Command Reference (alphabetically) 651

Copyright © 1991-2010 by Boxer Software

Binary files are not eligible for display with the Preview function.

Context Menu
Right-clicking on a selected file (or files) will present the File Open dialog's context
menu. The following commands are provided: Open, Preview, Select All, Copy, Rename
and Delete. The Rename and Delete commands provide an alternative method to
perform these functions, which are described in the section above. The Copy command
copies the selected file(s) to the Windows clipboard in a manner that allows them to be
pasted into Explorer, effecting a file copy. Other applications may also be able to
recognize the 'Explorer Copy' clipboard format and behave accordingly.

Notes

The directory list control used by the custom dialog (known to programmers as
TComboBox) does not show abstract entries such as the Desktop, Network
Neighborhood, Shared Drives, etc. TComboBox is limited to the display of physical
drives. All of the abstract entries have a corresponding location on the physical disk
drive, if you know where to look. If you would prefer to see the abstract entries,
you can revert to the standard File Open dialog using an option on the Configure |
Preferences File I/O dialog page.

5.175 Open (Project)

Menu: Project > Open

Default Shortcut Key: none

Macro function: ProjectOpen()

The Open Project Command is used to open an existing project file. When a project file
is opened, all of the files named therein are open for editing. If you need to edit the
content of the project file itself, use the Edit Active or Edit Other command, as may be
appropriate.

Boxer Text Editor652

Copyright © 1991-2010 by Boxer Software

See the Project | New command for full details about Boxer's project file feature.

5.176 Open Email at Cursor

Menu: File > Open Other > Email at Cursor

Default Shortcut Key: Ctrl+E

Macro function: OpenEmailAtCursor()

The Open Email at Cursor command will attempt to launch your email program to send
a message to the email address beneath the text cursor. Your email program will
display the email address in its 'to' field and prompt for a subject. You can then
compose your message and send it in the usual way.

This command can also be invoked by double clicking with the mouse on an email
address which appears within text. The mouse cursor will change to the pointing hand
when atop an email address to indicate that the address has been recognized.

In order to launch your email program, Boxer relies upon the operating system
shell's ability to process a 'mailto' directive. When an email client program is
installed, it typically establishes itself as the program which is called by the shell to
process the mailto command. If you find that your active email program is not
launched by Boxer, or if some other inactive email program is launched instead, it's
probably because your active email program did not establish itself to be the

Command Reference (alphabetically) 653

Copyright © 1991-2010 by Boxer Software

program that processes mailto commands. This situation cannot be remedied by
Boxer, and is not due to any shortcoming in Boxer. You might consult the
documentation of your email program, or contact its vendor.

5.177 Open File in Browser

Menu: File > Open Other > File in Browser

Default Shortcut Key: Ctrl+B

Macro function: OpenFileInBrowser()

The Open File in Browser command will attempt to load and display the current file
within your Internet browser program. This command is useful for reviewing the effect
of changes made to HTML files, or any other files which are eligible for viewing within
an Internet browser..

For those comfortable with HTML coding, this command permits Boxer to be used as a
powerful HTML editor with true WYSIWYG display. The procedure to use is as follows:
make your HTML changes within Boxer, save the file, press Ctrl+B to activate the
browser window, and then click 'Reload' or 'Refresh' to load the latest changes from
disk. Once the browser has been opened you can continue to use Ctrl+B from within
Boxer to switch back to the browser window. Some users may find this method
preferable to using a dedicated HTML editor, since many of these editors lack a true
WYSIWYG display and/or comprehensive editing features.

Boxer decides whether a file is eligible for display within a browser by checking its list of
eligible file extensions. This list can be edited from the Configure | Preferences | File
I/O options page. The option is titled Open File in Browser extensions.

In order to launch your browser, Boxer relies upon the file associations which exist
within the operating system between the browser and its eligible file types. Most
browsers establish these file associations during their setup procedure. If you find
that certain file extensions do not result in your browser being launched, it is due to
the absence of the required file association(s) within the operating system, and not
due to any shortcoming in Boxer itself.

5.178 Open Filename at Cursor

Menu: File > Open Other > Filename at Cursor

Default Shortcut Key: Ctrl+L

Macro function: OpenFilenameAtCursor()

Open Filename at Cursor is a timesaving command which allows the filename beneath
the text cursor to be loaded for editing. Simply issue this command while the cursor is
atop a filename and the file will be loaded into a new editing window. If the file does
not exist, a new file with that name will be created in the current directory.

Boxer Text Editor654

Copyright © 1991-2010 by Boxer Software

If selected text of a suitable size is present, the selected text will be used as the
filename to be opened. If the filename to be opened contains spaces, it must be
selected to ensure the full filename, including embedded spaces, will be used.

This command will be disabled when the text cursor is sitting upon a text string which
could not be a valid filename, such as a series of spaces.

If the filename at the cursor does not exist in the current working directory, but
does exist in the directory of the currently edited file, it will be opened from that
directory instead.

5.179 Open Header File

Menu: File > Open Other > Header File

Default Shortcut Key: Ctrl+H

Macro function: OpenHeaderFile()

The Open Header File command provides a method to quickly open the header file
which is associated with the file being edited. The most common use of this command
will be for programming, but the command's utility could be extended to any file
extension pairs which are related in the same way.

Example: while editing in the C++ file main.cpp, issuing the Open Header File

command will cause main.hpp to be loaded. Likewise, if main.hpp is being edited,

issuing the Open Header File command will cause main.cpp to be loaded. If the

associated file is already loaded within the editor, it simply becomes the active window.
Issuing the command repeatedly will allow you to toggle back and forth between the
two associated files.

Boxer comes with several header file associations pre-defined for common programming
languages. Additional header file extension pairs can be defined on the Configure |
Preferences | File I/O options page. The option is titled Open Header File extensions.

5.180 Open Hex

Menu: File > Open Hex

Default Shortcut Key: Ctrl+Alt+O

Macro function: OpenHex()

The Open Hex command is used to open a file in hex mode for viewing or editing. After
selecting the file to be opened from the Open dialog, a new window is created and the
file is displayed within the window:

Command Reference (alphabetically) 655

Copyright © 1991-2010 by Boxer Software

Files opened with Open Hex are displayed in a special format which has three sections.
At the left, in the line number zone, the byte offset into the file is shown in hexadecimal
format. In the center, sixteen data bytes are displayed as two-byte hexadecimal
values. At the far right the same sixteen bytes are displayed as ASCII characters,
except in cases where the character in question cannot be so represented.

The representation of the sixteen characters at the right depends upon whether an
ANSI or OEM screen font is in use. The screen font can be changed with the Screen
Font command.

To edit a value, position the text cursor over the two-digit hex value that is to be
changed and type a new hex value. Alternatively, the cursor can be placed in the ASCII
area at the right and characters can be keyed directly from the keyboard. The Tab key
can be used to jump between equivalent positions in the hex and ASCII display areas.

In most cases, binary files should not be shortened or lengthened. Doing so will often
invalidate the format of the file. If you are editing a file whose length can be safely
altered, and you wish to do so, the right-click hex mode context menu provides options
for inserting and deleting one or more bytes into/from the file.

When editing in hex mode, the Find and Replace commands will each present a special
dialog which is designed for use in hex mode. In hex mode, these commands will
permit strings to be entered as either a sequence two-digit hex codes, or as
conventional text strings.

Boxer will automatically use the Open Hex command when asked to open files with
the extension .COM, .EXE or .DLL. Files with these extensions are assumed to be

binary files, and cannot be edited by Boxer in conventional text mode.

The View | Hex Ruler command displays a hex ruler across the top of the screen.

Boxer Text Editor656

Copyright © 1991-2010 by Boxer Software

The Go to Byte Offset command is sensitive to Hex Mode, and can be used to jump
quickly to a specified offset within the file.

See the Open command for details on using Boxer's custom file open dialog and the
standard Windows file open dialog.

The maximum size for a file opened in hex mode is smaller than the usual file size
limit. The limit is approximately 478 MB. This limit derives from the fact that the
display of 16 characters in hex mode requires approximately 80 characters of
storage space.

5.181 Open Program at Cursor

Menu: File > Open Other > Program at Cursor

Default Shortcut Key: none

Macro function: OpenProgramAtCursor()

The Open Program at Cursor command can be used to open the program or document
that appears at the text cursor. For example, if the filepath to a .PDF file appears at

the text cursor, this command will open that file in Acrobat Reader. If a .DOC file

appears at the cursor, the file will be opened in Microsoft Word.

This command relies on the underlying ability of the operating system to identify
and locate the program that is associated with a given file type. If a document does
not have an associated program, it cannot be opened. See File Associations for
more details.

5.182 Open System Files

Menu: File > Open Other > System Files

Default Shortcut Key: none

Macro function: OpenSystemFiles()

The Open System Files command automatically loads a variety of operating system files
into the editor. On Windows 95, Windows 98 and Windows Me, the following files are
opened:

 autoexec.bat
 config.sys
 system.ini
 win.ini

On Windows NT, 2000 and XP, the following files are also opened:

Command Reference (alphabetically) 657

Copyright © 1991-2010 by Boxer Software

 config.nt
 autoexec.nt

If the command is invoked while one or more system files are already open, an option is
provided to close these files.

It is advisable to exercise extreme caution when editing files of this nature, and to
always keep a backup copy of the original file.

5.183 Open URL at Cursor

Menu: File > Open Other > URL at Cursor

Default Shortcut Key: Ctrl+U

Macro function: OpenURLAtCursor()

The Open URL at Cursor command will attempt to launch your Internet browser to view
the URL address beneath the text cursor.

This command can also be invoked by double clicking with the mouse on a URL which
appears within text. The mouse cursor will change to the pointing hand when atop a
URL to indicate that the address has been recognized.

In order to launch your Internet browser, Boxer relies upon the operating system
shell's ability to open an Internet address. When an Internet browser is installed, it
typically establishes itself as the program which is called by the shell to open such
addresses. This is true of all common browsers you are likely to encounter. If you
find that your Internet browser is not launched by Boxer, or if some other inactive
browser is launched instead, it's because your active browser has not established
itself as the one that processes the 'open' request from the operating system shell
for Internet addresses. This situation should be rare, cannot be remedied by Boxer,
and is not due to any shortcomings in Boxer.

Boxer also supports opening local files with URLs of the form:
file://c:\website\index.html

5.184 Order Boxer

Menu: Help > Order Boxer

Default Shortcut Key: none

Boxer Text Editor658

Copyright © 1991-2010 by Boxer Software

Boxer has an in-software order form to make ordering fast and easy. The order form is
available by selecting the Order Boxer option from the Help menu, or by clicking the
dollar bill icon on the toolbar of the evaluation version.

This order form can be used to submit your order by email, or to print an order form
which can later be faxed or mailed along with payment. In all cases you can be assured
that your order will receive prompt attention, and that we will safeguard your personal
information. Boxer Software does not share its customers' mailing addresses, or email
addresses, with any third parties.

If you prefer to print an order form from within this help file, and then mail or fax it
to us, use this order form.

The Order Form will compute your total automatically as you complete your order. If a
Multi-User License is being ordered, click the appropriate option and enter the quantity
desired. The total will be updated automatically to reflect the quantity ordered.
Likewise, shipping is computed according to the destination country, and depending on
whether delivery will be made by email or postal mail (delivery by email is free). If you
elect to have the software sent via email, an http link will be sent from which you can
download the software; the software is not sent by email attachment.

Command Reference (alphabetically) 659

Copyright © 1991-2010 by Boxer Software

Ordering by Email

Complete the form, and then click Copy to Clipboard to copy the information entered to
the Windows clipboard. Click Send via Email to launch your email program. The To
field of your email program should auto-fill with sales@boxersoftware.com. Paste the
order information from the clipboard into the message body and send the message in
the usual way. Note that your credit card information will be encoded using a
proprietary encoding algorithm for added security. We will decode the information after
your order arrives.

If your email program does not launch after clicking Send via Email, simply start it
in the usual way and paste the content on the clipboard into the body of a new
message. Send the message to sales@boxersoftware.com.

Ordering at our Website

Visit www.boxersoftware.com to order from our secure order page. Full ordering details
are provided at the site.

Ordering by Phone

Call toll-free within the U.S. and Canada at 1-800-98-BOXER (1-800-982-6937) to

order. Have your credit card ready; our sales representative will prompt you for the
required information. From outside the U.S. and Canada call +1-602-485-1635.

Business hours are Monday through Friday, 9 AM to 5 PM MST.

Ordering by Fax

Complete the form, and then click Print. Fax the order form to Boxer Software at

+1-602-485-1636. Note that your credit card information will be encoded with a

proprietary encoding algorithm for added security. We will decode the information after
your order arrives. Our fax line is available 24 hours a day.

Ordering by Mail

Complete the form, and then click Print. Mail the order form to Boxer Software, PO
Box 14545, Scottsdale, AZ 85267-4545. Note that your credit card information

will be encoded with a proprietary encoding algorithm for added security. We will
decode the information when your order arrives.

Ordering from Overseas

International Agents are available for those who might prefer to place their order with

a local agent. Our agents accept payment in local currency and ship product from
stock. Technical support services are also available.

Payment

Payment can be made in a variety of ways:

mailto:sales@boxersoftware.com
mailto:sales@boxersoftware.com
http://www.boxersoftware.com

Boxer Text Editor660

Copyright © 1991-2010 by Boxer Software

Credit Card
Visa, MasterCard, Discover or American Express

U.S. Check or Money Order
Made payable to 'Boxer Software'

Purchase Order
Purchase Orders can be mailed or faxed. Please make sure the Purchase Order includes
both the shipping and invoicing addresses. Our payment terms are Net 30 days.

Western Union
Wire funds to 'David Hamel' and tell us the Control Number for the transaction, as well
as the sender's name and the exact amount sent. Western Union also allows wire
transfers to be made from their website: www.westernunion.com

U.S. Cash
Sent by certified or registered mail

PayPal
Send funds to 'sales@boxersoftware.com'. Don't have PayPal yet? Click here to sign
up: www.paypal.com

International Money Order
Available at most banks. Money order should be drawn on a U.S. bank, in U.S. Funds,
payable to 'Boxer Software'

International Postal Money Order
Available at the Post Office. Money order should be drawn in U.S. Funds, payable to
'Boxer Software'

Bank Wire Transfer
Please contact us for current bank transfer information. A $5.00 surcharge must be
added to help offset the wire transfer fees we are assessed by our bank.
(Note: U.S. banks are not nearly as efficient as European banks with regard to bank
wire transfers. Incoming transfers are slow, and receiving fees can be as high as
$20.00. For this reason, we strongly encourage using another method of payment.)

5.185 Page Setup

Menu: File > Page Setup

Default Shortcut Key: none

Macro function: PageSetup()

The Page Setup command provides access to a dialog box which controls the layout of
the printed page. The following controls are provided:

http://www.westernunion.com
https://www.paypal.com

Command Reference (alphabetically) 661

Copyright © 1991-2010 by Boxer Software

The settings made using the Page Setup command will be used for all print jobs that
are performed from within Boxer. In other words, the Page Setup settings belong to
the editor, and not to the current file. This method of operation differs from that of
a Page Setup command within a word processor. A word processor is able to save
its page settings within each document because the format of its documents is
proprietary. As a text editor Boxer must save its files in ASCII format, and
therefore cannot embed such information in the files it creates.

Margins

Inches
The margin values will be entered in inches. Use floating point values if needed (2.50),
but not fractional values (2-1/2).

Millimeters
The margin values will be entered in millimeters.

Points
The margin values will be entered in points. There are 72 points to the inch.

Boxer Text Editor662

Copyright © 1991-2010 by Boxer Software

Printer Pixels
The margin values will be entered in printer pixels. The number of pixels (dots) per
inch will depend on the printer. Most printers are either 300 dpi or 600 dpi. This option
provides the finest control over margin sizes.

Character width or height
The margin values are related to the width or height of a printed character. The Top
and Bottom margin values will dictate the number of lines of margin. The Left and
Right margin values will dictate the number of character widths of margin.

Margin values can be no smaller than the printer's non-printable zone, which is the
area at each edge of the paper on which the printer is physically incapable of
printing. Boxer computes this value automatically, so you do not need to account
for it when specifying margin values.

Top
Use this option to specify the distance from the top edge of the printed page to the
header line, or to top of the body text when a header line is not used.

Bottom
Use this option to specify the distance from the bottom edge of the printed page to the
footer line, or to the bottom of the body text when a footer line is not used.

Left
Use this option to specify the distance from the left edge of the paper to the beginning
of the body text, or line numbers (if applicable).

Right
Use this option to specify the distance from the right edge of the paper to the right
edge of the body text. Depending on the state of the Wrap long lines to next line
checkbox (see below), long lines will either be wrapped to the next line or truncated.

Changing the right margin value does not influence the wrap column of
preformatted text as might occur within a Word Processor. Because Boxer is a Text
Editor, not a Word Processor, the user alone controls hard line enders, and these are
never re-wrapped without your knowledge. It may be necessary to experiment with
different Printer Font sizes and/or different Text Width values to achieve optimum
results on the printed page. The Print Preview command will be useful in this
regard, as it enables you to preview a print job on-screen without sending it to the
printer.

Line Spacing

Select from Single, Double or Triple. Double and triple might be used when
submitting a document which will be marked up by a teacher, for example.

Options

Display line numbers at left edge
If checked, line numbers will be applied at the left edge of the printed page. Overflow

Command Reference (alphabetically) 663

Copyright © 1991-2010 by Boxer Software

lines will be marked with a '+', and will therefore not alter the actual line count
unnaturally.

Print visible spaces/tabs/newlines
If checked, Spaces, Tabs and Newline characters will be appear on the printed page as
visible characters, using the same characters as have been configured for the Visible
Spaces command.

The symbols which are used to represent Spaces, Tabs and Newlines are
user-configurable. These can be set using options on the Configure | Preferences |
Display options page. Separate options are provided for use with both ANSI and OEM
printer fonts.

Skip page number on first page
If this option is selected, the page number will not be printed on the first page.

Wrap long lines to the next line
If checked, long lines will be wrapped to the next line rather than being truncated.
Using a smaller Printer Font is one way to cure overflow lines. Another is to Reformat
the document using a narrower Text Width.

Header

Display header on printed page
When checked, the related header controls become active and a header line will appear
on all printed pages.

Skip header on first page
If checked, the header will not be printed on the first page.

Draw a line below the header
Use this option to cause a thin solid line to appear just the below the line of header
text.

Number of blank lines below header
This option controls the number of lines of spacing between the header line and the top
of the body text.

Left / Center / Right
These fields allow the text that is to appear in each header zone to be specified. You
may enter any text you like or use one or more of several pre-defined substitution
sequences to insert a page number, filename, time, date, etc. Clicking the button to
the right of each field displays the available sequences:

Boxer Text Editor664

Copyright © 1991-2010 by Boxer Software

Footer

Display footer on printed page
When checked, the related footer controls become active and a footer line will appear
on all printed pages.

Skip footer on first page
If checked, the footer will not be printed on the first page.

Draw a line above the footer
Use this option to cause a thin solid line to appear just above the line of footer text.

Number of blank lines above footer
This option controls the number of lines of spacing between the footer line and the
bottom of the body text.

In the evaluation version of Boxer, a 'watermark' will appear on all printed pages
between the footer line and the bottom of the body text. This line serves as both a
reminder and an encouragement to order a fully licensed copy. This reminder line is
of course not present in the fully licensed version of Boxer.

Left / Center / Right
These fields allow the text which is to appear in each footer zone to be specified. You
may enter any text you like or use one or more of several pre-defined substitution
sequences to insert a page number, filename, time, date, etc. Click the button to the
right of each field to select from the list of available sequences.

5.186 Paste

Menu: Edit > Paste

Default Shortcut Key: Ctrl+V

Command Reference (alphabetically) 665

Copyright © 1991-2010 by Boxer Software

Macro function: Paste()

The Paste command inserts the text from the current clipboard at the location of the
text cursor in the current file. The current clipboard might be the Windows clipboard or
one of Boxer's eight internal clipboards. See the Edit | Set Clipboard command for
details on changing the current clipboard.

If stream text (Edit | Select Stream) is being pasted, the clipboard text is inserted as if
it had been typed from the keyboard. That is, the character at the text cursor is
pushed along as far as is needed to accommodate the new text.

If columnar text (Edit | Select Columnar) is being pasted, the method of insertion is
sensitive to the current edit mode. In Insert mode text will be pushed right to
accommodate the size of the rectangular block being inserted. In Typeover mode the
clipboard text will overwrite any text which may exist in the destination rectangle.

If an entire line has been placed on the clipboard by using the Copy or Cut command
without first selecting text, the text cursor will be positioned to the start of line before
the text is inserted.

The placement of the text cursor after a Paste operation can be controlled with an
option on the Configure | Preferences | Editing 1 options page. The option is titled Stay
at insertion point when Pasting.

If the Paste command is issued when no files are open, and when text is present on
the active clipboard, a new file will be created automatically and the clipboard text
will be pasted into that file.

When the Paste command is issued repeatedly to paste the same clipboard content,
the status line will report a count of the number of times that the content has been
pasted.

When placing columnar text onto a clipboard, Boxer must take care so that
subsequent Paste operations of that text will be performed properly. Columnar
clipboard text must be pasted differently than stream text, since all lines must move
rightward by the width of the text block. Notwithstanding this fact, columnar
clipboard text placed onto the Windows clipboard by Boxer can still be pasted into
other Windows applications. Boxer does not use a private clipboard format for this
purpose.

5.187 Paste As

Menu: Edit > Paste As

Default Shortcut Key: Shift+Ctrl+V

Macro function: PasteAs()

The Paste As command allows the content of the Windows clipboard to be viewed in

Boxer Text Editor666

Copyright © 1991-2010 by Boxer Software

various formats, and with various viewers. This makes it possible to Paste text into
Boxer in formats other than normal text. After selecting the desired format, simply
click the Paste button.

Background: the Windows clipboard is capable of holding multiple pieces of data
simultaneously. Sometimes this capability is exploited so that different versions of the
same data can be made available. In other cases, different formats will hold more
descriptive copies of the same data. For example, when you copy text from a web page
that is being displayed in Internet Explorer, the data will be placed on the clipboard in
several different formats. These formats are HTML Format, Rich Text Format (RTF),
ANSI Text and OEM Text. When another application pastes that data from the
clipboard, it chooses the format that is most meaningful to that application. Boxer's
Paste command would use the ANSI Text format. This is where the Paste As command
becomes useful. There might be times when you would prefer that Boxer be able to
paste the clipboard data in HTML format, so that HTML formatting codes and hyperlinks
are not lost. For some users, having access to the data in RTF format might prove
useful. The Paste As command allows all available formats to be viewed so that the
most useful format can be used.

Boxer's clipboard commands will sense the type of text data being placed on the
Windows clipboard and, when appropriate, use a more descriptive clipboard format
to tag that data. For example, when Boxer senses that HTML code is being copied
to the clipboard, the text will also be placed in the HTML clipboard format. This
enables a conforming program to paste the data more intelligently. Boxer will also
tag Rich Text data (RTF) and Comma-Separated Value (CSV).

Command Reference (alphabetically) 667

Copyright © 1991-2010 by Boxer Software

5.188 Paste Clipboard

Menu: Edit > Paste Clipboard > Clipboard n

Default Shortcut Key: Shift+Alt+n

Macro function: PasteClipboard()

The Paste Clipboard commands permit the content of any clipboard to be inserted into
the text file directly, without the need to first select that clipboard with the Set
Clipboard command before using Paste.

The content of Boxer's internal clipboards is saved from session to session (subject
to a limit; see Sizes and Limits), ensuring that their content is always available.
Since the Paste Clipboard commands allow pasting from any clipboard with a single
key sequence, the internal clipboards can be the ideal place to store commonly used
text blocks.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

5.189 Pause Recording

Menu: Tools > Pause Recording

Default Shortcut Key: none

Macro function: none

Use the Pause Recording command to temporarily stop a keystroke recording that's
already in process. Once paused, editor commands are not stored in the active
recording. To resume recording, simply issue this command again: its name in the
main menu changes to Resume Recording when recording is paused.

5.190 Playback Keys

Menu: Tools > Playback Keys

Default Shortcut Key: F5

Macro function: none

Boxer Text Editor668

Copyright © 1991-2010 by Boxer Software

Issue the Playback Keys command to playback the most recent key recording.
Execution begins immediately, so make sure that the text cursor is positioned as
desired before proceeding.

5.191 Power Columns

Boxer's Power Columns feature can be a big time saver when editing text that requires
identical changes to be made on each line. In Power Columns mode, the text you type
is applied to every line within the range of selected lines. When you cursor left or right,
the insertion point moves in all selected lines. If you press Delete, or Backspace, a
character is deleted in each line. You can even Paste a short text string into each line
with just a single Paste command. Power Columns can work on two lines, two thousand
lines... or even more.

Let's consider an example... Suppose you've got five variable declarations that need to
have the word 'static' applied to each of them. This is an editing task that arises in
programming, but you'll probably be able to imagine other uses as well. To enter Power
Columns mode, you simply need to create a Columnar Selection of zero width. Make
sure the selection mode is set to Columnar on the Block menu, and then press
Shift+Down four times. This will be the result:

The special red cursor bars indicate that Power Columns mode is active. When you
press the letter 's', the character is inserted on each line:

When you type 'tatic' the rest of the text is entered, and the job is done:

Command Reference (alphabetically) 669

Copyright © 1991-2010 by Boxer Software

(The word 'static' changed to red because 'static' is a reserved word.)

If you make a mistake while typing, the Delete and Backspace keys operate predictably
to correct your error. If additional changes are needed in another portion of the line,
the Left and Right arrow keys can be used to move the insertion point while still
remaining in Power Columns mode. To exit Power Columns mode, press Escape, or use
the Up or Down arrow.

5.192 Preferences - Display

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Display page of the Configure Preferences dialog box contains options related to the
appearance of Boxer's screen and the display of edited files:

Boxer Text Editor670

Copyright © 1991-2010 by Boxer Software

Display Options

Display icons in menus
Use this option to control the display of icons within the main menus.

Display leading zeros on line numbers
This option controls whether or not leading zeros will be used when the View | Line
Numbers command is in use.

Display HTML Color Code pop-up hints
This option controls whether or not Boxer will display a pop-up HTML Color Code Hint
when the mouse cursor hovers atop an HTML Color Code (such as color="#FF3B80"
or color="DarkSlateBlue"). The pop-up box shows the color associated with the

color sequence below the mouse cursor.

Hide the mouse cursor while typing
Use this option to control whether or not the mouse cursor will be hidden while text is
being entered from the keyboard. If hidden, the mouse cursor will be redisplayed when
it is moved.

Stream selection extends past end-of-line
This option controls the way in which a multi-line Stream selection is displayed
on-screen. When this option is active, selected lines will be highlighted all the way to

Command Reference (alphabetically) 671

Copyright © 1991-2010 by Boxer Software

the right edge of the window, even when lines are shorter than the window's width.
When this option is inactive, selected lines will be highlighted only up to the end of each
line. This option has no effect on the text included within a selection. It is simply a
display option.

Auto-maximize new windows when created
Use this option to cause new windows created with File | New or File | Open to be
opened in maximized form.

Syntax highlight even when fast-scrolling
This option controls whether or not Boxer will perform Syntax Highlighting while a file is
scrolling rapidly, due to a keyboard key being held down. Scrolling will be faster if
Boxer is allowed to suspend Syntax Highlighting in this situation. The screen will be
updated instantly when the scrolling key is released.

Highlight background of current line
Use this option to control whether or not the background of the current will be displayed
in a different color. Doing so can make it easier to locate the current line. The
Configure Colors command can be used to select the background color used.

Highlight URLs and email addresses
This option controls whether or not Boxer will apply coloration to URLs and email
addresses when they are encountered within ordinary text files. The color and font
style used to highlight an address can be controlled with the Configure | Colors
command. Disabling highlighting also disables the ability to double-click on these
addresses in order to launch an internet browser or email client. In such case, the
Open File in Browser and Open Email at Cursor commands could be used instead.

Show right margin rule at column...
Use this option to control the display of the Right Margin Rule, and to set the column at
which the rule is displayed.

Scroll Left/Right jump value
This option controls the number of columns that the Scroll Left and Scroll Right
commands will jump by when panning the screen left of right..

Shorten long filenames in File/Project/Window menus
Use this option to control whether or not long filenames will be shortened when they
appear in the either the Recent Files, Recent Projects or Window menus. If this option
is active, long file names will be shortened whenever they exceed 60 characters in
length.

Shorten File Tab names to n characters
Use this option to control whether or not the filenames displayed in Boxer's File Tabs
will be shortened when they exceed a specified length. When filename shortening is
required, as many as four characters will be retained from the file extension, with the
balance of characters being retained from the left side of the filename. Missing
characters in the middle of the filename will be replaced by three dots (...).

Visible characters - ANSI fonts

Boxer Text Editor672

Copyright © 1991-2010 by Boxer Software

Space value
Tab value
Newline value
These options can be used to designate the characters which will be used for Visible
Spaces display when an ANSI Screen Font is in use. Use the button with the ellipsis
(...) to select a character from the ANSI Chart.

Visible characters - OEM fonts

Space value
Tab value
Newline value
These options can be used to designate the characters which will be used for Visible
Spaces display when an OEM Screen Font is in use. Use the button with the ellipsis (...)
to select a character from the OEM Chart.

5.193 Preferences - Cursor

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Cursor page of the Configure Preferences dialog box contains options which can be
used to control cursor movement within the file:

Command Reference (alphabetically) 673

Copyright © 1991-2010 by Boxer Software

Cursor Travel Options

Use Home-Home-Home cursor motion logic
When this option is active the function of the Home key becomes dependent on the
number of times Home has been pressed. When Home is first pressed, the text cursor
is moved to the beginning of the current line. When Home is pressed again, the cursor
is moved to the first line in the window. When Home is pressed a third time, the cursor
is moved to the first line in the file.

If the Home key is not assigned to Start of Line, Home-Home-Home functionality
becomes unavailable. Its function is tied directly to the Home key, and not to other
keys which might be assigned to Start of Line.

Use End-End-End cursor motion logic
When this option is active the function of the End key becomes dependent on the
number of times End has been pressed. When End is first pressed, the text cursor is
moved to the end of the current line. When End is pressed again, the cursor is moved
to the last line in the window. When End is pressed a third time, the cursor is moved to
the last line in the file.

If the End key is not assigned to End of Line, End-End-End functionality becomes
unavailable. Its function is tied directly to the End key, and not to other keys which
might be assigned to End of Line.

Boxer Text Editor674

Copyright © 1991-2010 by Boxer Software

Move from start of line to end of previous line
Use this option to permit the text cursor to move from the start of the current line to
the end of the previous line when the Left Arrow is pressed. When this option is
inactive, pressing the Left Arrow in column one will result in no cursor movement.

Move from end of line to start of next line
Use this option to force the text cursor to move from the end of the current line to the
start of the next line when the Right Arrow is pressed. When this option is inactive, the
cursor is allowed to travel rightward past the end of a line.

This option also affects the way Boxer behaves when the Up Arrow and Down Arrow are
used to cursor across lines of varying lengths. If this option is active, the column of the
text cursor will be adjusted when moving onto a line that is shorter than the current
column. If this option is inactive, the text cursor column will be maintained when
moving from line to line.

Keep cursor on-screen during Scroll Up/Down
Use this option to control how the position of the text cursor is treated when using the
Scroll Up and/or Scroll Down commands. When this option is checked, the text cursor
will be moved (if necessary) to keep it on-screen while scrolling. When this option is
not checked the cursor position will be maintained even when the line containing the
text cursor is scrolled outside the view of the window.

Allow last line of file to scroll up to mid-screen
When this option is on, using the Down arrow to scroll to end of file will cause the last
line of the file to appear as high as mid-screen. When this option is off, the last line of
the file will not scroll up past the bottom of the window.

Word delimiters

These characters will delimit words
This option can be used to designate the characters which are considered to be word
delimiters. Word delimiters are those characters which serve to separate one word
from another. It may be desirable to add or remove symbols from the default delimiter
list in order to improve the behavior of the Word Left and Word Right commands within
certain types of file.

The word delimiter list is used by various commands to determine the extent of their
operation. Among these commands are Word Left, Word Right, Delete Previous Word,
Delete Next Word, Swap Words, Open Filename at Cursor, Open URL at Cursor and
Open Email at Cursor.

Window Travel

Window Previous/Next command obey File Tab order
Window Previous/Next command obey window 'Z-order'
Use these options to control how Boxer responds to the Window Previous and Window
Next commands. When File Tab order is selected, the window commands will use the
ordering of the File Tabs to determine which window to move to. When the Z-order
option is selected, window movement will be determined according to an order

Command Reference (alphabetically) 675

Copyright © 1991-2010 by Boxer Software

maintained by Windows. A window is promoted in the Z-order when it is made current.
Less frequently used windows will gradually fall to the bottom of the z-order.

Reset a window's skip status when its file tab is clicked
When this option is on, clicking on a file tab will cause its skip status to be reset to
normal.

Insert cursor and Typeover cursor

The shape and flash rate can be set independently for the Insert and Typeover cursors.

Vertical Line
Use this option to set the text cursor to a thin vertical line which sits at the left edge of
the character cell.

Horizontal Line
Use this option to set the text cursor to a horizontal line which sits at the base of the
character cell.

Half Block
Use this option to set the text cursor to a block which occupies the lower half of the
character cell.

Full Block
Use this option to set the text cursor to a block which occupies the full character cell.

Flash cursor at a custom rate
Use this option to set the rate at which the cursor flashes. A millisecond is one
thousandth of a second.

Test here
Use this edit box to test the new shape and flash rate.

Changes made to the text cursor apply only to Boxer, and do not affect other
applications.

5.194 Preferences - Editing 1

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Editing 1 page of the Configure Preferences dialog box contains options which
relate to the editing of text files:

Boxer Text Editor676

Copyright © 1991-2010 by Boxer Software

Editing options

Default edit mode is Insert
Use this option to set the default edit mode to Insert. In Insert mode, existing text is
pushed rightward to make room for characters which are typed from the keyboard.
Note that this option causes newly created windows to begin in Insert mode, but it does
not change the edit mode of any editor windows that may already be open.

Default edit mode is Typeover
Use this option to set the default edit mode to Typeover. In Typeover mode, characters
which are typed from the keyboard replace existing text. Note that this option causes
newly created windows to begin in Typeover mode, but it does not change the edit
mode of any editor windows that may already be open.

Default mode for Visual Wrap mode is On
Use this option to change the default Visual Wrap setting to on. Note that this option
causes newly created windows to begin with Visual Wrap on, but it does not change the
Visual Wrap mode of any editor windows that may already be open. The Visual Wrap
command can always be used to change the setting for the current editor window,
independent of this option.

Default mode for Typing Wrap mode is On
Use this option to change the default Typing Wrap setting to on. Note that this option
causes newly created windows to begin with Typing Wrap on, but it does not change the

Command Reference (alphabetically) 677

Copyright © 1991-2010 by Boxer Software

Typing Wrap mode of any editor windows that may already be open. The Typing Wrap
command can always be used to change the setting for the current editor window,
independent of this option.

Set active clipboard to Windows on startup
When checked, this options ensures that the active clipboard will be restored to the
Windows clipboard each time Boxer is started.

Auto-indent to match indent of previous line
Use this option to enable Auto-indent. When Auto-Indent is active, pressing Enter at
the end of a line will place the text cursor on a new line below with an indent level
equal to that of the line above.

Stay at insertion point when Pasting
Use this option to cause the text cursor to remain at the point of insertion following a
Paste operation. If inactive, the text cursor is placed at the end of the text which was
pasted.

Cut/Copy/Append commands use text of current line when text is not selected
This option permits the Cut, Copy, Append and Cut Append commands to operate on
the current line as though it were selected. Simply issue the desired command from
any point on the line and the operation will be performed as though the whole line were
selected.

Release selection after Cut, Copy, Append, Delete
When selected, this options causes a text selection to be automatically released after a
clipboard operation is performed.

Backspace preserves text alignment when used in Typeover mode
Use this option to make the Backspace key overwrite with spaces when used in
Typeover mode.

Allow Reformat to break lines after hyphens and em-dashes
When selected, this option allows the Paragraph | Reformat command to break a line
after a hyphen (-) or an em-dash (--).

Allow Reformat to break lines after ellipses
When selected, this option allows the Paragraph | Reformat command to break a line
after an ellipsis (...).

Find, Replace dialogs suggest word at text cursor as the initial search string
When selected, this option controls whether the Find, Replace, Find Text in Disk Files
and Replace Line Enders dialogs will insert the word at the text cursor into the find edit
box.

Undo Options

Undo buffer size
Use this command to set the buffer size used by the Undo command. Values between
2048 and 65535 are permitted. This value represents the amount of memory (in bytes)
which is reserved for tracking undo information.

Boxer Text Editor678

Copyright © 1991-2010 by Boxer Software

The default value is 65535, which is also the maximum value. There is little reason to
select smaller values, as the memory cost is small compared to the utility that Undo
provides.

Allow undo after File Save
Use this option to indicate that the Undo command should remain operable after the
Save command is used, thereby allowing changes which occurred before Save to be
undone. If this option is inactive, the Save command has the effect of the Clear Undo
command, since Undo information is lost for changes made before the save.

Quoting Options

Quoting String
Use this option to specify the symbol (or symbols) which are to be used by the Quote
and Reformat command during its operation.

The Quote and Reformat command makes use of the Reformat command internally
during its operation. As is noted in the Reformat command, lines beginning with a
period (.) are treated as blank lines in order to recognize text markup tags. As a

result, the use of a quoting string that begins with a period will not produce the
desired results, and should be avoided. All other symbols and characters are
permissible.

Apply quoting string only to line one
Use this option to designate that the Quote and Reformat command apply the Quoting
String to the first line of the paragraph quoted.

Apply quoting string to all lines
Use this option to designate that the Quote and Reformat command apply the Quoting
String to all lines within the paragraph quoted.

Miscellaneous

Set mating pairs for Find Mate
This option can be used to edit the mating pairs which are used by the Find Mate
command. The Find Mate command is used to jump quickly from a parenthetical
element at the text cursor to its mate.

When the ellipsis (...) button is clicked, a small edit window appears which contains the
currently defined pairs:

Command Reference (alphabetically) 679

Copyright © 1991-2010 by Boxer Software

Each mating pair resides on a single line, with the equal sign (=) being used to separate

the opening string from the closing string. Pairs can be removed from the list, or new
pairs can be added. Click OK to save the changes.

Line ender for new files
This option can be used to set the default line ender type for newly created files.
Choose from PC, Macintosh or Unix style line enders. A file's line ender can also be
changed from the File | Properties dialog.

Encoding for new files
This option can be used to set the default file encoding format for newly created files.
Choose from ASCII, UTF-8, UTF-16 little endian or UTF-16 big endian. A file's encoding
format can also be changed from the File | Properties dialog.

5.195 Preferences - Editing 2

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Editing 2 page of the Configure Preferences dialog box contains options which
relate to the editing of text files:

Boxer Text Editor680

Copyright © 1991-2010 by Boxer Software

Auto close options

Auto Close HTML, XML tags
This option can be used to enable or disable Boxer's Auto Tag Close feature. When
enabled, and when an eligible file type is being edited, Boxer will automatically create
the closing tag and place the cursor between the tags. For example, when you type

<center>, Boxer automatically completes the tag with </center> and places the text

cursor between the tags.

Auto Tag Close file extensions

Use this option to control which file types are eligible for the Auto Tag Close feature.
When the ellipsis (...) button is clicked, a small edit window appears which contains the
eligible file extensions.

Automatically close parenthetical characters when typed
When this option is active, parenthetical characters will be automatically closed when
they are typed from the keyboard. The text cursor is then placed between the mated
characters. An edit box is provided to control which characters will be automatically
closed. This option is off by default.

By necessity, if < and > are designated among the list of mating characters, the

auto-close feature for HTML and XML tags will be disabled.

Command Reference (alphabetically) 681

Copyright © 1991-2010 by Boxer Software

Editing options

Open files containing nulls in hex editing mode
Display a dialog with options for handling null characters
These options control how Boxer reacts when a request is made to open a file that
contains null characters. If the first option is selected, Boxer will automatically open
the file in hex editing mode. If the second option is selected, the Null Character
Handling dialog will appear before the file is opened, providing additional options for
how the file can be handled:

Word/Sentence/Title case commands will convert text to lowercase before
operation

This option causes the Word, Sentence and Title case commands to automatically
convert the selected text to lowercase before performing their function. When
operating on uppercase text, this mode of operation allows the desired conversion to be
performed in one step.

Boxer Text Editor682

Copyright © 1991-2010 by Boxer Software

But take note: if the Word case command is applied to the following text:

IBM, eBay, MasterCard Report Record Profits

the result may not be as expected:

Ibm, Ebay, Mastercard Report Record Profits

Insert Symbols

The edit boxes within this section permit the definition of up to eight character values
for use with the Insert Symbols feature. The values for the characters are entered in
decimal format, and must reside in the range 1 to 255. The defined character is
displayed to the right of each edit box using the same character set (ANSI or OEM) that
is in use in the editor itself. This should help ensure that the characters are displayed
as expected. If a character does not display within the dialog with the expected
representation, this should not be cause for alarm. Simply verify that the character has
the expected appearance when inserted into the text file.

5.196 Preferences - Tabs

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Tabs page of the Configure Preferences dialog contains options which relate to
function of the Tab key, and to the display size of a tab:

Command Reference (alphabetically) 683

Copyright © 1991-2010 by Boxer Software

Tab mode

Tab key inserts real tabs
When this option is used the Tab key will insert tabs (character value 9) into the file.

Tab key inserts spaces
When this option is used the Tab key will insert an equivalent number of Spaces, in
accordance with the current Tab Display Size.

Tab key inserts spaces, with tabstops determined from line above
When this option is used, the Tab key will advance the text cursor to the next field of
data as determined from the line above the current line.

Tab Size

Fixed with tabs of size n
Use this option to set the default display size for fixed width tabs.

This option sets the display size to be used for tabs in newly created windows, but it
does not alter the tab display size of any editor windows that may already be open.
The Tab Display Size command on the View menu can be used to set the tab display
size for the current file, independent of this default value.

Variable width tabs, with tab stops at columns...

Boxer Text Editor684

Copyright © 1991-2010 by Boxer Software

Use this option to designate the columns at which variable width tab stops should
occur.

This option sets the tab stops to be used for tabs in newly created windows, but it
does not alter the tab stop settings any editor windows that may already be open.
The Tab Display Size command on the View menu can be used to set the tab stops
for the current file, independent of this default value.

Other

Tab key is non-destructive when used in typeover mode
When this option is checked, the Tab key will not overwrite text when used in Typeover
mode. For a similar option that affects the function of the Backspace key, see the
Configure | Preferences | Tabs dialog page.

Tab key inserts tab in the edit boxes of various Find, Replace and Find & Count
dialog boxes
When this option is checked, the Tab key with insert an actual tab character into the
edit boxes of the Find, Replace, Replace Line Enders and Find & Count dialog boxes.
Ordinarily, when the Tab key is pressed in a dialog box, focus shifts to the next control
in the dialog box. This option can be used to override that behavior, making it easier to
create search or replace strings that include the tab character.

5.197 Preferences - File I/O

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The File I/O page of the Configure Preferences dialog box contains options which deal
with the loading and saving of files:

Command Reference (alphabetically) 685

Copyright © 1991-2010 by Boxer Software

File Open options

Strip trailing blanks when Loading a file
Use this option to request that trailing Spaces and/or Tabs be removed from the ends of
lines as a file is loaded from disk. See also the option titled Strip trailing blanks when
saving a file.

Use standard File Open dialog box
Use this option to specify that the standard Windows File Open dialog box should be
used by the File | Open command. Boxer's custom dialog provides many features that
are lacking in the standard dialog. Some users may be more comfortable with the
standard dialog, and may wish to select this option.

Start in directory of current file
When this option is selected, the File | Open dialog, File | Picker, and Find Text in Disk
Files commands will start in the directory of the current file.

Custom File Open dialog font
Use this option to select the font that will be used in Boxer's custom File | Open dialog.

File Open filters for dialog
This option can be used to configure the list of file filters which are available from within
the File | Open dialog box. File Open filters make it easy to display a group of files: the
name of the group can be selected from the drop-down list of file types in the File Open

Boxer Text Editor686

Copyright © 1991-2010 by Boxer Software

dialog box.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined filters:

A file filter definition consists of two parts: the filter name and the wildcard file
specification. The filter name contains the text string which will appear in the
drop-down list of file types in the File Open dialog box. The wildcard file specification is
the expression which is used to match the class of files being defined by the filter.

The filter name is separated from the wildcard file specification with the vertical rule (|)

character. When more than one wildcard expression is used, the semi-colon (;) is used
to separate the expressions.

File Open preferred extensions
This option can be used to configure Boxer's list of preferred file extensions. The list of
preferred file extensions is consulted whenever Boxer is asked to open a filename which
lacks a file extension.

Before opening a file each extension in the list is added to the supplied filename to see
if a file by that name already exists. If so, the file is opened using the extension from
the list. If no matching files can be found, the file is opened using the name as
originally supplied. In a case where multiple matches might be found, the first
matching extension will be used.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined extensions:

Command Reference (alphabetically) 687

Copyright © 1991-2010 by Boxer Software

The list can be edited by entering desired extensions into the list, one-per-line. The
period (.) should not be included in the extension.

You may need to open a new file named TEST when TXT is a preferred extension,

and the file TEST.TXT already exists. In this case, simply specify TEST., with the

trailing period, in order to defeat the Preferred File Extension feature.

Open Header File extensions
This option can be used to configure the list of header file extension pairs which are
used by the Open Header File command.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined pairs:

Boxer Text Editor688

Copyright © 1991-2010 by Boxer Software

Extension pairs are listed one-per-line, with the equal sign (=) being used to separate

the extensions. In a case where a file extension has multiple mates, the mate which
occurs first in the list will be given priority when attempting to locate the file to be
opened.

Open File in Browser extensions
This option can be used to configure the list of file extensions which is used by the
Open File in Browser command to determine whether a file is eligible to be opened in an
Internet browser.

When the ellipsis (...) button is clicked, a popup editing window will appear which
contains the currently defined extensions:

Command Reference (alphabetically) 689

Copyright © 1991-2010 by Boxer Software

Eligible file extensions are listed one per line. As the HTML standard changes, and as
Internet browsers evolve, additional file types will likely become eligible for inclusion in
the list.

File Save options

Strip trailing blanks when saving a file
Use this option to request that trailing Spaces and/or Tabs be removed from the ends of
lines as a file is saved to disk. See also the option titled Strip trailing blanks when
loading a file.

Add Ctrl-Z character at end-of-file
This option can be used to request that a Ctrl-Z character--ASCII 26, also known as the
end-of-file (EOF) character--be added to a file when saving. Some older programs may
require that a file be terminated in this way, but very few modern software packages
do.

This option is only applicable when the File Encoding format is set to ASCII; see File
Properties for details.

File Save performs Save Selection As, when text is selected
When this option is active and a text selection is present, the Save command will
perform the function of the Save Selection As command, saving the selection to a
specified disk file rather than saving the file itself.

Perform Save All upon loss of focus
This option causes Boxer to perform the Save All command whenever focus shifts to
another application.

Boxer Text Editor690

Copyright © 1991-2010 by Boxer Software

Startup options

Always start with a new file (when no files are named)
Use this option if you prefer that Boxer open a new, untitled file whenever it is launched
and another filename is not supplied. This option is not available when the Restore
previous sessions option is active.

Restore previous sessions (when no files are named)
Use this option if you prefer that Boxer restore the previous edit session whenever it is
launched and another filename is not supplied. The restored session will maintain the
sizes and positions of all windows, the cursor position in each file, split windows status,
and much more. This option is not available when the Always start with a new file
option is active.

Add newly named files to a restored session
Use this option if you prefer that newly named files be added to the edit session which
is being restored. This option is not available unless the Restore previous sessions
option is also active.

Miscellaneous

Number of recent files on the File Menu (0-24)
Use this option to control the number of files which are displayed in the Recent Files
list. Up to 24 files can be displayed in this list.

When using Boxer on screens with 800 x 600 resolution it will be necessary to set
the number of recent files to four (4) or fewer to prevent the File menu from
exceeding the screen height.

Add edited files to 'My Documents' on the Windows Start menu
Use this option to control whether or not files edited by Boxer are added to the
Documents menu available from the Windows Start menu. The Documents menu is
preferred by some users as a means to recall previously edited files.

Successful use of this technique requires that the file extension of the file being recalled
is 'owned' by the application which last opened the file. This type of 'ownership' is
achieved by the use of file associations. By its very nature, a text editor is likely to be
called upon to edit many different file types (file extensions). It is probably not
desirable for a text editor to own the file associations for all the file types it will be
asked to edit. Therefore, using the Document menu to launch Boxer will be successful
only for file types with which Boxer has been associated.

Disallow reads by other programs
Use this option to request that files which are opened for editing within Boxer be
'locked' so that they cannot be read by other programs. Use of this option will prevent
a file from being viewed passively by another program so long as the file is open within
Boxer.

Disallow writes by other programs
Use this option to request that files which are opened for editing within Boxer be
'locked' so that they cannot be written to by other programs. Use of this option will

Command Reference (alphabetically) 691

Copyright © 1991-2010 by Boxer Software

prevent a file from being modified by another program so long as the file is open within
Boxer.

A file which is being edited within Boxer could be modified by another program or
process. If this condition occurs it will be reported by Boxer as soon as Boxer
regains focus, and an option will be provided to reload the modified file from disk.
An option to disable this option appears on the Configure | Preferences | Messages
option page.

File I/O dialogs preserve current directory, ignore prior travel
This option can be used to prevent the various File I/O dialogs (Open, Save, etc.) from
changing the record of the current directory due to any directory travel performed from
within those dialogs. Ordinarily, the directory last visited within a dialog box is
recorded so that it can be used when the dialog next becomes active. This option
ensures that directory travel within a dialog box does not change the record of the
current directory.

5.198 Preferences - Backups

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Backups page of the Configure Preferences dialog box contains options which deal
with file backups and the Autosave feature:

Boxer Text Editor692

Copyright © 1991-2010 by Boxer Software

File backup Options

Create a backup file when first saving a file
Use this option to request that a backup file be created the first time a file is saved.
Subsequent Save operations will not disturb the backup file. If this option is
unchecked, all other backup options are disabled.

Overwrite backup file on each file save
Use this option to request that a new backup file be written every time File | Save is
performed. When this option is not selected, the backup file will be written the first
time a file is saved, but not thereafter.

Extension to use for backups
Use this option to specify the extension which is to be used for file backups. The
extension can be 1 to 3 characters long.

Add backup extension to filename (name.ext.bak)
Use this option if you prefer that the backup file extension be added to the filename
without removing any existing file extension.

Replace extension with backup extension (name.bak)
Use this option if you prefer that the backup file extension replace any existing file
extension.

Command Reference (alphabetically) 693

Copyright © 1991-2010 by Boxer Software

Location of backup files

Place backup file in the directory of the file being edited
Use this option to specify that backup files be placed in the same directory as the file
being edited. The ellipsis (...) button can be used to browse for a directory using a
standard dialog.

Place all backup files in Boxer's "Backup" directory
Use this option to specify that all backup files be placed in the "Backup" directory
(folder) which appears in Boxer's home (installation) directory.

Place all backup files in the directory named below
Use this option to specify that all backup files be placed in the directory name which is
provided in the associated edit box.

If you frequently edit files of the same name which exist in different directories, you
may wish to choose that backup files be kept in the directory of the file being
edited. Otherwise, if a common backup directory is used, it's possible that a backup
file could be overwritten when later editing a file of the same name from within a
different directory. For example, when editing the files c:\east\sales.txt and

c:\west\sales.txt, the file which is saved second would be the one for which

the backup file c:\boxer\Backup\sales.txt.bak applies.

Autosave

Perform Autosave
This option can be used to indicate that edited files be saved automatically after the
supplied time interval has elapsed.

When editing a new, untitled file (see File | New), the Autosave feature will be not
be active until the file is saved for the first time, and a filename has been assigned.

 When using Autosave on a file that resides on a USB flash drive, it's worth
considering the lifetime write limitation of the device. Some USB drives advertise
that their lifetime write limitation runs between 10,000 and 1,000,000 uses, so if
Autosave were used excessively, it could diminish the life of a USB drive.

Seconds to wait before saving

Use this option to specify the number of seconds after which Autosave should be
performed. Caution: using a value which is too small could interfere with data entry
when a very large file is being edited, or on very slow PCs.

5.199 Preferences - Messages

Menu: Configure > Preferences

Default Shortcut Key: none

Boxer Text Editor694

Copyright © 1991-2010 by Boxer Software

Macro function: ConfigurePreferences()

The Messages page of the Configure Preferences dialog box contains options which
relate warning messages and sounds.

Message Options

Warn before loading binary files
Use this option if you prefer to be warned before a binary file is loaded. Binary files
contain the Null character (value 0) and cannot be reliably edited with Boxer. You may
wish to use the Open Hex Mode command to view such files in a hex format viewing
mode. Boxer will automatically use Open Hex Mode when asked to open files with the
extension .COM, .EXE or .DLL.

Warn when an edited file is changed by another program
Use this option if you would like to be notified by Boxer when one of the files you are
editing is modified by another program or process. If this option is checked, a dialog
box will appear offering a chance to reload the file from disk. If this option is
unchecked, notice will NOT be provided when an edited file is modified by another
process, and the file will NOT be reloaded..

Proceed carefully in a situation such as this: changes you have made to the file may

Command Reference (alphabetically) 695

Copyright © 1991-2010 by Boxer Software

be lost when you reload, or saving your file again could overwrite changes which
were made by another user.

Auto-reload when an edited file is changed by another program
Use this option if you would like Boxer to automatically reload a file (without issuing a
warning) when it senses that it has been changed by another program or process.

Consider carefully the effect of this option: if changes have been made to a file
within Boxer and have not been saved, they will be lost if the file is reloaded.

Warn on exit if size of text on clipboard exceeds n KB
This option is used to present a warning on exit when the size of the text on the
clipboard exceeds the designated threshold. When excessive amounts of text are left
on the clipboard, system performance can be impacted.

Confirm before opening non-existent files
This option controls how Boxer reacts when asked to open a file which does not yet
exist. If this option is active, a dialog box will be presented to confirm that a new file is
to be created. An option is provided to correct a typing error, in case that was the
cause for the file not being found. If this option is inactive, Boxer will create a new file
using the name provided.

Report failed searches in a pop-up message box
This option controls how Boxer will report a failed search. If this option is active, a
popup dialog box will be used to report the failure. Otherwise a message will appear on
the Status Bar.

Report when search has wrapped around in a pop-up message box
When Find Next or Find Previous are used in wrap around mode, a message appears on
the status bar when the search has wrapped back to the location of the first match.
Use this option if you prefer that this event be reported in a message box instead.

Show splash screen on startup
This option controls whether or not Boxer's splash screen graphic will be displayed
on-screen while the program initializes. Display of the splash screen graphic can also
be controlled using the -G command line option flag.

Halt and display a message when a macro tries to execute a disabled command
This option is intended for advanced users. By default, Boxer will prevent macro
functions from being executed when the underlying command being run is disabled
within the menus. Commands are disabled when the environment is unsuitable for
them to be run. Advanced users may wish to override this behavior, if they think they
have reason to disregard Boxer's disabling of a given command.

Sound Options

Play sounds for editor error messages
Use of this option causes the system sound for Default Beep to be played for editor
errors.

Play sounds for system sound events

Boxer Text Editor696

Copyright © 1991-2010 by Boxer Software

Use of this option causes the system sounds for Minimize, Maximize, Restore Up and
Restore Down to be played when these events occur.

The sounds which are used for various system sounds can be defined from Start
Menu | Settings | Control Panel | Sounds.

Play bell sound at the start of a round of editing
Use of this option causes Boxer to play its two-bell sound to signal the beginning of a
new round of editing.

Play bell sound at the end of a round of editing
Use of this option causes Boxer to play its one-bell sound to signal the end of a round of
editing.

If your computer is not equipped with a sound card, Boxer will not be able to play
the sounds described above.

5.200 Preferences - Other

Menu: Configure > Preferences

Default Shortcut Key: none

Macro function: ConfigurePreferences()

The Other page of the Configure Preferences dialog box contains options which do not
logically group with its other pages. Among these are startup options, Spell Checker
options and miscellaneous options:

Command Reference (alphabetically) 697

Copyright © 1991-2010 by Boxer Software

Other options

Allow multiple instances of Boxer
Use this option to control whether or not multiple instances of Boxer are allowed to run
concurrently. When multiple instances are allowed, a new Boxer session will be
launched each time the program is run. When multiple instances are disallowed, each
would-be instance of Boxer will pass the files named for editing to the session which is
already running. If files are not named for editing the existing session will simply
become current.

Caution: when multiple instances of Boxer are run concurrently confusion can arise
regarding the editor's configuration settings. Boxer writes its configuration
information to the Windows registry each time it exits. When multiple instances of
Boxer are run the configuration settings from the first sessions that are exited will
be overwritten by any sessions which exit later on. In essence, the configuration
settings from the last exited Boxer session will be the settings which are ultimately
recorded in the registry.

Enable support for Intellimouse
Use this option to enable support for the Microsoft Intellimouse device. The
Intellimouse has a mousewheel which permits a document to be scrolled without the
use of the Vertical Scroll Bar. The mousewheel also doubles as a center mouse button,
and can therefore be used to perform columnar text selections.

Boxer Text Editor698

Copyright © 1991-2010 by Boxer Software

Minimize Boxer when closing last file
When this option is active, Boxer will minimize itself to the task bar when its last file is
closed. Click on the Boxer button in the task bar to restore the application.

Find Differing Lines will ignore spaces
Use this option to force the Find Differing Lines command to ignore leading and trailing
Spaces and Tabs when comparing lines. Lines which differ only in their indent, or due
to trailing whitespace, will be considered equal.

Find Differing Lines will search the current line for additional differences
Use this option to instruct the Find Differing Lines command to continue search along
the current line for differences after the first difference has been reported. A manual
re-syncing of the text cursor position may be required.

Word/Sentence/Title case commands will convert text to lowercase before
operation
When applying Word, Sentence or Title case to a text selection, the question arises
whether or not the text should first be forced to lowercase before the operation is
performed. When this checkbox is checked, the case of the selected text will be
adjusted before applying the requested conversion. You may wish to review the text
after conversion to ensure that proper nouns, acronyms, and other capitalized words
have been properly converted.

Calendar week starts on
Use this option to designate the day of week which should be used to start a week in
the pop-up Calendar. The default setting is Sunday, but users in some countries will
prefer a different setting.

Preferences Storage

Save preferences to an INI file in Boxer's data folder
When this option is selected, Boxer will save its preferences to a disk-based file named

BOXER.INI which is located in its data folder. For more information, see Portable

Editing.

Save preferences to the Windows registry
When this option is selected, Boxer will save its preferences to the Windows registry.
The location used is:

HKEY_CURRENT_USER/Software/Boxer Software/Boxer Text Editor
NN

where 'NN' represents the current major version number.

Spell Checker

Ignore words in all UPPERCASE
Use this option to indicate that the Spell Checker should ignore words which appear in
uppercase during its operation. This helps prevent false reports when spell checking
files which contain acronyms or filenames.

Command Reference (alphabetically) 699

Copyright © 1991-2010 by Boxer Software

Ignore Email and URL addresses
Use this option to indicate that the Spell Checker should ignore email and URL
addresses during its operation.

Recheck word before replacing
Use of this option causes the Spell Checker to recheck a replacement word before
making the change. This provides a double check when you elect to type a replacement
word rather than using one from the supplied list.

Move dialog to prevent overlap
Use this option to request that the Spell Checker position its dialog box so as not to
obscure the context of the suspect word which is being reported. The position of the
mouse cursor is moved along with the dialog, so you won't need to 'chase' the dialog
around the screen throughout a spell checking session.

Check Repeated Words
Use this option to request that the Spell Checker watch for repeated words, such as 'the
'the'. When an offending sequence is found, an option will be provided to delete the
duplicated word.

Check Mixed Case Words
Use this option to request that the Spell Checker check the spelling of mixed case
words. Mixed case words can occur due to a typographical error, or when an acronym
(GmbH) or company name (SoftSeek) is being used.

Due to a limitation in the way the dictionary vendor stores entries in its user
dictionary, it is not possible to add a legitimate mixed case word (such as eBay) so
that future alerts for that word will not occur.

Put suspect word in Change box
Use this option if you prefer that the suspect word be placed in the Change edit box.

Put suggested word in Change box
Use this option if you prefer that the suggested correction be placed in the Change edit

box.

5.201 Previous Bookmark

Menu: Jump > Previous Bookmark

Default Shortcut Key: Shift+Ctrl+Up

Macro function: PreviousBookmark()

The Previous Bookmark command moves the text cursor to the nearest bookmark which
appears above the text cursor's current location. If the Previous Bookmark command
finds no bookmarks above the current line, the text cursor will wrap around and be

Boxer Text Editor700

Copyright © 1991-2010 by Boxer Software

placed on the last bookmark in the file.

Travel among bookmarks is based upon location, not bookmark number.

The Bookmark Manager can be used to view all bookmarked lines in a single view, and
navigate to, or delete, selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

If a selection exists when this command is issued, the selection will be extended to
the bookmarked location.

5.202 Previous Function

Menu: Jump > Previous Function

Default Shortcut Key: Ctrl+Alt+Up

Macro function: PreviousFunction()

The Previous Function command moves the cursor to the previous function (or
procedure) declaration within the current file. This command makes it possible to move
backward through a source code file on a function-by-function basis.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

 The Previous Function command relies upon the Ctags Function Index feature to
perform its service. If the Ctags feature has been disabled, or if the file being
edited is not supported by Ctags, the Previous Function command will be
unavailable.

 The types of Ctags identifiers for which this command applies is user-configurable.
The default setting includes entries for "function", "procedure", "subroutine",
"method", etc. The full list can be viewed or changed on the Advanced tab of the
Configure | Ctags Function Indexing dialog.

5.203 Previous Paragraph

Menu: Jump > Previous Paragraph

Default Shortcut Key: none

Macro function: PreviousParagraph()

The Previous Paragraph command moves the text cursor to the start of the previous
paragraph.

Command Reference (alphabetically) 701

Copyright © 1991-2010 by Boxer Software

 For purposes of this command, a paragraph is considered to be a block of lines with
one or more empty lines between them. Contiguous paragraphs which are denoted
by a change of indent on the first line, and not by an intervening blank line, will not
be recognized to be distinct paragraphs.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

5.204 Print

Menu: File > Print > Print Normal / Print Color Syntax / Print Mono Syntax

Default Shortcut Key: Ctrl+P (Print Normal)

Macro functions: Print / PrintColor / PrintMonochrome

The Print command is used to send the current file to the printer. The layout of the
printed page will be determined by the current settings within the Page Setup dialog.
You may wish to use Print Preview to display the print job on-screen before sending it
to the printer.

Printing can be performed in any of three modes:

Normal
The file is printed without applying syntax highlighting coloration.

Color Syntax
The file is printed with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

Monochrome Syntax
The file is printed with monochrome syntax highlighting applied. Syntax elements will
be displayed in bold, italic and/or underlined font styles in accordance with the current
settings.

The Monochrome Syntax and Color Syntax printing modes will be disabled when the
file being edited is a file type for which Syntax Highlighting information is not
available.

The standard Windows print dialog is presented before printing begins:

Boxer Text Editor702

Copyright © 1991-2010 by Boxer Software

From here you can select the range of pages to be printed, and the number of copies to
be printed. If text has been selected, you will be able to choose a radio button which
dictates that only the selected text is to be printed. See the note below regarding
printing selections of program source code.

Boxer will automatically convert any Tabs within the text being printed to Spaces. This
ensures that the Tab Display Size used by Boxer does not conflict with that of the
printer.

The color/font settings for Monochrome Syntax Print and Color Syntax Print are
accessed from the Configure | Colors dialog by selecting the appropriate mode from the
drop-down list at the upper left.

When printing selected text from program source code using either Monochrome or
Color Syntax Print mode, improper highlighting can occur if the starting or ending
points of the selection fall in the middle of a syntax element, or if the starting line of
the selection falls within a multi-line comment block. Likewise, printing a columnar
selection is likely to result in improper syntax highlighting. For best results, choose
the selected area logically so that its start and end points occur at natural break
points in the code.

Strictly speaking, the use of Color Syntax Printing requires that a color printer be
installed and attached. Some users may wish to use the Print to File option
available from the Print dialog to save a print image on disk at one PC for later
printing on another PC with a color printer. For this reason the Print Color Syntax
command is not disabled when the PC is found to lack a color printer. Users will
need to be careful when transporting a printer image file in this way, because it may
not be compatible with the destination printer.

Command Reference (alphabetically) 703

Copyright © 1991-2010 by Boxer Software

A formfeed character can be placed in column one--or in the last position on a
line--to indicate that a new page should begin at that point. The footer of the
page--if one has been defined--will be printed and the page will eject. A formfeed in
any other column will be ignored by Boxer's print routine.

5.205 Print All

Menu: File > Print > Print All Normal / Print All Color Syntax / Print All Mono Syntax

Default Shortcut Key: none

Macro functions: PrintAll / PrintAllColor / PrintAllMonochrome

The Print All command is used to send all files currently being edited to the printer.
The layout of the printed page will be determined by the current settings within the
Page Setup dialog. You may wish to use Print Preview to display the print jobs
on-screen before sending it to the printer.

Printing can be performed in any of three modes:

Normal
The file is printed without applying syntax highlighting coloration.

Color Syntax
The file is printed with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

Monochrome Syntax
The file is printed with monochrome syntax highlighting applied. Syntax elements will
be displayed in bold, italic and/or underlined font styles in accordance with the current
settings.

 The Monochrome Syntax and Color Syntax printing modes will be disabled when the
file being edited is a file type for which Syntax Highlighting information is not available.

The standard Windows print dialog is presented before printing begins:

Boxer Text Editor704

Copyright © 1991-2010 by Boxer Software

From here you can select the range of pages to be printed, and the number of copies to
be printed. If text has been selected, you will be able to choose a radio button which
dictates that only the selected text is to be printed. See the note below regarding
printing selections of program source code.

Boxer will automatically convert any Tabs within the text being printed to Spaces. This
ensures that the Tab Display Size used by Boxer does not conflict with that of the
printer.

The color/font settings for Monochrome Syntax Print and Color Syntax Print are
accessed from the Configure | Colors dialog by selecting the appropriate mode from the
drop-down list at the upper left.

When printing selected text from program source code using either Monochrome or
Color Syntax Print mode, improper highlighting can occur if the starting or ending
points of the selection fall in the middle of a syntax element, or if the starting line of
the selection falls within a multi-line comment block. Likewise, printing a columnar
selection is likely to result in improper syntax highlighting. For best results, choose
the selected area logically so that its start and end points occur at natural break
points in the code.

Strictly speaking, the use of Color Syntax Printing requires that a color printer be
installed and attached. Some users may wish to use the Print to File option
available from the Print dialog to save a print image on disk at one PC for later
printing on another PC with a color printer. For this reason the Print Color Syntax
command is not disabled when the PC is found to lack a color printer. Users will
need to be careful when transporting a printer image file in this way, because it may
not be compatible with the destination printer.

Command Reference (alphabetically) 705

Copyright © 1991-2010 by Boxer Software

A formfeed character can be placed in column one--or in the last position on a
line--to indicate that a new page should begin at that point. The footer of the
page--if one has been defined--will be printed and the page will eject. A formfeed in
any other column will be ignored by Boxer's print routine.

5.206 Print Preview

Menu: File > Print Preview > Normal / Color Syntax / Mono Syntax

Default Shortcut Key: none

Macro functions: PrintPreview, PrintPreviewMonochrome, PrintPreviewColor

The Print Preview command provides a means of viewing a print job on-screen before it
is sent to the printer. The print document will be shown in a window that has controls
for moving quickly to any page within the document. The PgUp and PgDn keys can also
be used to page through the document. You can click with the left mouse in the turned
page corner to advance to the next page; clicking with the right mouse button will
move backward to the previous page.

The Print Preview form has buttons to access the Printer Font, Page Setup, Print Setup
and Print commands directly from Print Preview mode. This makes it easy to see the
effect of a font face or size change, or to view the result of changing margins, paper
orientation, header and footer text, line spacing, line numbering or line wrapping.

Print Preview can be performed in any of three modes:

Normal
The preview is shown without the application of syntax highlighting coloration.

Monochrome Syntax
The preview is shown with monochrome syntax highlighting applied. Syntax elements
will be displayed in bold, italic and/or underlined font styles in accordance with the
current settings.

Color Syntax
The preview is shown with color syntax highlighting applied. Syntax elements will be
displayed in color, and in bold, italic and/or underlined font styles in accordance with
the current settings.

The Monochrome Syntax and Color Syntax preview modes are disabled unless the
file being edited is a file type for which Syntax Highlighting information is defined.

The color and font style settings for Monochrome Syntax and Color Syntax are
accessed from the Configure | Colors dialog by selecting the appropriate mode from

Boxer Text Editor706

Copyright © 1991-2010 by Boxer Software

the drop-down list at the upper left.

Because of the difference in resolution between the printer and the screen, the
screen can never present a perfect image of the printed page. Under some
circumstances, with certain font sizes, you may see imperfect line or character
spacing or other small inaccuracies. It should not be assumed that the printed page
will have the same inaccuracies. Print Preview can be expected to accurately show
the layout of the page, page breaks, positioning, etc.

5.207 Print Setup

Menu: File > Print Setup

Default Shortcut Key: none

Macro function: PrintSetup()

The Print Setup command provides access to the standard Windows print setup dialog
which allows the current printer to be selected. You can also select paper size, paper
orientation (portrait or landscape), and other options which may vary from printer to
printer.

5.208 Printer Font

Menu: Configure > Printer Font

Default Shortcut Key: none

Command Reference (alphabetically) 707

Copyright © 1991-2010 by Boxer Software

Macro function: ConfigurePrinterFont()

The Printer Font command is used to select the font that is used to print files from
within Boxer. The standard Windows font dialog is presented for selecting the screen
font:

Boxer requires that fixed width fonts be used, so the Printer Font dialog box does
not display proportionally spaced fonts. This is required, in part, to ensure that
columnar selections can be highlighted neatly in rectangular blocks, and so that the
Column Ruler can be used. These features would not be possible if the use of
proportional fonts were permitted.

The Font listbox at the left of the dialog displays the fixed width fonts which are
available for selection.

The Font Style listbox display the styles which are available for the selected font.
Typically these are Regular, Italic, Bold and Bold Italic, although some fonts may not
offer all styles.

The Size listbox displays the sizes which are available for the selected font.

The Script drop-down list displays the various character mappings which are available
for the selected font.

The colors which are used when using Color Syntax Printing are controlled via the
Configure Colors command.

Boxer Text Editor708

Copyright © 1991-2010 by Boxer Software

When selecting a True Type font, the standard Windows font dialog box may display
a message at the bottom indicating that the selected font will be used for both
screen display and printing. This message does not apply to the use of fonts within
Boxer, since Boxer permits the Screen Font and Printer Font to be selected
separately. The message intends to convey the idea that the font is capable of
being used for both the screen and the printer.

5.209 Quote and Reformat

Menu: Paragraph > Quote and Reformat

Default Shortcut Key: Ctrl+Q

Macro function: QuoteAndReformat()

The Quote and Reformat command can be used to reformat a paragraph within the
defined Text Width and according to the current Justification Style, while adding a
quoting symbol to the left edge of the paragraph. This formatting style is used within
email replies and in other communications to visually identify the text which is being
replied to from the text of the reply itself.

Two quoting styles are available: one in which the first line is quoted and additional
lines are indented to match the first line:

>> A Multi-User License provides an inexpensive
 way for businesses, schools, universities or
 other work groups to supply their personnel
 with computer software in both a legal and cost
 efficient manner. By licensing Boxer for use
 on multiple computers you can standardize on a
 single editing tool that will serve the needs
 of all people within the group.

and one in which all lines within the paragraph are quoted:

>> In so doing, support and maintenance costs can
>> be reduced, and users can benefit from having
>> ready access to others who are using the same
>> software. Multi-user licensing is also more
>> economical than making individual purchases,
>> because there is no need for us to supply extra
>> disks, reference literature, etc. for all users
>> within the group.

Both the quoting style, and the quoting symbol used, can be configured on the
Configure | Preferences | Editing 1 options page.

The Quote and Reformat command makes use of the Reformat command internally
during its operation. As noted in the Reformat command, lines beginning with a
period (.) are treated as blank lines in order to recognize text markup tags. As a

result, the use of a quoting string that begins with a period will not produce the

Command Reference (alphabetically) 709

Copyright © 1991-2010 by Boxer Software

desired results, and should be avoided. All other symbols and characters are
permissible.

5.210 Recent Files

Menu: File

Default Shortcut Key: not applicable

Macro function: OpenRecentFile()

The Recent Files list appears near the bottom of the File menu, above the Exit
command. Each time a file is opened for editing, its name is added to the list. If
necessary, the eldest entry is bumped from the list. This list makes it easy to recall
files which were recently viewed or edited without the need to use the Open command,
as is typically done. The filenames are displayed with a 'hot' number to their left, so
that Alt+F, F, followed by the number, will load the named file.

The number of files displayed in the list can be controlled on the Configure |
Preferences | File I/O options page. The option is named Number of recent files on the
File menu.

Long filenames will be shortened for display if the relevant option on the Configure |
Preferences | Display options page is checked.

5.211 Recent Projects

Menu: Project

Default Shortcut Key: not applicable

Macro function: OpenRecentProject()

The Recent Projects list appears near the bottom of the Projects menu. Each time a
projects is opened, its name is added to the list. If necessary, the eldest entry is
bumped from the list. This list makes it easy to recall projects which were recently
opened without the need to use the Project | Open command. The projects are

Boxer Text Editor710

Copyright © 1991-2010 by Boxer Software

displayed with a 'hot' number to their left, so that Alt+P, P, followed by the number, will
load the named project.

Up to 16 recent projects can appear on the Recent Projects list.

Long project names will be shortened for display if the relevant option on the Configure
| Preferences | Display options page is checked.

5.212 Record Keys

Menu: Tools > Record Keys

Default Shortcut Key: Shift+F5

Macro function: none

Use the Record Keys command to begin recording a series of keystrokes for later
playback with the Playback Keys command. This command provides a
'macro-by-example' or 'on-the-fly' keystroke recording facility. While recording is in
process, all keystrokes entered from within the editor window will be stored. Mouse
motion is not recorded per se, but if the mouse is used to select a command from the
main menu, that command will be recorded just as though its shortcut key had been
used instead. To stop recording, simply issue this command again: its name in the
main menu changes to Stop Recording while recording is in process.

Mouse and/or keystroke interaction with popup dialogs is not stored in a key recording.
If a confirmation dialog appears during keystroke recording, the response to that dialog
is not recorded. The dialog will appear during playback, and will need to be dismissed
manually at run-time.

If you need to pause in the middle of a keystroke recording, use the Pause
Recording command. This will allow you to perform operations in the editor that will
not appear in the key recording. Issue the command again to resume recording.

Command key assignments are not used in the files created by Save Key Recording,

Command Reference (alphabetically) 711

Copyright © 1991-2010 by Boxer Software

so there's no chance that changing key assignments might disturb an existing key
recording. Likewise, key recording files can be freely shared with other Boxer users
without concern that playback might be influenced by differing key assignments on
the target machine. However, depending on the nature of the key recording, default
settings on the target machine (autoindent, typing wrap, etc) could influence how a
key recording performs upon playback.

 There are several system-reserved key sequences that cannot be used within a
keystroke recording. These key sequences all relate to moving among or closing
document windows. The operating system traps these key sequences before they're
ever seen by the application. Boxer provides its own key assignments for these
commands, and they're available from the main menu as well, so it's not the
functionality that need not be avoided. Rather, the method of activating these
functions might need to be altered when making a recording. The key sequences to
be avoided are the following: Ctrl+Tab, Shift+Ctrl+Tab, Ctrl+F4, Shift+Ctrl+F4,
Ctrl+F6, Shift+Ctrl+F6.

The Auto-Complete feature is disabled during keystroke recording. Since the entries
that are presented in the pop-up Auto-Complete suggestion list are sensitive to the
file being edited, and to text that has been previously typed, it's not safe to assume
that the order of the list will be the same at playback time.

If you need to automate a repetitive task in which logic must be applied to the
recording, use Boxer's full-powered Macro language.

5.213 Redo

Menu: Edit > Redo

Default Shortcut Key: Ctrl+Y

Macro function: Redo()

The Redo command can be used to reverse the effect of the most recent Undo
command. For example, while issuing a series of Undo commands to reverse unwanted
changes, you suddenly see that the last Undo went too far. Issuing Redo will undo the
last Undo. Undo and Redo are opposites.

Undo cannot be undone after additional changes are made; Redo must be issued before
other changes are made.

The Redo command is disabled until at least one Undo command has been performed.

5.214 Redo All

Menu: Edit > Redo All

Default Shortcut Key: none

Boxer Text Editor712

Copyright © 1991-2010 by Boxer Software

Macro function: RedoAll()

The Redo All command can be used to undo the effect of all Undo commands which
have been issued since the last change was made. Unless you feel sure about the
number of undos which have been recorded by Redo, it is often safer to use the Redo
command to step singly through the changes so that their effect can be seen on-screen
before proceeding.

5.215 Reference

Menu: Jump > Reference

Default Shortcut Key: none

Macro function: Reference()

The Reference command is used in conjunction with the Declaration command. After
issuing the Declaration command to jump from an identifier reference to its declaration,
use the Reference command to return to the point of reference.

5.216 Reformat

Menu: Paragraph > Reformat

Default Shortcut Key: Ctrl+F10

Macro function: Reformat()

The Reformat command can be used to reformat the paragraph at the text cursor within
the defined Text Width and according to the current Justification Style. The Reformat
operation begins on the current line and includes all lines to the end of the current
paragraph (see note below). The text cursor is advanced to the first line of the next
paragraph following Reformat, so that successive Reformat commands will move
smoothly through the document.

If a range of lines is selected, all paragraphs within the selected range will be
reformatted. Use the Select All Text command before Reformat to reformat an entire
file, but first check to be sure that the file doesn't contain tables or lists which might be
adversely affected by reformatting.

When the Reformat command reformats text, it does so by adding a newline (hard
line ender) at the end of the line. To wrap text visually, without introducing a hard
line ender into the file, see the Visual Wrap command.

Fully Indented Paragraphs
Boxer uses the amount of indent on the second line of the paragraph to determine the
indent level for the entire paragraph. A paragraph can be made fully indented by
manually indenting the first and second lines of the paragraph and then reformatting.

Command Reference (alphabetically) 713

Copyright © 1991-2010 by Boxer Software

 This paragraph is fully indented. This
 paragraph is fully indented. This paragraph
 is fully indented. This paragraph is fully
 indented. This paragraph is fully indented.
 This paragraph is fully indented.

Hanging Indents
The indent on the first line of the paragraph is not applied to other lines in the
paragraph. A hanging indent can be achieved by placing less indent on the first line of
the paragraph than on the second line. Likewise, if the first line of a paragraph has
extra indent, it too will be preserved.

This paragraph has a hanging indent. This paragraph
 has a hanging indent. This paragraph has a
 hanging indent. This paragraph has a hanging
 indent. This paragraph has a hanging indent. This
 paragraph has a hanging indent.

Bulleted Paragraphs
If you wish to create bulleted paragraphs that will retain their layout after being
reformatted, use a Tab character to separate the bullet from the body of the paragraph.
If a series of Spaces were to be used between the bullet and the body text they would
be adjusted during Reformat. Tabs are maintained in this situation.

* This paragraph uses a bullet separated from the
 body text with a Tab character. This paragraph
 uses a bullet separate from the body text with a
 Tab character.

 To have text wrap to the next line automatically as you type, use the Typing Wrap
feature. To wrap text visually, use the Visual Wrap command.

The Unformat command is essentially the opposite of Reformat: it removes line
enders from a paragraph to create a long, flowing line of text.

The end of a paragraph is signaled by the presence of one or more blank lines
between paragraphs, but not simply by the presence of additional indent on a line
which immediately follows the current paragraph. Lines which begin with a period (

.) will also be recognized as blank lines for purposes of Reformat. This is to permit

the use of text markup languages such as Flexicon for adding formatting commands
to text.

Reformat will break lines between HTML or XML tags, when appropriate, even if an
intervening space is not present.

5.217 Regular Expressions

When searching for a text string using the Find, Replace, Replace Line Enders or Find

Boxer Text Editor714

Copyright © 1991-2010 by Boxer Software

Text in Disk Files commands, Boxer supports the use of Regular Expressions, a pattern
matching grammar first popularized on the Unix operating system. Regular Expressions
make it possible to specify a search string which can match many different target
strings, or to restrict the ways in which a search string can be matched.

Boxer uses Perl-Compatible Regular Expressions as implemented by the increasingly
popular PCRE 5.0 library. See the end of this topic for further information and
acknowledgements.

A complete treatment of the topic of regular expressions could--and does--fill an entire
book. Mastering Regular Expressions, by Jeffrey Friedl is one such book, and a good
one at that. This help topic was written to acquaint the typical user with the most
common regular expression features, without getting too bogged down in fine details.
The advanced reader is encouraged to seek out additional information on the web, or
within the PCRE documentation itself. We have posted one such reference document on
our site for your convenience.

Regular Expressions are very powerful, and can be more easily understood by studying
several examples.

Matching a Single Character
The dot (.) will match any single character, except the newline character. Example:

p.t will match pat, pet, pit, pot, and put, and in fact any 3-character sequence

with p and t at its ends and a single character in the middle.

Matching with an Asterisk
The asterisk (*) will match zero or more occurrences of the preceding character.

Example: zo*m will match zm, zom, zoom and zooooooooom, among others. Note that

the character preceding the asterisk can be the dot, so zero or more occurrences of any
character will be matched when the construction .* is used. Example: Bo.*r will

match Boxer, Bowler, Bookmaker, Bookkeeper and Building Manager.

Matching with a Plus Sign
The plus sign (+) will match one or more occurrences of the preceding character.

Example: ho+p will match hop, hoop and hooooooop, among others. Note that the

character preceding the plus sign can be the dot, so that one or more occurrences of
any character will be matched when the construction .+ is used.

Patterns that use either * or + can often result in more than one possible matching

string. This concept is known as minimal or maximal matching. You can control
whether Boxer will return the shortest or longest matching string using the Maximal
matching checkbox on any dialog where regular expressions are permitted.

Matching at Start of Line
The caret (^) can be used to force a match to occur at the start of a line. Example:

^The will match any line beginning with The.

You can also force a start-of-line match using the checkbox provided on the dialog.

Matching at End of Line

http://www.boxersoftware.com/pcrepattern.3.html

Command Reference (alphabetically) 715

Copyright © 1991-2010 by Boxer Software

The dollar sign ($) can be used to force a match to occur at the end of a line. Example:

result$ will match any line ending with the word result.

You can also force an end-of-line match using the checkbox provided on the dialog.

Character Classes or Range Expressions
One or more characters can be placed within square brackets to designate the
characters which can match in that position. Example: p[aeiou]t will match pat,

pet, pit, pot and put. Note that digits are also characters, so an expression such as

201[1234] will match any of 2011, 2012, 2013 or 2014.

Characters can also be placed within square brackets with a dash between them to
designate a range of characters. Example: [b-d]ent will match bent, cent and dent
because the expression [b-d] is shorthand for all characters in that range. The

character range can be entered in ascending or descending order; both [A-Z] and

[Z-A] are allowed and are functionally equivalent.

The character set appearing within square brackets can be negated by using the caret (

^) as the first character within the opening square bracket. Example: [^cb]ent will

match tent, rent, sent, dent and others, but not cent or bent. The caret can also

be applied to negate a character range within square brackets: [^a-e] will match all

characters except a, b, c, d and e. If the caret appears anywhere else within the range

expression, its meaning reverts to that of matching the caret itself.

Matching Multiple Strings
The vertical rule (|) can be used to separate two or more regular expressions so that

any of the patterns will match. Example: red|green|blue|yellow will match any of

the color names that are separated by the vertical rules.

Subpatterns
Left and right parentheses can be used to start and end a subpattern. Example:

c(ar|en|oun)t will match cart, cent and count. In absence of the parentheses,

car|en|ount would match car, en or ount... a very different result.

Escape Character
The backslash can be used to remove significance from a pattern matching character.
Example: if you need to search for an asterisk, use *. To search for a dot, use \.. To

search for a plus sign, use \+. To search for the backslash itself, use \\.

You can also remove significance from pattern matching characters by placing them
inside a range expression. For example, [*+] could be used to match either an

asterisk or a plus sign.

Matching Whole Words
To force a pattern to find only those occurrences of a search string which appear as
whole words, the pattern can be surrounded with a sequence that forces a match at a
word boundary. Example: to find the word sign, but not words such as assign,

signature or assignment, use \bsign\b.

Boxer Text Editor716

Copyright © 1991-2010 by Boxer Software

You can also force a whole word match using the checkbox provided on the dialog.

Matching Special Characters
Several characters that are not readily typed from the keyboard can be matched using
special character sequences:

 \\ match a backslash character

 \a match a bell (alarm) character (ASCII 7)

 \b match a backspace character (ASCII 8) (only if used in a character
class)

 \cx match character Control-x (x = any character)

 \e match an escape character (ASCII 27)

 \f match a formfeed character (ASCII 12)

 \n match a newline character (ASCII 10)

 \r match a carriage return character (ASCII 13)

 \t match a tab character (ASCII 9)

 \ddd match octal character ddd (d = any digit 0-7)

 \xhh match hexadecimal character hh (h = any hex digit)

Generic Character Types
There are several convenient shorthand sequences for matching common character
classes:

 \d match a decimal digit (0-9), equivalent to: [0-9]

 \D match any character except a decimal digit, equivalent to: [^0-9]

 \s match any whitespace character, equivalent to: [\t\n\f\r]

 \S match any character except whitespace, equivalent to [^\t\n\f\r]

 \w match any word character, equivalent to: [_a-zA-Z]

 \W match any character except a word character, equivalent to:
[^_a-zA-Z]

A word character is considered to be any letter, digit or underscore. No
consideration is made for accented characters that reside above value 128 in the
character set. If you require such characters in a pattern, you'll need to name these
characters explicitly, perhaps in a range expression that also uses \w.

Assertions
The following sequences can be used to force a match to occur only at a required
position:

Command Reference (alphabetically) 717

Copyright © 1991-2010 by Boxer Software

 \b match at a word boundary

 \B match when not at a word boundary

 \A match at start of subject

 \Z match at end of subject or before newline

 \z match at end of subject

 \G match at first matching position in subject

Useful Constructions
The following examples illustrate some common constructions, and give examples of
the utility--and complexity--of some advanced regular expressions:

 .* match zero or more occurrences of
any character

 .+ match one or more occurrences of
any character

 ^$ match an empty line

 ^\s+$ match a line containing only
whitespace

 ^\s+ match leading whitespace

 \s+$ match trailing whitespace

 [a-zA-Z] match any alphabetic character

 this|that match 'this' or 'that'

 \b(\w+)\s+\1\b match repeated words (such as 'the
the')

\b[A-Z0-9._%-]+@[A-Z0-9._%-]+\.[A
-Z]{2,4}\b

match a valid email address

Min/Max Quantifiers
A min/max quantifier can be used to control how many instances of the preceding
entity are to be allowed within a match. The syntax for min/max quantifiers is
summarized in this table:

 { start a min/max quantifier

 } end a min/max quantifier

 {3} match exactly 3 of the previous item

 {3,} match at least 3 of the previous item

 {3,5} match at least 3, but no more than 5 of the previous item

Boxer Text Editor718

Copyright © 1991-2010 by Boxer Software

Example: the pattern [abc]{4,8} would match a sequence of characters consisting of

the letters a, b or c, so long as at least 4 characters are present, and no more than 8
appear. Potential matches: aaaa, accb, abcabc, bbbbcccc. Non matches: aaa,

abcd, abcabcabc.

Careful readers might observe that * is effectively shorthand for {0,} and + is

shorthand for {1,}.

Back References and Named Subpatterns
One of the more powerful features of Perl regular expressions is the ability to make
reference within a pattern to the string that matched a subpattern which occurred
earlier in the pattern. Subpatterns are created when a portion of a pattern is enclosed
in left and right parentheses. The first opening left parenthesis encountered starts a
subpattern whose number is 1. The second left parenthesis creates subpattern 2, and
so on. To make a back reference to a subpattern by number, this syntax is used:

\1 back reference to subpattern number 1

Referring to subpatterns by number can get confusing when a complex regular
expression is being created. For this reason, named subpatterns are also permitted. To
start a subpattern named 'foo', the following syntax would be used:

(?P<foo>start a subpattern named 'foo'

Later on in the pattern, the string that matched subpattern 'foo' could be referenced
using this syntax:

(?P=foo)back reference to the subpattern named 'foo'

The example presented above that matches repeated words used a back reference:

\b(\w+)\s+\1\b

The subpattern (\w+) matches any string that contains one or more word characters.

In order for the entire pattern to match, that same string must appear again (due to
the \1 reference) with one or more spaces (\s+) in between. Finally, the \b sequences

at each end ensure that the pattern matches only at a word boundary.

Named subpattern references can also be used in the replace string of the Replace
and Replace Line Enders commands, and with the ChangeStringRE() macro function.

Closing Example
Finally, it's worth mentioning that any or all of the expressions presented above can be
used within the same regular expression. This artificially complex example:

^The\sq[^a]ic{1}k.*f[aeiou]x.*ov[a-e]r.*lazy\040dog\.$

would match the sentence:

Command Reference (alphabetically) 719

Copyright © 1991-2010 by Boxer Software

The quick brown fox jumped over the lazy dog.

so long as it appeared on a single line.

PCRE 5.0 License

The Perl-Compatible Regular Expression (PCRE) package used by Boxer was written by
Philip Hazel, and is used in accordance with the PCRE license:

Copyright (c) 1997-2004 University of Cambridge
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

 * Neither the name of the University of Cambridge nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.218 Reload

Menu: File > Reload

Default Shortcut Key: Shift+Ctrl+O

Macro function: ReloadFile()

The Reload command can be used to reload the current file from disk, thereby losing
any unsaved changes in the file. Because of the potential for losing changes
accidentally, a dialog box will appear to confirm your intention to reload.

Boxer Text Editor720

Copyright © 1991-2010 by Boxer Software

The most common use for this command is to restart the editing of a file after having
made a large number of unwanted changes. The Undo command can be used to step
back through the changes made, but its limits can be exhausted if a large number of
changes are made. In that case, the Reload command must be used.

5.219 Remove

Menu: Project > Remove

Default Shortcut Key: none

Macro function: ProjectRemove()

Use the Remove command to remove the current file from the active project.

See the Project | New command for full details about Boxer's project file feature.

5.220 Repeat Last Command

Menu: Tools > Repeat Last Command

Default Shortcut Key: F10

Macro function: none

Repeat Last Command can be used to repeat the most recently issued command. This
command is especially convenient when the command last issued does not have a
shortcut key, and must be executed from the pull-down menus. Repeat Last Command
is assigned to the F10 key, by default, to ensure it can be easily executed.

 Repeat Last Command cannot be used to repeat cursor movement commands such
as Up, Down, Left, Right, etc.

 Repeat Last Command can also be used to repeat the insertion of single characters.
When a character is not readily typed from the keyboard (think high-ASCII characters),
Repeat Last Command can be a real time saver.

Command Reference (alphabetically) 721

Copyright © 1991-2010 by Boxer Software

5.221 Replace

Menu: Search > Replace

Default Shortcut Key: Ctrl+R

Macro function: Replace()

The Replace command can be used to search for a text string and replace it with
another string. Replacements can be made selectively or globally, within the current
file or across all edited files. Regular Expressions can be entered within the search
string.

The controls and options in the Replace dialog box are described below:

Find text
This is the edit box where the search string is entered. When the Replace command is
issued, the word beneath the text cursor is placed into the Find Text edit box, in case
that word--or a word which is nearly the same--is to be the search string. To recall a
search string which was previously entered, use the drop-down list or press the up or
down arrow keys to review the items in the history list. Regular Expressions may be
used within the search string.

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Special characters can be entered into the Find text edit box using the technique

Boxer Text Editor722

Copyright © 1991-2010 by Boxer Software

described in the Help topic Inserting Special Characters.

Replace with
This is the edit box where the replace string is entered. To recall a replace string which
was previously entered, use the drop-down list or press the up or down arrow keys to
review the items in the history list.

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

The Replace command is line-oriented. It considers each line individually and does
not look across line enders to match a search string which might span lines.
Consequently, it is not possible to create new line enders using the Replace
command, nor to delete existing line enders. For these types of operations, the
Replace Line Enders command must be used.

Insert Tab
Use this button to insert a tab character into the Find Text or Replace with edit boxes.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Scope

Selected text
This option can be used to restrict the search and replace operation to the extent of the
selected text.

Cursor to bottom
This option causes the search and replace operation to be performed from the cursor
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

Wraparound
This option causes the search to be performed from the cursor onward, toward the end
of file. When the end of file is reached, the search resumes at the top and continues to
the original cursor position.

Top to bottom
This option causes the search and replace operation to be performed from the top of file
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

All open files
This option causes the search and replace operation to be performed across all open
files.

Active project
Use this option to limit the scope of the Replace operation to those files within the

Command Reference (alphabetically) 723

Copyright © 1991-2010 by Boxer Software

active project.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Replace Options

Process $1, $2, $3... substring directives in the replace string
When this option is checked, special directives in the replace string will be replaced at
match-time with subpatterns from the search string. This is a very powerful feature, as
the following examples will illustrate.

Example 1:

Find text: (\w+),(\w+)
Replace with: $2 $1

The search string will match a string of one or more word characters followed by a
comma, followed by another string of one or more word characters. For example:

Smith,John. The parentheses are used to define subpatterns. The first open

parenthesis indicates subpattern number 1, the next number 2, and so on. In this way,

Boxer Text Editor724

Copyright © 1991-2010 by Boxer Software

the replace string can vary depending on what the search string matches. If the string

Smith,John is matched, then the replace string will be John Smith. Running this

search and replace operation on a data file would have the effect of inverting a list of

Lastname,Firstname data to Firstname Lastname format.

Example 2:

Find text: (Boxer|BOXER)
Replace with: $1

This search string will match either Boxer or BOXER. The replace string will be equal to

whatever the string matched, surrounded by the HTML open-bold and close-bold
sequences. In this way, the target word can be replaced without regard to its case,
while ensuring that no case conversion occurs due to the replacement.

The entire matching string is designated as $0, even if subpatterns are not used.

Up to 100 subpatterns can be referenced, numbering from $0 to $99.

Example 3:

Find text: "([^"]+),([^"]*)"
Replace with: "$1$2"

This pair of search and replace strings can be used to remove commas from within the
data fields of quote and comma-delimited data, without disturbing the commas that are
used as field separators. The search pattern matches an entire double-quoted data
field, so long as a comma appears within the data with at least one character to its left.
The replace string references the data on either side of the comma as $1 and $2,

resulting in a replace string that duplicates the string matched, except that the comma
is excluded. (If multiple commas appear within a single data field, you'll need to run
the replace operation repeatedly until all occurrences have been replaced.)

References to named subpatterns such as (?P=name) are also recognized in the

replace string. See the Regular Expressions topic for more information about named
subpatterns.

Replace only the first occurrence on a line
When this option is checked, only the first matching instance on a line will be
considered eligible for replacement.

Confirm during Replace All
When this option is selected the Replace All operation will prompt before making each
replacement. A dialog box will be presented so that each replacement can be
confirmed. From this confirmation dialog box it is possible to later opt for unconditional
replacements, by selecting its All button.

Sort history lists
If this box is checked the search and replace history lists will be maintained in
alphabetic order, rather than in the order the strings were entered.

Command Reference (alphabetically) 725

Copyright © 1991-2010 by Boxer Software

When switching to alphabetically sorted lists, the chronological ordering of the lists
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Replace operations, a list could result that contained only phrases beginning
with the letter 'A'. This occurs because entries at the bottom of the list will be
removed after the maximum size of the list is reached.

5.222 Replace Again

Menu: Search > Replace Again

Default Shortcut Key: Shift+Ctrl+R

Macro function: ReplaceAgain()

The Replace Again command is used to repeat the most recent search and replace
operation. The new operation will obey all of the options which were used when the
previous search and replace operation was initiated with the Replace command.

5.223 Replace Line Enders

Menu: Search > Replace Line Enders

Default Shortcut Key: Ctrl+Alt+R

Macro function: ReplaceLineEnders()

The Replace Line Enders command can be used to search for a text string and replace it
with another string. Replacements can be made selectively or globally, within the
current file or across all edited files. Regular Expressions can be entered within the
search string.

Unlike the Replace command, the Replace Line Enders command can be used to
perform search and replace operations that span lines, and which may result in the
addition or removal of lines from the file.

 Important Note: The Replace Line Enders command performs its replacements
unconditionally, without user confirmation. When large operations are
performed, Undo may be unavailable. For these reasons, it's advisable to make a
backup copy of your file before using this command.

The controls and options in the Replace Line Enders dialog box are described below:

Boxer Text Editor726

Copyright © 1991-2010 by Boxer Software

Find text
This is the edit box where the search string is entered. When the Replace Line Enders
command is issued, the word beneath the text cursor is placed into the Find Text edit
box, in case that word--or a word which is nearly the same--is to be the search string.
To recall a search string which was previously entered, use the drop-down list or press
the up or down arrow keys to review the items in the history list. Regular Expressions
may be used within the search string.

Use the sequence \n to represent a line ender (newline). Example: if you are searching

for a line that ends with 'jelly' that occurs just before a line that starts with 'bean', your
search string would be: jelly\nbean

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Special characters can be entered into the Find text edit box using the technique
described in the Help topic Inserting Special Characters.

Replace with
This is the edit box where the replace string is entered. To recall a replace string which
was previously entered, use the drop-down list or press the up or down arrow keys to
review the items in the history list.

Use the sequence \n to represent a line ender (newline). Example: if you wanted to

Command Reference (alphabetically) 727

Copyright © 1991-2010 by Boxer Software

add two blank lines after all lines that end with the text THE FOLLOWING:, theses

search and replace strings would be used:

Find text: THE FOLLOWING:\n
Replace with: THE FOLLOWING:\n\n\n

The Delete key can be used while the drop-down list is displayed to delete a
selected entry from the history list.

Insert Tab
Use this button to insert a tab character into the Find text or Replace with edit boxes.

Ordinarily, the Tab key is used to move from field to field within a dialog box. If you
would prefer that the Tab key insert a tab character in this dialog box, and in other
Find/Replace related dialog boxes, check the relevant box on the Configure |
Preferences | Tabs dialog page.

Scope

Selected text
This option can be used to restrict the search and replace operation to the extent of the
selected text.

Cursor to bottom
This option causes the search and replace operation to be performed from the cursor
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

Top to bottom
This option causes the search and replace operation to be performed from the top of file
onward, toward the end of file. (There is no provision for making replacements in a
backward direction.)

All open files
This option causes the search and replace operation to be performed across all open
files.

Active project
Use this option to limit the scope of the Find operation to those files within the active
project.

Search Options

Perl regular expressions
If this box is checked, wildcard characters within the search string will be interpreted
according to the Perl-Compatible Regular Expression (PCRE) convention. In part, this
means that the asterisk (*) will cause a match of zero or more occurrences of the

preceding character. The period (.) will match any single character. For more

information, see Regular Expressions.

Boxer Text Editor728

Copyright © 1991-2010 by Boxer Software

Maximal matching
When using pattern matching characters, there can sometimes be more than one text
string that matches the search string. This option can be used to request that the
longest possible matching string be returned.

Match case
This option can be used to force the search string to be matched exactly. When
unchecked, a case insensitive search is performed.

Match whole words
This option can be used to restrict matches to those strings which appear as a whole
word. The characters which serve to delimit words are user-configurable; see Configure
| Preferences | Cursor.

Match at start of line
This option can be used to force the search string to be matched only when a matching
string appears at the start of a line. This effect can also be achieved with a Regular
Expression.

Match at end of line
This option can be used to force the search string to be matched only when a matching
string appears at the end of a line. This effect can also be achieved with a Regular
Expression.

Replace Options

Process $1, $2, $3... substring directives in the replace string
When this option is checked, special directives in the replace string will be replaced at
match-time with subpatterns from the search string. This is a very powerful feature, as
the following examples will illustrate.

Example 1:

Find text: (\w+),(\w+)
Replace with: $2 $1

The search string will match a string of one or more word characters followed by a
comma, followed by another string of one or more word characters. For example:

Smith,John. The parentheses are used to define subpatterns. The first open

parenthesis indicates subpattern number 1, the next number 2, and so on. In this way,
the replace string can vary depending on what the search string matches. If the string

Smith,John is matched, then the replace string will be John Smith. Running this

search and replace operation on a data file would have the effect of inverting a list of

Lastname,Firstname data to Firstname Lastname.

Example 2:

Find text: (Boxer|BOXER)
Replace with: $1

The search string will match either Boxer or BOXER. The replace string will be equal to

Command Reference (alphabetically) 729

Copyright © 1991-2010 by Boxer Software

whatever the string matched, surrounded by the HTML open-bold and close-bold
sequences. In this way, the target word can be replaced without regard to its case,
while ensuring that no case conversion occurs due to the replacement.

The entire matching string is designated as $0, even if subpatterns are not used.
Up to 100 subpatterns can be referenced, numbering from $0 to $99.

Sort history lists
If this box is checked the search and replace history lists will be maintained in
alphabetic order, rather than in the order the strings were entered.

When switching to alphabetically sorted lists, the chronological ordering of the lists
will be lost, and cannot be restored by unchecking the checkbox.

No attempt is made to associate the history list entries with the time that they were
added to the list. If a sorted history list is used consistently, over time the list will
come to hold an unrepresentative set of search phrases. In the extreme case, after
many Replace operations, a list could result that contained only phrases beginning
with the letter 'A'. This occurs because entries at the bottom of the list will be
removed after the maximum size of the list is reached.

5.224 Restore All

Menu: Window > Restore All

Default Shortcut Key: none

Macro function: RestoreAll()

The Restore All command can be used to return all minimized windows to their former
sizes and positions.

5.225 Right Margin Rule

Menu: View > Right Margin Rule

Default Shortcut Key: Alt+F6

Macro function: ViewRightMarginRule()

The View Right Margin Rule command is used to toggle on and off the display of a thin
vertical line which marks a user-defined column. The Right Margin Rule can be used as
a visual reminder that a particular line length has been exceeded.

Boxer Text Editor730

Copyright © 1991-2010 by Boxer Software

You can set the Right Margin Rule to any column you desire; the default is column 80.
An option is provided to set the column on the Configure | Preferences | Display options
page. The option is titled Show right margin rule at column...

Clicking on the Right Margin Rule with the right mouse button provides access to its
context menu, which allows the line to be turned off.

5.226 Right Window Edge

Menu: Jump > Right Window Edge

Default Shortcut Key: none

Macro function: RightWindowEdge()

The Right Window Edge command positions the text cursor to the right edge of the
current window.

 If the cursor has been constrained to move from the end of a line to the start of the
next line, the behavior of the Right Window Edge command will be impacted. In
this case, when issued on a line that does not reach the right window edge, this
command will move to the cursor to the end of the line.

If a text selection is present when this command is issued, the selection will be
extended to the new cursor location.

5.227 ROT5

Menu: Block > Convert Other > ROT5

Default Shortcut Key: none

Macro function: ROT5()

This command will apply a ROT5 (rotation 5) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

Command Reference (alphabetically) 731

Copyright © 1991-2010 by Boxer Software

ROT5 is a simple substitution cypher that replaces each digit (0-9) with the digit that
resides 5 positions higher in sequence. The digit '0' would be replaced by '5', '1' by '6',
and so on. When adding 5 would exceed the digit '9', the conversion wraps back to the
beginning of the sequence.

ROT5 is sometimes used to disguise numeric text from casual viewing, such as when
the answer to a puzzle is presented alongside the question. Applying the conversion to
ROT5-encoded text a second time returns the original text. Additional information
about ROT13 and other cyphers can be found on Wikipedia.

5.228 ROT13

Menu: Block > Convert Other > ROT13

Default Shortcut Key: none

Macro function: ROT13()

This command will apply a ROT13 (rotation 13) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT13 is a simple text substitution cypher that replaces each alphabetic character (A-Z
and a-z) with the character that resides 13 positions forward in the alphabet. The letter
'A' would be replaced by 'N', 'B' by 'O', and so on. When adding 13 would exceed the
letter 'Z', the conversion wraps back to the beginning of the alphabet.

ROT13 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Some entries in the Windows
Registry are ROT13 encoded. Applying the conversion to ROT13-encoded text a second
time returns the original, human-readable text. Additional information about ROT13
can be found on Wikipedia.

5.229 ROT18

Menu: Block > Convert Other > ROT18

Default Shortcut Key: none

Macro function: ROT18()

This command will apply a ROT18 (rotation 18) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT18 is a simple text substitution cypher that replaces each alphabetic character (A-Z
and a-z) with the character that resides 13 positions forward in the alphabet, and each
digit (0-9) with the digit that resides 5 positions higher in sequence. A ROT18
conversion is thus equivalent to applying the ROT5 and ROT13 conversion commands to
the same text.

ROT18 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Applying the conversion to
ROT18-encoded text a second time returns the original, human-readable text.

http://en.wikipedia.org/wiki/ROT13
http://en.wikipedia.org/wiki/ROT13

Boxer Text Editor732

Copyright © 1991-2010 by Boxer Software

Additional information about ROT13 and other cyphers can be found on Wikipedia.

5.230 ROT47

Menu: Block > Convert Other > ROT47

Default Shortcut Key: none

Macro function: ROT47()

This command will apply a ROT47 (rotation 47) conversion to the selected text. If an
entire file is to be converted, use the Select All Text command to select the whole file.

ROT47 is a simple text substitution cypher that replaces each character value in the
ASCII range 33 to 126 inclusive with the character whose value is 47 positions higher.
When adding 47 would exceed character value 126, the conversion wraps back to the
beginning of the sequence.

ROT47 is sometimes used to disguise text from casual viewing, such as when the
answer to a puzzle is presented alongside the question. Applying the conversion to
ROT47-encoded text a second time returns the original, human-readable text.
Additional information about ROT13 and other cyphers can be found on Wikipedia.

5.231 Save

Menu: File > Save

Default Shortcut Key: Ctrl+S

Macro function: Save()

The Save command is used to write the contents of the current file to disk. If the file
being edited is a new file with a temporary untitled name, the Save As command will be
performed automatically so that a name can be provided. The Save command will be
disabled when there are no changes in the current file that need to be saved.

If the Save command is issued while text is selected, a dialog box can appear to get
the name of the file to which the selected text should be saved. This option is off by
default, but can be enabled on the Configure | Preferences | File I/O options page.
The option is titled File Save performs Save Selection As, when text is selected. This
option page also contains other configuration options which relate to saving files.

5.232 Save a Copy As

Menu: File > Save a Copy As

Default Shortcut Key: none

Macro function: SaveACopyAs()

http://en.wikipedia.org/wiki/ROT13
http://en.wikipedia.org/wiki/ROT13

Command Reference (alphabetically) 733

Copyright © 1991-2010 by Boxer Software

The Save a Copy As command is used to save the current file to disk under a new
filename. A standard File Save dialog box will appear so that a new name can be
specified. Unlike the Save As command, the editor does not record the new filename
for use by future save operations. This command can be useful for creating progressive
copies of a file during a long edit session so that a change history is created, or at
anytime when a copy might be useful.

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

If the Save a Copy As command is used to save a file which is being viewed in
read-only Hex Mode, the hex view of the file--and not the file's true content--is what
will be saved to disk. If a file was opened for editing in hex mode, then Save a Copy
As will create a copy of the file's actual content.

5.233 Save All

Menu: File > Save All

Default Shortcut Key: Shift+Ctrl+S

Macro function: SaveAll()

The Save All command can be used to write the contents of all files with unsaved
changes to disk. If any of the files being edited are new files with a temporary untitled
name, the Save As command will be performed automatically so that a name can be
provided. The Save All command will be disabled when there are no changes in any
open files that need to be saved.

Boxer Text Editor734

Copyright © 1991-2010 by Boxer Software

5.234 Save As

Menu: File > Save As

Default Shortcut Key: F12

Macro function: SaveAs()

The Save As command is used to save the current file to disk using a new filename. A
standard Windows File Save dialog box will appear so that a new name can be specified.
The file will remain on disk under its old name (except when an untitled file is being
saved), and a copy of the file will be saved to the new name provided. Boxer will then
record the file's new name so that all future save operations are made to the new
name.

If you would like to change either the line ender style (PC, Macintosh, or Unix), or
the file encoding (ASCII, UTF-8, UTF-16), visit the File Properties dialog before using
the Save As command to save the file.

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

If the Save As command is used to save a file which is being viewed in read-only
Hex Mode, the hex view of the file--and not the file's true content--is what will be
saved to disk. If a file was opened for editing in hex mode, then Save As will create
a copy of the file's actual content.

Command Reference (alphabetically) 735

Copyright © 1991-2010 by Boxer Software

5.235 Save Key Recording

Menu: Tools > Save Key Recording

Default Shortcut Key: none

Macro function: none

Use the Save Key Recording command to save a key recording to a disk file. A dialog
will appear that allows a name to be entered. By default, key recordings are stored in
Boxer's 'Key Recordings' subdirectory.

Command key assignments are not used in the files created by Save Key Recording,
so there's no chance that changing key assignments might disturb an existing key
recording. Likewise, key recording files can be freely shared with other Boxer users
without concern that playback might be influenced by differing key assignments on
the target machine. However, depending on the nature of the key recording, default
settings on the target machine (autoindent, typing wrap, etc) could influence how a
key recording performs upon playback.

5.236 Save Selection As

Menu: Block > Save Selection As

Default Shortcut Key: none

Macro function: SaveSelectionAs()

The Save Selection As command brings up the standard Windows Save dialog and

Boxer Text Editor736

Copyright © 1991-2010 by Boxer Software

prompts the user for a filename under which to save the selected text.

Boxer will not automatically add a file extension to the filename you provide; you
should add the desired file extension yourself.

The current file encoding and line ender style, as indicated in File Properties, will be
used for the file that's created. If you want to save the selected text to a file using
different encoding or line enders, paste the text into a new file and set the
properties of the new file before saving.

If the Save command is issued while text is selected, a dialog box can appear to get
the name of the file to which the selected text should be saved. This option is off by
default, but can be enabled on the Configure | Preferences | File I/O options page.
The option is titled File Save performs Save Selection As when text is selected. This
option page also contains other configuration options which relate to loading and
saving files.

5.237 Screen Font

Menu: Configure > Screen Font

Default Shortcut Key: none

Macro function: ConfigureScreenFont()

The Screen Font command is used to select the font that is used to display edited files
on-screen. The standard Windows font dialog is presented for selecting the screen font:

Command Reference (alphabetically) 737

Copyright © 1991-2010 by Boxer Software

Boxer requires that fixed width fonts be used, so the Screen Font dialog box does
not display proportionally spaced fonts. This is required, in part, to ensure that
columnar selections can be highlighted neatly in rectangular blocks, and so that the
Column Ruler can be used. These features would not be possible if the use of
proportional fonts were permitted.

The Font listbox at the left of the dialog displays the fixed width fonts which are
available for selection.

The Font Style listbox display the styles which are available for the selected font.
Typically these are Regular, Italic, Bold and Bold Italic, although some fonts may not
offer all styles.

The Size listbox displays the sizes which are available for the selected font.

The Script drop-down list displays the various character mappings which are available
for the selected font.

The color that will be used to display the font selected is controlled via the Configure
Colors command.

Tips and Notes

You may have need to display files which were created using a DOS program and
which contain characters from the upper half of the ASCII character set. To display
these files properly select a font which offers an OEM/DOS script style. One such
font that is available on most systems is the Terminal font.

Boxer Text Editor738

Copyright © 1991-2010 by Boxer Software

At the time of this writing, the Internet site
http://keithdevens.com/wiki/ProgrammerFonts contained good information about
fixed width fonts, along with links to several screen fonts which could be
downloaded free of charge. The Dina Programming Font is a very nice, free, fixed
width font.

Changing the Font Style selection from this dialog will cause the font style of 'Normal'
text to be changed to the selected style. It will not alter the font styles of other screen
syntax elements such as Comments, Reserved Words, Strings, etc. The Configure
Colors command can be used to select the font style(s) for these elements, as well as
for Normal text. For maximum flexibility it may be advisable to let the font style
remain as 'Regular' in the Screen Font dialog and select the font styles to be used for
Color Syntax Highlighting from the Configure | Colors dialog.

The Screen Font is not used to print files; see the Printer Font command to select a
font for that purpose.

When selecting a True Type font, the standard Windows font dialog box may display
a message at the bottom indicating that the selected font will be used for both
screen display and printing. This message does not apply to the use of fonts within
Boxer, since Boxer permits the Screen Font and Printer Font to be selected
separately. The message intends to convey the idea that the font is capable of
being used for both the screen and the printer.

5.238 Scroll Down

Menu: View > Scroll Down

Default Shortcut Key: Ctrl+Up Arrow

Macro function: ScrollDown()

The Scroll Down command will scroll the current file down regardless of where the text
cursor is positioned within the window. The cursor remains on the current line until a
window edge requires it to be changed. This command is useful to scroll a file down
without losing your position in the file. There must be more than a screen full of lines in
order for this command to operate.

5.239 Scroll Left

Menu: View > Scroll Left

Default Shortcut Key: Alt+Left Arrow

Macro function: ScrollLeft()

The Scroll Left command will scroll the current file left regardless of where the text
cursor is positioned within the window. If column 1 is already visible on screen, no

http://keithdevens.com/wiki/ProgrammerFonts
http://www.donationcoder.com/Software/Jibz/Dina/index.html

Command Reference (alphabetically) 739

Copyright © 1991-2010 by Boxer Software

movement is possible. This command is useful to scroll a file leftward without losing
your position in the file.

5.240 Scroll Right

Menu: View > Scroll Right

Default Shortcut Key: Alt+Right Arrow

Macro function: ScrollRight()

The Scroll Right command will scroll the current file right regardless of where the text
cursor is positioned within the window. This command is useful to scroll a file rightward
without losing your position in the file.

5.241 Scroll Up

Menu: View > Scroll Up

Default Shortcut Key: Ctrl+Down Arrow

Macro function: ScrollUp()

The Scroll Up command will scroll the current file up regardless of where the text cursor
is positioned within the window. The cursor remains on the current line until a window
edge requires it to be changed. This command is useful to scroll a file up without losing
your position in the file. There must be more than a screen full of lines in order for this
command to operate.

5.242 Select All Text

Menu: Edit > Select All Text

Default Shortcut Key: Ctrl+A

Macro function: SelectAllText()

The Select All Text command can be used to quickly select all text within the current
file. The selected text can then be operated upon in all the ways in which manually
selected text might be manipulated.

If the default selection mode is columnar (Edit | Select Columnar), the selection
mode must be changed to stream mode (Edit | Select Stream) in order to perform
the Select All Text command.

5.243 Select Columnar

Menu: Block > Select Columnar

Boxer Text Editor740

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Alt+2

Macro function: SelectColumnar()

Columnar Selection
The Select Columnar command is used to set Boxer's default selection mode to
Columnar. In this mode text is selected in rectangular blocks, as opposed to lines.

The default selection mode determines what selection style is used when text selection
is initiated either from the keyboard or with the left mouse button. If the default
selection mode is Stream, a temporary override to Columnar can be achieved by
holding down the Ctrl key before selecting with the mouse. If a three-button mouse is
installed, the center button can be used to perform Columnar text selection regardless
of the current selection mode.

Selecting Text with the Keyboard
Text selection can be performed by keyboard by pressing and holding down the Shift
key and moving the text cursor. Any cursor movement key can be used to move the
cursor, e.g., PgUp, PgDn, Home, End, etc., as long as the Shift key remains depressed.
As the text cursor is moved through the file, the selected area is extended.

Selecting Text with the Mouse
Text selection can be accomplished with the mouse by pressing and holding the left (or
center) mouse button and dragging the mouse to highlight the desired text. As the
mouse pointer is moved through the file, the selected rectangle is extended. An
existing selection can be extended by depressing Shift or Ctrl before clicking or
dragging the mouse.

Selecting the Entire File
The entire file can be selected by issuing the Select All Text command. Doing so while
in Columnar mode will result in the default selection mode being changed to Columnar.

Command Reference (alphabetically) 741

Copyright © 1991-2010 by Boxer Software

Ending Text Selection
Text selection ends when the mouse button or the Shift key is released. The selected
text remains highlighted and is ready to be operated upon by any of Boxer's Block
commands, such as Cut, Copy, Append, Cut-Append, etc.

Extending a Selection with Other Commands
When selected text is present, the Go to Line and Find commands provide options to
extend the selection to the new cursor position that results from their operation. The
Replace command provides an option to limit the replacement operation to the selected
text.

Saving and Printing Text Selections
When text is selected, issuing either the Save or Save Selection As command prompts
the user to save the selected area to a disk file. Similarly, when text is selected and
the Print command is issued, an option is available to print only the selected area.

Deselecting Text
Selected text can be deselected by clicking once with the left mouse button, pressing
the Escape key, or pressing any of the cursor arrow keys. Pressing Enter, or any other
alphanumeric key will cause selected text to be deleted.

If a columnar selection is started in the virtual space beyond the end of a line, or
within the virtual space of a preceding Tab character, the starting column of the
selection will be moved to the nearest column to the left which contains a character.

If you start a selection and find that the mode was set to Stream, simply issue this
command to convert the existing selection to Columnar. There's no need to cancel a
selection; the selection mode can be toggled between Stream and Columnar at will.

5.244 Select Stream

Menu: Block > Select Stream

Default Shortcut Key: Alt+1

Macro function: SelectStream()

Stream Selection
The Select Stream command is used to set Boxer's default selection mode to Stream. In
this mode text is selected by lines, as opposed to rectangular blocks as can be achieved
with Select Columnar. Stream selection is the conventional type of text selection found
in most text editors and word processors.

Boxer Text Editor742

Copyright © 1991-2010 by Boxer Software

The default selection mode determines what selection style is used when text selection
is initiated either from the keyboard or with the left mouse button. If the default
selection mode is Columnar, a temporary override to Stream can be achieved by
holding down the Shift key before selecting with the mouse.

Selecting Text with the Keyboard
Text selection can be performed by keyboard by pressing and holding down the Shift
key and moving the text cursor. Any cursor movement key can be used to move the
cursor, e.g., PgUp, PgDn, Home, End, etc, so long as the Shift key remains depressed.
As the text cursor is moved through the file, the selected area is extended.

Selecting Text with the Mouse
Text selection can be accomplished with the mouse by pressing and holding the left
mouse button and dragging the mouse to highlight the desired text. As the mouse
pointer is moved through the file, the selected area is extended. An existing selection
can be extended by depressing Shift or Ctrl before clicking or dragging the mouse.

Text can also be selected by clicking or dragging the mouse in the area to the left of
column one. A single line can be selected by clicking the left mouse button at the far
left edge of the line. Multiple lines can be selected by dragging the mouse in this area.
An existing selection can be extended by depressing Shift before clicking in this area.

A word can be selected by double clicking anywhere within the word.

Selecting the Entire File
The entire file can be selected by issuing the Select All Text command.

Ending Text Selection
Text selection ends when the mouse button or the Shift key is released. The selected
text remains highlighted and is ready to be operated upon by any of Boxer's Block
commands, such as Cut, Copy, Append, Cut-Append, etc.

Extending a Selection with Other Commands
When text is selected, the Go to Line and Find commands provide options to extend the
selection to the new cursor position that results from their operation. The Replace
command provides an option to limit the replacement operation to the selected text.

Saving and Printing Text Selections

Command Reference (alphabetically) 743

Copyright © 1991-2010 by Boxer Software

When text is selected, issuing either the Save or Save Selection As command prompts
the user to save the selected area to a disk file. Similarly, when text is selected and
the Print command is issued, an option is available to print only the selected area.

Deselecting Text
Selected text can be deselected by clicking once with the left mouse button, pressing
the Escape key, or pressing any of the cursor arrow keys. Pressing the Enter key, or
any other alphanumeric key will cause selected text to be deleted.

If a stream selection is started in the virtual space beyond the end of a line, or
within the virtual space of a preceding Tab character, the starting column of the
selection will be moved to the nearest column to the left which contains a character.

If you start a selection and find that the mode was set to Columnar, simply issue
this command to convert the existing selection to Stream. There's no need to
cancel a selection; the selection mode can be toggled between Stream and
Columnar at will.

5.245 Select without Shift

Menu: Block > Select without Shift

Default Shortcut Key: Alt+M

Macro function: SelectWithoutShift()

This command can be used to initiate a text selection mode in which the Shift key does
not need to be kept depressed during selection, as is the custom under Windows. After
this command is issued, any cursor movement command can be used to extend the
selection as desired. The text selection can be released by pressing Escape.

The type of selection that results is determined by the current selection mode, which
can be set using the Select Columnar and Select Stream commands.

Former users of Boxer/DOS may welcome this command as it provides a method of
text selection that approximates the operation of our earlier products.

5.246 Set Clipboard

Menu: Edit > Set Clipboard > Clipboard n

Default Shortcut Key: none

Macro function: SetClipboard()

The Set Clipboard command is used to set the active clipboard. The active clipboard
can be either the Windows clipboard or one of Boxer's eight internal (private)
clipboards. Text which is placed on the Windows clipboard will be accessible by other
applications. Likewise, text placed on the Windows clipboard by other applications is

Boxer Text Editor744

Copyright © 1991-2010 by Boxer Software

available to Boxer whenever the active clipboard is the Windows clipboard. Text that is
placed on any of Boxer's internal clipboards is not available to other applications.

The content of each clipboard is displayed in a popup window as the menu cursor is
moved across the clipboard's menu entry. This makes it easy to check what's on a
clipboard without actually pasting the content into a file.

The content of Boxer's internal clipboards will be saved at the end of an edit session, as
long as the length of the text on the clipboard is 2,048 characters or less. Because the
content of the internal clipboards persists from session to session, and cannot be
changed by other applications, these clipboards can be useful for storing frequently
used text blocks for insertion into your files. The Edit Clipboard command might be
used to create these text blocks and maintain them.

The content of a single clipboard can be cleared with the Clear Clipboard command.
The content of all clipboards can be cleared with the Clear All Clipboards command.

When the content of a clipboard is displayed in a popup window, the text is
displayed with an 8 point, fixed width, Courier New font. This font utilizes the ANSI
character set mapping. If the current screen font uses an OEM character set
mapping, and if characters outside the normal alphanumeric range reside on the
clipboard, then the content of the clipboard may appear different in the popup
window than it would in the underlying file. This difference is simply the result of a
difference in character sets, and does not mean that the data on the clipboard has
been adjusted or corrupted.

5.247 Set Clipboard Previous

Menu: Edit > Set Clipboard > Previous

Default Shortcut Key: none

Macro function: SetClipboardPrevious()

This command can be used to set the active clipboard to be the previous clipboard. For
example, if clipboard 3 is active, issuing this command will make clipboard 2 the active
clipboard. Clipboard 8 is considered the previous clipboard to the Windows clipboard.

5.248 Set Clipboard Next

Menu: Edit > Set Clipboard > Next

Default Shortcut Key: none

Macro function: SetClipboardNext()

This command can be used to set the active clipboard to be the next clipboard. For
example, if clipboard 3 is active, issuing this command will make clipboard 4 the active

Command Reference (alphabetically) 745

Copyright © 1991-2010 by Boxer Software

clipboard. The Windows clipboard is considered the next clipboard to the clipboard 8.

5.249 Shaded Tab Zones

Menu: View > Shaded Tab Zones

Default Shortcut Key: none

Macro function: ShadedTabZones()

The Shaded Tab Zones command toggles on and off a mode in which a different
background screen color is used for alternating tab zones:

This display mode is most helpful when Boxer is used to edit files containing
character-separated field data, such as comma-separated values (CSV) or fixed-width
field records. The Tab Display Size command would typically be used first to configure
the proper tab stop settings for the data file. The Intelli-Tabs feature on that dialog is
especially useful in this regard. Once the tab stop settings are entered, use this
command to enable the shading of tab zones.

The alternative background color used by the Shaded Tab Zones command can be
set using the Configure | Colors command. The tab zone is not depicted in the
miniature screen on that dialog, but rather appears in the Screen elements by name
listbox. Its name is Tab Zone Background.

5.250 Skip

Menu: Window > Skip -or- View > File Tabs > Skip File

Default Shortcut Key: none

Macro function: WindowSkip()

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The skip status of each file is stored when an edit session is closed, so it will

Boxer Text Editor746

Copyright © 1991-2010 by Boxer Software

persist if the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

Clicking on a file tab will cause that file's skip status to be released automatically, if
the relevant option on the Configure | Preferences | Cursor dialog page is enabled.

5.251 Skip All

Menu: View > File Tabs > Skip All

Default Shortcut Key: none

Macro function: none

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The Skip All command sets the skip status of all open files to on. You might
issue the Skip All command before loading new files for editing, thereby ensuring that
the Window Previous and Window Next commands would cycle only within the newly
opened files.

The skip status of each file is stored when an edit session is closed, so it will persist if
the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

5.252 Soften Line Enders

Menu: Paragraph > Soften Line Enders

Default Shortcut Key: none

Macro function: SoftenLineEnders()

The Soften Line Enders command converts hard line enders to soft line enders, with
proper consideration to paragraph boundaries. If a selection is present, the operation is
restricted to the selected range of lines. If a selection is not present, the operation is
performed across the whole file. A confirmation dialog will appear before the operation
is performed:

Command Reference (alphabetically) 747

Copyright © 1991-2010 by Boxer Software

The concept of "soft" and "hard" line enders relates to the Visual Wrap command. A
line with one or more spaces at the end is considered to have a soft line ender. Lines
without trailing spaces are considered to have hard line enders. When Visual Wrap
mode is active, lines with soft line enders are eligible to be merged with the content of
lines below, allowing text to be reformatted to fit within the window width (or whatever
other wrapping margin is chosen).

Applying the Soften Line Enders command to a file has the effect of making the file
flowable by Visual Wrap.

See also: Visual Wrap, Visual Wrap Options, Harden Line Enders

5.253 Sort File Tabs by Extension

Menu: View > File Tabs > Sort by Extension

Default Shortcut Key: none

Macro function: SortFileTabsByExt()

When checked, this menu option causes the File Tabs to be arranged alphabetically first
by file extension, and then by filename.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

5.254 Sort File Tabs by Name

Menu: View > File Tabs > Sort by Name

Default Shortcut Key: none

Boxer Text Editor748

Copyright © 1991-2010 by Boxer Software

Macro function: SortFileTabsByName()

When checked, this menu option causes the File Tabs to be arranged alphabetically by
filename.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

5.255 Sort File Tabs by Use

Menu: View > File Tabs > Sort by Use

Default Shortcut Key: none

Macro function: SortFileTabsByUse()

When checked, this menu option causes the File Tabs to be arranged according to
frequency of use. When a File Tab is clicked, the file is promoted to the first position.

Switching windows by keyboard will not cause the active file tab to be promoted to
the first position. This only occurs when the file tab is clicked with the mouse.

Note: repositioning file tabs by drag-and-drop necessitates that any file tab sorting
mode (name, extension or use) which may be in force be abandoned. Otherwise,
when a new file is opened and the file tabs are resorted, the drag-and-drop ordering
would be lost.

5.256 Sort Lines

Menu: Block > Sort Lines

Default Shortcut Key: none

Macro function: SortLines()

The Sort Lines command can be used to sort a range of selected lines. A variety of
options are provided to control the nature of the sort performed. These options are
described below:

Command Reference (alphabetically) 749

Copyright © 1991-2010 by Boxer Software

Sort Type

Alphabetic
Use this option to sort alphabetically. Any digits that appear within the data will not be
treated as numeric values.

Alphanumeric
This option sorts alphabetically, but embedded sequences of digits within the data are
treated as numeric values. This is sometimes called a natural sort, and is best
understood with an example. Consider the results of the Alphabetic and Alphanumeric
sorting options when applied to a list of filenames:

Alphabetic sort: Alphanumeric sort:
z1.txt z1.txt
z10.txt z2.txt
z100.txt z3.txt
z101.txt z4.txt
z102.txt z5.txt
z11.txt z6.txt
z12.txt z7.txt
z19.txt z8.txt
z2.txt z9.txt
z20.txt z10.txt
z3.txt z11.txt
z4.txt z12.txt
z5.txt z19.txt

Boxer Text Editor750

Copyright © 1991-2010 by Boxer Software

z6.txt z200.txt
z7.txt z100.txt
z8.txt z101.txt
z9.txt z102.txt

In the left column, the results of an Alphabetic sort are shown. On the right, the more
pleasing results of an Alphanumeric are displayed.

Numeric
Use this option to sort numerically. The data will be interpreted as numbers, and not as
character data. Alphabetic data will sort as though its value were zero.

Date
Use this option to sort chronologically by date. Be sure to set the proper Date Format
in the options box provided.

IP Address
Use this option to sort IP Addresses data with proper consideration to each node within
the address.

Line Length
Use this option to sort lines according to their length.

Position of the string:
This option allows data to be sorted based on the position of a supplied string within the
data. This option can be useful for segregating lines of data that contain a certain type
of information. For example, by sorting on the string '@', lines containing email
addresses would be isolated from those lines not containing email addresses.

Sort Column

Start of selection
Use this option if the sort should be performed based on the starting column of the
selection. The column number of the start of the selection is shown in parentheses to
the right.

End of selection
Use this option if the sort should be performed based on the ending column of the
selection. The column number of the end of the selection is shown in parentheses to
the right.

Other
Use this option if the sort should be performed based on some other column in the
data.

Sort Order

Ascending
Use this option to sort in increasing order.

 The sort command will consult the current locale so that accented characters are

Command Reference (alphabetically) 751

Copyright © 1991-2010 by Boxer Software

sorted according to the local collating sequence.

Descending
Use this option to sort in decreasing order.

 The sort command will consult the current locale so that accented characters are
sorted according to the local collating sequence.

Random
Use this option to sort randomly. This option might be used to randomly order a list
which was already sorted. When this option is selected, all other options on the dialog
become irrelevant.

Case Comparison

Case Sensitive
When an alphabetic or alphanumeric sort is being performed, this option can be used to
ensure that character case is considered significant.

Case Insensitive
When an alphabetic or alphanumeric sort is being performed, this option can be used to
ensure that character case is ignored.

Character Comparison

Character Value
When an alphabetic or alphanumeric sort is being performed, this option causes
characters to be compared based on their actual character values. This is sometimes
called an 'ASCII sort.'

Locale Tables
When an alphabetic or alphanumeric sort is being performed, this option causes
characters to be compared using the 'locale tables' supplied by the operating system.
Using the locale tables ensures that when accented characters are encountered in the
data being sorted, they will be sorted according to local custom.

The results of a Locale Table sort can vary from those achieved using Character Value.
A case sensitive sort using Character Value would yield the following result:

AAA
BBB
CCC
aaa
bbb
ccc

If the same data is sorted with case sensitive and Locale Tables, the following result is
achieved:

aaa
AAA
bbb

Boxer Text Editor752

Copyright © 1991-2010 by Boxer Software

BBB
ccc
CCC

 A Locale Table sort uses a "word sort," rather than a "string sort." A word sort treats
hyphens and apostrophes differently than it treats other symbols that are not
alphanumeric, in order to ensure that words such as "coop" and "co-op" stay
together within a sorted list.

Date Format

The date options below are applicable when a Date sort is being performed. The slash
character is shown for illustration only; any separator symbol--or none at all--may
appear in the data being sorted.

MM / DD / YY
Data is formatted with 2-digit month, date and year. This option can also be used for
MM / DD / YYYY format dates.

DD / MM / YY
Data is formatted with 2-digit date, month, and year. This option can also be used for
DD / MM / YYYY format dates.

YY / MM / DD
Data is formatted with 2-digit year, month, and date.

YYYY / MM / DD
Data is formatted with 4-digit year, 2-digit month and 2-digit date.

5.257 Spaces to Tabs

Menu: Block > Convert Other > Spaces to Tabs

Default Shortcut Key: none

Macro function: SpacesToTabs()

The Spaces to Tabs command can be used to convert the Spaces within a selected area
of text into an equivalent number of Tabs. In doing so, Boxer uses the current display
value of a Tab (View | Tab Display Size) to determine how many Tabs should be used.

No attempt is made to determine whether the Spaces being changed reside within a
quoted string. Programmers should be careful when using this command, as
changing Spaces within a quoted string may yield undesirable results if the string
was to be displayed in a message on-screen.

The Spaces to Tabs and Tabs to Spaces commands are not opposites. If the Tab
Display Size is 4, the sentence:

Command Reference (alphabetically) 753

Copyright © 1991-2010 by Boxer Software

The<tab>dog<tab>ran<tab>wild.

would be converted by the Tabs to Spaces command to:

The<space>dog<space>ran<space>wild.

Running the Spaces to Tabs command on this sentence would not yield the original
sentence. A sequence of two or more spaces is required before a tab character is
considered for placement into the converted text.

5.258 Spell Checker

Menu: Tools > Spell Checker

Default Shortcut Key: F7

Macro function: SpellChecker()

The Spell Checker command provides access to the built-in spell checking facility.
Boxer's spell checker provides several options to control the scope of the spell check
operation, and some unique options which permit spell checking to be performed within
program source code files.

For information about Boxer's on-the-fly spell checking feature, which checks text as
you type, see the Active Spell Checking command.

Scope

Current Word
Use this option if only the word at the text cursor is to be checked.

Current Paragraph

Boxer Text Editor754

Copyright © 1991-2010 by Boxer Software

Use this option to spell check the current paragraph only.

Selected lines
Use this option to constrain the spell check to the selected text. When text is not
selected, this option will be disabled.

Cursor to bottom
Use this option to spell check from the cursor to the end of file.

Top to bottom
Use this option to spell check the entire file.

All open files
Use this option to spell check all open files.

Active project
Use this option to limit the scope of the spell check to those files within the active
project.

Options

Ignore HTML markup tags
When an HTML file is being edited, this option can be used to tell the Spell Checker to
ignore HTML markup tags, thereby avoiding the false errors which would occur if the
entire file were checked.

Syntax Spell Checking
When editing a file for which Boxer has Syntax Highlighting information, this option can
be used to tell the Spell Checker to check only that text which matches a designated
syntax. This makes it possible to spell check program code without getting false hits
for reserved words, variable names, and other text which naturally cannot appear
within a dictionary. When this box is checked, the options below become available for
selection.

Strings only
Use this option to spell check only that text which appears in String context. Boxer
uses its Syntax Highlighting information to determine the syntax of the text being
checked.

Comments only
Use this option to spell check only that text which appears in Comment context.
Both block comment text and end-of-line comment text will be checked. Boxer uses
its Syntax Highlighting information to determine the syntax of the text being
checked.

Strings and Comments
Use this option to spell check only that text which appears in either String or
Comment context. Both block comment text and end-of-line comment text will be
checked. Boxer uses its Syntax Highlighting information to determine the syntax of
the text being checked.

Language

Command Reference (alphabetically) 755

Copyright © 1991-2010 by Boxer Software

Use this option to select the dictionary to be used by the Spell Checker. Dictionaries
are available for the following languages: American English, British English, Dutch,
French, German, Italian, Czech and Spanish. Three specialty dictionaries are also
available: Legal, Medical and 'Moby', an extra large American English dictionary. If
Boxer was not supplied with the dictionary you prefer to use, please visit our website
at www.boxersoftware.com to obtain our other dictionaries. The dictionaries are located
in the Downloads area.

More Options...
The More Options button provides a quick way to summon the Configure | Preferences
| Other dialog page, which contains additional Spell Checker options.

After specifying the scope and other options, the Spell Check operation begins. When a
word is encountered which is not found in the dictionary, a popup dialog box is
presented:

The position of the popup box is selected so as not to overlap the offending word within
the editor window. The word that was not found is displayed in bold, and is also
highlighted in the editor window to show its context. Several options are available:

Change to
The Change to edit box displays a suggested word which the offending word might be
replaced with. The text in this box can be edited as may be needed.

To ensure that special characters are displayed in the Change to box as they will
appear when inserted into the editor, the Change to box uses the same font as is
used in the editor itself.

Suggestions

http://www.boxersoftware.com

Boxer Text Editor756

Copyright © 1991-2010 by Boxer Software

The Suggestions listbox displays a list of other words which might be used to replace
the offending word. Click on a word to select it and move it into the Change to edit
box.

Change
Use the Change button to replace the offending word with the word in the Change to
box.

Change All
Use the Change All button to replace the offending word with the word in the Change to
box, and to indicate that all future occurrences of the word should also be changed.

Ignore
Use the Ignore button to skip the offending word. Future occurrences of the word will
be presented when they occur.

Ignore All
Use the Ignore All button to skip the offending word, and to indicate that all future
occurrences should also be ignored.

Add
Use the Add button to add the offending word to the dictionary. Words which are added
to the dictionary are saved within the file userdict.txt in Boxer's data folder. This

file can also be edited within Boxer to add other words, or to remove words which may
have been added mistakenly.

Words which are added to the user dictionary will be accepted as correctly spelled
words in any case configuration in which they may occur. For example, if the word

ebay is added to the dictionary, it will be accepted in any of the following forms:

eBay, ebAy, and ebaY. This liberal processing was necessary because the

third-party dictionary that Boxer uses is not processed in a case sensitive manner.
Before this handling was put in place, the word eBay would always be reported as

misspelled, even when eBay (or any variant) had been added to the user dictionary.

Mark Word
Use the Mark Word button to surround the offending word with pound signs (###).
This makes it easy to locate the word later on to make manual adjustments. When the
Spell Check operation is complete, the cursor will be placed on the first marked word.

Suggest
Once a change has been made to the word in the Change to box, the Suggest button
can be used to fill the Suggestions listbox with other words which may be related to the
word.

Reset Ignored
Use the Reset Ignored button to clear the list of ignored words which has been built
during the current edit session.

Next File
Use the Next File button to skip the rest of the current file and move to the next file to
be checked.

Command Reference (alphabetically) 757

Copyright © 1991-2010 by Boxer Software

By default, Boxer is configured to use the American English dictionary. Dictionaries are
also available for British English, Dutch, French, German, Italian, Czech and Spanish.
Three specialty dictionaries are also available: Legal, Medical and 'Moby', an extra large
American English dictionary. The active dictionary can be set on the dialog that
appears when the Spell Checker is first run. If Boxer was not supplied with the
dictionary you prefer to use, please visit our website at www.boxersoftware.com to
obtain our other dictionaries. The dictionaries are located in the Downloads area.

Several options which can be used to further control the Spell Checking process are
available on the Configure | Preferences | Other options page.

5.259 Split Horizontal

Menu: Window > Split Horizontal

Default Shortcut Key: none

Macro function: SplitHorizontal()

The Split Horizontal command can be used to split the current window horizontally. A
split window provides a second view into the same file, allowing two different sections
of the file to be viewed simultaneously in different window panes. Each window pane
can be scrolled separately from the other, just as if a second window were in use.

After a window is split, a thin splitter bar appears which visually separates the two
panes. The splitter bar can be dragged up or down with the left mouse button to resize
the window panes.

Clicking on the splitter bar with the right mouse button provides access to its context
menu. The context menu has options to change the split from horizontal to vertical, or
to turn off the horizontal split so the window becomes whole again.

The Window Next command can be used to move from the top pane to the bottom
pane, while the Window Previous command changes focus from the bottom pane to the
top.

When the height of the window is increased or decreased due to window resizing, the
relative position of the window split will be maintained, so long as each pane remains
taller than the minimum window height.

If the Column Ruler is in use, it will appear only in the top window pane of a
horizontally split window.

When the panes of a split window are resized with the mouse, a report appears on
the status line that shows the percentage of width/height allocated to each pane.

http://www.boxersoftware.com

Boxer Text Editor758

Copyright © 1991-2010 by Boxer Software

5.260 Split Vertical

Menu: Window > Split Vertical

Default Shortcut Key: none

Macro function: SplitVertical()

The Split Vertical command can be used to split the current window vertically. A split
window provides a second view into the same file, allowing two different sections of the
file to be viewed simultaneously in different window panes. Each window pane can be
scrolled separately from the other, just as if a second window were in use.

After a window is split, a thin splitter bar appears which visually separates the two
panes. The splitter bar can be dragged left or right with the left mouse button to resize
the window panes.

Clicking on the splitter bar with the right mouse button provides access to its context
menu. The context menu has options to change the split from vertical to horizontal, or
to turn off the vertical split so the window becomes whole again.

The Window Next command can be used to move from the left pane to the right pane,
while the Window Previous command changes focus from the right pane to the left.

When the width of the window is increased or decreased due to window resizing, the
relative position of the window split will be maintained, so long as each pane remains
wider than the minimum window width.

If the Column Ruler is in use, it will appear in both the left and right window panes of a
vertically split window.

When the panes of a split window are resized with the mouse, a report appears on
the status line that shows the percentage of width/height allocated to each pane.

5.261 Status Bar

Menu: View > Status Bar

Default Shortcut Key: none

Macro function: ViewStatusBar()

The View Status Bar command is used to toggle on and off the display of Boxer's Status
Bar which appears at screen bottom. The status bar displays the location of the text
cursor in the current file, the current edit mode, current Clipboard, read-only state,
Typing Wrap and Text Width settings and the current time and date.

Command Reference (alphabetically) 759

Copyright © 1991-2010 by Boxer Software

The leftmost area of the Status Bar is used to present various information depending on
the command being performed. For example, while text is being selected, a report is
displayed that shows the number of lines and characters selected. The percentage of
the selection, with respect to the whole file, is also displayed.

Double clicking in each of the status fields is recognized as a shorthand method of
issuing a related command.

The Line Number field displays the current line number in the current file. Double
clicking in the Line Number field will issue the Go to Line command. In Visual Wrap
mode, the Line Number field will display paragraph numbers, since a one-to-one
relationship between physical lines and screen lines no longer exists. In Visual Wrap
mode, double clicking in this field will issue the Go to Paragraph command.

The Column Number field displays the current column number in the current file.
Double clicking in the Column Number field will issue the Go to Column command.

The Edit Mode field indicates the current edit mode. 'INS' denotes Insert mode. 'TYP'
denotes Typeover mode. Double clicking in the Edit Mode field will toggle the edit mode
between Insert and Typeover modes.

The Clipboard field displays the active clipboard. 'W' indicates the Windows clipboard;
internal clipboards are denoted by the digits 1-8. Double-clicking in this field advances
the active clipboard by one. Shift double-clicking decreases the active clipboard by one.

To the right of the Clipboard field is the Read-Only field. If the current file is being
viewed in read-only mode, 'RO' is displayed. If the file is eligible for changes, 'WR' is
displayed. Double-clicking in this field will change the state of the current file within
the editor. If a file is being edited in read-only mode because its on-disk read-only file
attribute is set, an option is provided to change the file's on-disk read-only attribute.
Changing a writable file to read-only mode does not alter a file's on-disk file attribute.

To the right of the Read-Only field is the Typing Wrap and Text Width field. Double
clicking atop the 'w' in this field will toggle Typing Wrap mode on and off. A lowercase
'w' denotes off; an uppercase 'W' denotes on. Double clicking in the numeric portion of
this field will issue the Text Width command.

The macro field serves several purposes. When the word 'Macro' is not flashing,
double-clicking in this field will display the Macro dialog. When a macro is running, the
word 'Macro' will flash intermittently. When keystrokes are being recorded using the
Record Keys command, the macro field will flash the word 'Record'.

At the far right of the Status Bar is the Time and Date display. Double clicking atop the
time display will issue the Insert Short Time command. Double clicking atop the date
display will issue the Insert Short Date command.

Due to a problem reported by users in countries that do not use the Western/Latin
code page, the date in the lower right corner of the status bar will now be displayed

Boxer Text Editor760

Copyright © 1991-2010 by Boxer Software

in English, and not in the language dictated by the operating system's regional
settings. The Insert Short/Long Time/Date commands will continue to honor the
system's regional settings.

Unless screen space is at a premium, it is recommended that the Status Bar display be
left on. Right clicking on the Status Bar summons its context menu, which allows it to
be turned off.

5.262 Strip HTML/XML Tags

Menu: Block > Strip HTML/XML Tags

Default Shortcut Key: none

Macro function: StripHTMLTags()

The Strip HTML/XML Tags command can be used to remove HTML or XML tags from
selected text. HTML tags are markup sequences which appear within the '<' and '>'

characters. Boxer does not require that the tag names found within these brackets be
legitimate HTML tags. It merely removes any text found to be within such delimiters.
In this way, Boxer will be able to process new tags properly as the HTML standard
evolves.

Caution: If the text being processed contains unbalanced angle bracket
characters--specifically an unmated open angle bracket--then all text following the
open angle bracket will be treated as an HTML tag, and will be removed.

In addition to stripping HTML tags, the following HTML sequences will be converted to
their character equivalents:

 <space>
& &
" "
< <
> >
– -
— --
‘ '
’ '
“ "
” "
… ...

The conversion of other such sequences is complicated by the fact that accented
characters do not map to unique character codes in the ANSI and OEM characters set.
These translations are therefore not performed.

Command Reference (alphabetically) 761

Copyright © 1991-2010 by Boxer Software

5.263 Strip Leading Spaces

Menu: Block > Strip Leading Spaces

Default Shortcut Key: none

Macro function: StripLeadingSpaces()

The Strip Leading Spaces command can be used to remove leading Spaces and/or Tabs
from the start of each line within the selection.

5.264 Strip Trailing Spaces

Menu: Block > Strip Trailing Spaces

Default Shortcut Key: None

Macro function: StripTrailingSpaces()

The Strip Trailing Spaces command can be used to remove trailing Spaces and/or Tabs
from the end of each line within the selection. The number of characters removed is
reported upon completion.

Trailing blanks can also be stripped automatically when loading a file. See the Strip
trailing blanks when loading a file option on the Configure | Preference | File I/Ooptions
page.

Trailing blanks can also be stripped automatically when saving a file. See the Strip
trailing blanks when saving a file option on the Configure | Preference | File I/O options
page.

5.265 Swap Lines

Menu: none

Default Shortcut Key: F4

Macro function: SwapLines()

The Swap Lines command exchanges the current line with the line below. The text
cursor remains on the same line it was on before the command was issued. This
command is useful for swapping the order of a pair of items within an ordered list.

The last line in the file is not eligible for this operation.

 This command used to reside in the Edit menu, but has been replaced by the Move
Line Up and Move Line Down commands. Though not accessible directly from the
menu, the command remains active internally, and can be accessed by a key

Boxer Text Editor762

Copyright © 1991-2010 by Boxer Software

assignment, and via its macro function.

5.266 Swap Words

Menu: Edit > Swap Words

Default Shortcut Key: Shift+F4

Macro function: SwapWords()

The Swap Words command can be used to swap the word at the text cursor with the
word to its right.

The characters which serve to delimit words can be set on the Configure | Preferences |
Cursor options page. The option is titled These characters will delimit words.

The last word on a line cannot be swapped, since the Swap Words command does not
span lines.

5.267 Synchronized Scroll

Menu: View > Synchronized Scroll

Default Shortcut Key: none

Macro function: none (the interactive nature of this command makes it unsuitable for
use within a macro)

The Synchronized Scroll command can be used to enter a display mode in which all
open windows will scroll synchronously. This command is useful for hands-off file
browsing, or for comparing similar files in side-by-side windows.

The initial direction of scrolling is downward, but the Up and Down arrow keys can be
used to change direction at any time.

The Left Arrow and Right Arrow keys can be used to decrease or increase the scrolling
delay, respectively.

Pressing Right Arrow repeatedly through the range of delay settings will set the delay to
infinite. The infinite setting effectively locks all open windows to one another. The Up
Arrow and Down Arrow keys can then be used to scroll all windows synchronously.

The Home and End keys can be used to move quickly to the minimum and maximum
(infinite) delay settings.

Scrolling can be canceled with the Esc key or by pressing any key other than the arrow
keys.

Command Reference (alphabetically) 763

Copyright © 1991-2010 by Boxer Software

You may observe that Synchronized Scrolling quickens when the mouse is being
moved. This is because a program receives more CPU cycles from the operating
system when it is perceived to be active than when the operating system believes
the program to be idle.

5.268 Syntax Highlight As

Menu: View > Syntax Highlight As

Default Shortcut Key: none

Macro function: SyntaxHighlightAs()

The Syntax Highlight As command provides a means to override the syntax highlighting
that occurs due to a file's extension, or to select a language for a file that would not
otherwise be eligible for highlighting. For example, if you're viewing a file named

index.html.bak, the Syntax Highlight As command would allow HTML to be

designated as the syntax highlighting language, even though the file's .bak extension

is not configured for HTML highlighting.

Boxer Text Editor764

Copyright © 1991-2010 by Boxer Software

The None button allows a file to be disassociated from its syntax highlighting language,
without the need to disable syntax highlighting for all files being edited, as the View |
Syntax Highlighting command can do.

The duration of the Syntax Highlight As assignment is for the current editing session
only. To permanently associate a file type with a syntax highlighting language, use the
Configure | Syntax Highlighting command to add its file extension to the list of
recognized extensions.

5.269 Syntax Highlighting (Configure)

Menu: Configure > Syntax Highlighting

Default Shortcut Key: none

Macro function: ConfigureSyntaxHighlighting()

The Configure Syntax Highlighting command is used to specify the information needed

Command Reference (alphabetically) 765

Copyright © 1991-2010 by Boxer Software

by Boxer to perform on-screen Color Syntax Highlighting and Color Syntax Printing and
for its other syntax-related features. Boxer is supplied with pre-defined syntax
information for many popular languages. The Configure Syntax Highlighting command
can be used to edit any of the pre-defined syntax information, or to define the syntax
for new languages.

The dialog box below is used to define syntax information:

Boxer determines whether to perform Syntax Highlighting on the current file according
to three factors.

· The extension of the current file must be one for which syntax information has
been defined

· The language must be configured to be 'active' on the Configure Syntax
Highlighting form (see the Syntax Highlighting is active for this language
checkbox)

· Syntax Highlighting must be enabled on the View menu

Languages

New Button
Use the New button to create a Syntax Highlighting entry for a new language. An entry
called New Language will be created which can be changed with the Rename button.
Up to 100 different languages can be defined.

Rename Button

Boxer Text Editor766

Copyright © 1991-2010 by Boxer Software

Use the Rename button to change the name of the selected language. A pop-up dialog
box will appear for entering the new name. The name used will not appear anywhere
other than in the list of languages.

Copy Button
Use the Copy button to create a copy of the currently selected language entry. The
name 'Copy of...' will be used and can be changed with the Rename button. The Copy
function can save time when defining a new language which has similar characteristics
to an existing language.

Import Button
The Import function can be used to import syntax information in the format used by our
BOXER/DOS, BOXER/TKO and BOXER/OS2 products. If you have created custom
syntax information with our other editors, that information can be imported directly by
Boxer for Windows. First isolate the syntax information blocks which are to be imported
by copying them from the DEFAULT.CFG file into a temporary file. Then click the

Import button and specify that file as the name of the file to be imported. Boxer will
read the named file and automatically convert the syntax information into the new
format. Because the old information format did not contain a name field, you will be
prompted during conversion to supply a name for each language as it is imported.

The Import function can also be used to import a syntax information block which has
been extracted from the Syntax.ini file, in which Boxer stores its syntax information.

This procedure may be useful for passing syntax information from PC to PC or for
installing new syntax information files as they become available from Boxer Software.

Delete Button
Use the Delete button to delete the currently selected language. A confirmation is
required before the deletion occurs. If a language is accidentally deleted, you can
recover it by using the Cancel button.

If you simply wish to disable Syntax Highlighting for a particular language, use the
Syntax Highlighting is active for this language checkbox described below.

Delete All Button
Use the Delete All button to delete ALL languages. A confirmation is required before
the deletions will occur. You can recover from an accidental deletion by using the
Cancel button.

USE THIS COMMAND ONLY IF YOU WISH TO DELETE ALL SYNTAX INFORMATION.

If you wish to disable syntax highlighting for all languages, use the Perform Syntax
Highlighting option on the Configure | Preferences | Display options page. That option
is non-destructive.

Parameters

The Parameters listbox contains all of the parameters which can be defined for a given
language. Each of these parameters is discussed below:

Command Reference (alphabetically) 767

Copyright © 1991-2010 by Boxer Software

File Extension(s)
This parameter is used to designate the file extensions which belong to the language
being defined. The file extensions are named one per line, with a leading period (.).

Be sure to include all file extensions for which highlighting is desired, such as header
files, and include files. If a file type commonly goes by two names, such as .HTM and

.HTML, be sure to include both extensions to guarantee that highlighting will be

performed on all files desired.

To designate that highlighting is to be applied to files without an extension, use a
lone period (.) on a line.

Reserved Words 1, 2, 3, 4, 5
These parameters are used to list the reserved words (sometimes known as keywords)
which are to be highlighted. Reserved words are entered one word per line. No care
need be taken to preserve an alphabetic sort, since sorting is performed automatically
by Boxer.

If reserved words are to be considered case-sensitive, they should be entered in the
case which is recognized by the language.

Boxer permits up to 5 sets of reserved words to be defined, and each set can be
distinctly colored (see Configure | Colors). Reserved Words 1 might be used for
language keywords, such as for, if, while, loop, etc. Reserved Words 2 might be

used for preprocessor directives such as #include, #define, #ifdef, etc. Reserved

Words 3 might be used for library functions such as strcpy, strlen, strcat, etc.

The Reserved Words 4 and Reserved Words 5 groups provide flexibility for coloring
other classes of words.

The Reserved Words 4 and Reserved Words 5 groups do not have their own sample
text entries in the miniature configuration screen in the Configure | Colors dialog.
To assign colors and styles to these screen elements, select them from the Screen
elements by name listbox.

The wildcard characters '?' and '*' are no longer recognized when defining reserved

words as they were in our earlier products. We found that very few languages need
this feature, while some popular languages (such as Perl) need to use '?' and '*'
within their reserved words.

Reserved Word Symbols
This parameter is used to designate those symbols which are permissible within a
reserved word or user variable, so that Boxer does not mistakenly highlight a phrase
which happens to begin with a reserved word. An example will help clarify:

If 'read' is a reserved word, and you want to ensure that the first four letters of a
variable named 'read_my_data_file' are not mistakenly highlighted as a reserved word,
designate the underscore in the Reserved Word Symbols parameter. This tells Boxer
that the underscore is allowed to appear in a reserved word or user variable, and that it
is not a valid separator.

Alphanumeric characters are automatically permissible within reserved words. Add any

Boxer Text Editor768

Copyright © 1991-2010 by Boxer Software

additional characters which require similar treatment, one per line.

Symbol Characters 1, 2
These parameters are used to designate those characters which are to receive Symbol
coloration. Two different sets of symbols are permitted, providing extra flexibility for
color combinations. Designate one symbol per line.

String Delimiters
This parameter is used to designate the character(s) which are used to delimit strings.
These characters vary from language to language, but are typically the double quote
and/or single quote characters. Designate one symbol per line.

Boxer does not support the highlighting of strings that extend across more than one
line. If you must highlight such strings, and if the language in question uses
opening and closing string delimiters that are unique to one another, then you may
wish to define these sequences as though they were Block Comments. Strings
would then be colorized in Comment color, but multi-line strings would then be
handled.

Literal Characters
This parameter is used to designate the character which is used to remove significance
from an opening or closing String Delimiter character while within a string. Typically
this is the backslash (\) character.

Open Tag
This parameter is used to designate the character which opens a tag for languages such
as HTML, XML and SGML. These languages differ from conventional programming
languages in that all 'code' within the file appears within markup tags, and all text
outside of markup tags is considered to be the text of the document. For all other
conventional programming languages, this parameter should be left blank.

Close Tag
This parameter is used to designate the character which closes a tag for languages such
as HTML, XML and SGML. These languages differ from conventional programming
languages in that all 'code' within the file appears within markup tags, and all text
outside of markup tags is considered the text of the document. For all other
conventional programming languages, this parameter should be left blank.

Open Block Comment
This parameter is used to designate the sequence (or sequences) which are used to
open a multi-line block comment. Place each sequence on its own line.

Close Block Comment
This parameter is used to designate the sequence (or sequences) which are used to
close a multi-line block comment. Place each sequence on its own line.

Block Comment Search
In order to properly handle multi-line comment blocks, Boxer must at times search
backward in the current file to determine if a multi-line comment remains open from a
line which is off-screen. This parameter designates the number of lines which should be
searched during this effort. Higher values will result in better display accuracy when

Command Reference (alphabetically) 769

Copyright © 1991-2010 by Boxer Software

large block comments are used, but can slow screen display at other times.

End of Line Comment
This parameter is used to the designate the sequence (or sequences) which are used to
open an end-of-line comment. An end-of-line comment persists from the point it is
opened until the end-of-line. Place each End of Line Comment sequence on its own
line.

For each End of Line Comment defined, a corresponding End of Line Comment
Column must also be defined. See the paragraph immediately below for details.

If an End of Line Comment sequence includes a Space character, you'll find that
comments in your text will not be not be colorized when the View Visible Spaces
option is in use. This occurs because the Space character in the End of Line
Comment sequence does not match the value of the visible space character used on
screen. You can remedy this by adding a duplicate sequence that uses the visible
space character in place of the Space. You can find the value of the visible space
character on the Configure | Preferences | Display dialog page. This character must
be entered into the edit dialog with a special technique; see the Help topic Inserting
Special Character for details. Finally, remember to add the accompanying End of
Line Comment Column parameter to mate with the duplicate End of Line Comment
sequence.

End of Line Comment Column
This parameter is used to designate the column in which an associated End of Line
Comment should be recognized. Some languages require that an End of Line Comment
sequence be recognized only when it appears in a particular column, such as column 1
or column 7.

Enter the required column value, or enter 0 (zero) if the End of Line Comment sequence
is to be recognized in all column positions. When multiple End of Line Comment
sequences have been defined, each sequence must have a corresponding End of Line
Comment Column entry, in the same list position as its mate.

Languages such as Clipper, dBase and FoxPro require that the asterisk (*) be

recognized as an end of line comment when the symbol appears as the first non-blank
character in the line. In other contexts the asterisk must retain its conventional
meaning as the multiply symbol. This logic can be requested in Boxer (for the asterisk
or any other End of Line Comment sequence) by using a value of -1 for the End of Line
Comment Column parameter.

Tab Stops
Use this parameter to designate tab stop settings for files matching the File Extensions
parameter of this language configuration. See the View | Tab Display Size command for
more information about variable width tab stops.

Help File
This parameter can be used to designate an associated Windows help file (.HLP or

.CHM) for the language being defined. Once the help file has been defined for a

language, context-sensitive help for the word beneath the text cursor can be obtained
by issuing the Help command, which is ordinarily assigned to F1. To obtain Boxer's

Boxer Text Editor770

Copyright © 1991-2010 by Boxer Software

native Help instead of language-specific help, simply move the text cursor into an open
area of text before requesting Help. The full filepath to the reference document must
be supplied.

This parameter can also be used to designate an HTML-format reference file, or indeed
any type of reference document which the operating system knows how to open based
on its file extension. For example, if you have a Microsoft Word .DOC file or Adobe

Acrobat .PDF file that details the syntax of a language, these too can be named in the

Help File parameter for that language.

The ability to display context-sensitive help for the word beneath the text cursor is
available only when launching WinHelp (.HLP) and HTML Help (.CHM) files, and not

when .HTML, .PDF, .DOC and other files are used.

Syntax Spell
This parameter is used to control how the Active Spell Checking feature should be
applied to files which are syntax highlighted. A value of 0, 1, 2 or 3 can be used, with
the effect being as follows:

0: Active Spell Checking will not be performed when editing syntax highlighted files
1: Active Spell Checking will be performed only within comments and quoted strings
2: Active Spell Checking will be performed within comments, quoted strings and
'normal' text
3: Active Spell Checking will be performed only on 'normal' text

Reserved Words are case sensitive
Use this option to designate whether the reserved word lists should be treated as
case-sensitive. If this option is checked, a reserved word must match a list entry
exactly in order to be highlighted. If this option is not checked, a reserved word will
match a list entry even when its case is different.

This option should be selected to correspond to the requirements of the language being
defined, so that Boxer can provide accurate visual feedback when a reserved word has
been mistyped.

Syntax Highlighting is active for this language
Use this option to enable or disable highlighting for the current language. This option is
the simplest way to disable syntax highlighting for a single language. One reason to
disable a language would be to cure a file extension conflict with another language.

Use the View | Syntax Highlighting command to quickly disable syntax highlighting
for all languages.

Notes and Tips

In addition to on-screen Syntax Highlighting, the language information defined with
this command is also used for the following commands and features:

· Color Syntax Printing

· Monochrome Syntax Printing

Command Reference (alphabetically) 771

Copyright © 1991-2010 by Boxer Software

· Syntax Spelling

· Active Spell Checking

· Auto-Complete

· Syntax Matching

· Comment

· Uncomment

If you define syntax information for new languages, or if you make additions or
corrections to the pre-defined languages, please consider sending your information
to us. This will allow us to keep our information current, and make it available to
other Boxer users. Syntax information can be sent to support@boxersoftware.com.
Thank you in advance for your contributions.

Some users have reported using Syntax Highlighting as a teaching aid for young
readers. One customer told of how she had created a syntax definition in which
common nouns, verbs and adjectives were assigned to three of Boxer's reserved
word classes. Then, when a file with the required file extension was displayed, each
part of speech would be highlighted in its own color. Another user reported creating
a 'language' definition so that headings within a dense parts list would be
highlighted in color. As you can see, the uses for Syntax Highlighting extend far
beyond its utility to programmers.

The highlighting of Java and Active Server code poses special problems for Boxer.
These languages can include HTML markup tags as well as sections of conventional
procedural style code. At times the open angle bracket (<) is a less-than symbol, at

other times it could open an HTML markup tag. A rigorous handling of Java code
would require that a language parser be used, which is not the method by which
Boxer's (general purpose) highlighting is performed. Therefore, Boxer's default
syntax information for Java has been designed to highlight Java program code, but
not to highlight any HTML markup tags which might appear therein.

5.270 Syntax Highlighting (View)

Menu: View > Syntax Highlighting

Default Shortcut Key: none

Macro function: ViewSyntaxHighlighting()

This command can be used to toggle on/off the display of Syntax Highlighting on files
which are eligible for such display. This command overrides the option on the Configure
| Syntax Highlighting dialog that enables and disables syntax highlighting for an
individual programming language.

To create a temporary association between a file and a syntax highlighting
language, or to disable syntax highlighting for a single file, use the View | Syntax
Highlight As command.

mailto:support@boxersoftware.com

Boxer Text Editor772

Copyright © 1991-2010 by Boxer Software

5.271 Tab Display Size

Menu: View > Tab Display Size

Default Shortcut Key: Alt+F9

Macro function: TabDisplaySize()

The Tab Display Size command is used to set the display width of the tab character
within the current editor window. To set the default tab size for all future editing
sessions, see the Configure | Preferences | Tabs dialog page.

Boxer supports the use of either fixed or variable width tabs. When fixed width tabs are
used, the display width of a tab is a constant value, though the effect of a tab within
text will depend on its column location. When variable width tabs are used, the display
value of a tab is computed so as to cause a jump to the next tab stop. Variable width

Command Reference (alphabetically) 773

Copyright © 1991-2010 by Boxer Software

tabs are sometimes referred to as typewriter style tabs, since they mimic the function
of tab stops on early typewriters.

Tab size and type

Fixed width tabs of size n
Use this option to set the display size for fixed width tabs in the current file.

Variable with tabs, with tab stops at columns...
Use this option to designate the columns at which variable width tab stops should occur
in the current file.

Additional tab character

When viewing certain data files, it can sometimes be helpful to treat an additional
character as though it were a tab, for display purposes only. For example, when
viewing a file containing comma-separated fields (CSV), designating a comma as the
additional tab character will allow Boxer to display the file with each field in its own
column, greatly enhancing its on-screen readability. This option would typically be used
when variable width tabs are in use, and most likely in conjunction with the Intelli-Tabs
feature described below.

When an additional character is designated as a tab, it will become invisible on screen,
just as is the tab character. You can use the Visible Spaces command to make real
tabs--and the additional tab character--visible on screen.

If a comma is designated as the additional tab character, please note that it is not
possible to properly process quote and comma-delimited data files whose field data
contains commas within the quoted fields. Boxer requires that the field separator
character appear only between fields, and not within the data itself. In the help
topic for the Replace command, the Process $1, $2, $3... substring directives in the
replace string section contains an example that shows how embedded commas can
be removed.

When an additional tab character is in use, the Tabs to Spaces command will treat
that character as though it was a tab. This makes it possible to convert a file that
uses a character-separated field format (CSV, for example), to a fixed width field
format. See the topic Converting CSV Data to Fixed Width Format.

Intelli-Tabs

Use the Intelli-Tabs feature to automatically determine the optimum tab stop columns
for tab-delimited data. Boxer will analyze the current file to determine the maximum
width of each data field and then suggest the tab stop columns that should be used for
optimum viewing.

The Intelli-Tabs feature can also be used on files containing fixed width field data. If
tabs (or 'additional tabs', see above) are not found in the data, fixed width field data is
assumed. Then a secondary analysis is made to try to determine the boundaries of the
fields. If a range of lines is selected, the secondary analysis will be restricted to the
selected range.

Boxer Text Editor774

Copyright © 1991-2010 by Boxer Software

During its analysis, the Intelli-Tabs feature will often detect records whose field count
differs from those of other records. When this happens, a report will be given, and the
(first) non-conforming line number will be reported. As such, Intelli-Tabs can double as
a useful tool for validating data files.

Boxer's default fixed width Tab Display Size is 4, which permits program source code
with several indent levels to be displayed without exceeding the screen width. Many
other programs, and most printers, will treat Tabs as having a display size of 8. You
may need to make adjustments in order to print or display files with another
program which does not use a Tab display size of 4. One remedy could be to use
the Tabs to Spaces command to convert a copy of the file before using it with the
other program. Note that Boxer's Print command will automatically convert Tabs to
Spaces before sending its data to the printer, so there will be no such difficulty
when printing files from within Boxer.

See the Insert Tab command for additional information about tabs.

After selecting the proper tab stops for optimum viewing, consider using the View |
Shaded Tab Zones command to colorize the background of adjacent fields.

Tab settings can be designated on the command line using the -T option flag. See
Command Line Options for more information.

Files that have Syntax Highlighting applied are eligible to have their tab stop
settings defined as part of the syntax information for the language being
highlighted. See Configure | Syntax Highlighting for more information. The
parameter of interest is the Tab Stops parameter.

 Tabs, spaces and newline characters can be made visible with the Visible Spaces
command.

5.272 Tabs to Spaces

Menu: Block > Convert Other > Tabs to Spaces

Default Shortcut Key: none

Macro function: TabsToSpaces()

The Tabs to Spaces command can be used to convert the Tabs within a selected area of
text into an equivalent number of Spaces. In doing so, Boxer uses the current display
value of a Tab (View | Tab Display Size) to determine how many Spaces should be
used.

No attempt is made to determine whether the Tabs being changed reside within a
quoted string. Programmers should be careful when using this command, as
changing Tabs within a quoted string my yield undesirable results if the string was
to be displayed in a message on-screen.

Command Reference (alphabetically) 775

Copyright © 1991-2010 by Boxer Software

The Spaces to Tabs and Tabs to Spaces commands are not opposites. If the Tab
Display Size is 4, the sentence:

The<tab>dog<tab>ran<tab>wild.

would be converted by the Tabs to Spaces command to:

The<space>dog<space>ran<space>wild.

Running the Spaces to Tabs command on this sentence would not yield the original
sentence. A sequence of two or more spaces is required before a tab character is
considered for placement into the converted text.

If the Tab Display Size command has been used to designate an additional tab
character for display purposes, the Tabs to Spaces command will treat that
character as a tab when performing its conversion to spaces. This makes it possible
to convert a data file that uses a character-separated field format into a fixed width
field format. See Converting CSV Data to Fixed Width for more details.

5.273 Technical Support

Menu: Help > Technical Support

Default Shortcut Key: none

There are several ways to receive technical support for Boxer. The first and most
obvious resource is the online Help. Online help contains detailed information on the
configuration and use of Boxer, and for all of its commands. If you are having
problems, please consult the relevant section of help before contacting us for support.
You may also be able to find answers to some common questions on our website:

www.boxersoftware.com

Email
You can send electronic mail to us via the Internet. We prefer this method of support
since it allows us to fully research a problem before responding. Also, we can
sometimes reuse an earlier reply for a problem which has been experienced by more
than one person. We typically check email several times a day:

support@boxersoftware.com

Telephone
You can also reach us by telephone Monday through Friday, 10:00 AM to 4:00 PM,
Mountain Standard Time.

Voice: +1-602-485-1635

Postal Mail or Fax
Finally, you can mail or fax your inquiry to us. If you choose one of these methods,

http://www.boxersoftware.com
mailto:support@boxersoftware.com

Boxer Text Editor776

Copyright © 1991-2010 by Boxer Software

please be sure to describe your problem fully and include any information which may
help us to diagnose the problem. Whenever possible, please provide an email address
so that we can make return contact quickly and easily.

Fax: +1-602-485-1636

Boxer Software
PO Box 14545

Scottsdale, AZ
85267-4545 U.S.A.

5.274 Templates (Configure)

Menu: Configure > Templates

Default Shortcut Key: none

Macro function: ConfigureTemplates()

The Configure Templates command is used to create or edit Templates: user-defined
text blocks which can be inserted into any text file from a pop-up selection menu. Once
Templates have been defined, they can be inserted with the Templates command.

Templates are often used by programmers for defining the control structures of a
programming language so that they can later be entered more quickly and without the
chance of a typing error. The use of Templates, however, can be extended to facilitate
the entry of any text, such as address blocks, copyright notices, phone numbers, part
numbers, etc.

Template Sets and Templates are defined using the following dialog box:

Command Reference (alphabetically) 777

Copyright © 1991-2010 by Boxer Software

Templates may consist of one or more lines of text with any formatting or indenting you
choose. In addition, the template can dictate the placement of the text cursor, or how
selected text should be used:

Text Cursor Placement
The Vertical Rule character (|) can be placed within a Template to dictate where the

text cursor should be placed within the Template following its insertion. This allows, for
example, programming code blocks to be defined in which the text cursor is placed
between a pair of parentheses, ready for additional code to be typed.

Operating on Selected Text
The caret or circumflex character (^) can be placed within a Template to indicate that

the template should operate on a text selection. A pair of examples will help to
illustrate the power of this feature:

Example 1:
The template ^| would cause the current text selection to be surrounded with

HTML bold tags. The text cursor would be placed at the right of the closing bold tag.

Example 2:
The following Template:

<html>
<head>
|
</head>
<body>
^
</body>

Boxer Text Editor778

Copyright © 1991-2010 by Boxer Software

</html>

could be run after using the Select All Text command to select the entire file. The
effect would be to add the required HTML tags that help make an ordinary text file
ready for viewing on the Internet. The text cursor would be place between the <head>
and </head> tags, awaiting a title for the document.

Unindenting within a Template
If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force (see below).

Template Sets

A Template Set is a collection of Templates. Up to 100 Template Sets can be defined.
Up to 500 Templates can be defined within any Template Set.

New
Use the New button to define a new Template Set. A pop-up dialog will appear into
which the name of the Template Set is entered.

Rename
Use the Rename button to change the name of an existing Template Set.

Copy
Use the Copy button to make a copy of the currently selected Template Set.

Delete
Use the Delete button to delete the currently selected Template Set. A confirmation is
required before the deletion occurs. If a Template Set is accidentally deleted, you can
recover it by using the Cancel button.

Close Template window after insertion
Use this option to dictate whether or not the Template window should be closed after a
Template is inserted into the edited text. Note that this option is maintained separately
for each Template Set, permitting a different behavior to be defined as needed for
different Template Sets.

Insert as if pasted from a Clipboard
Use this option if you prefer that Templates from the current Template Set be inserted
into the text stream as if they had been pasted from a Clipboard. When this option is
selected, the Autoindent setting will not influence the indent level of template text.
Note that this option is maintained separately for each Template Set, permitting a
different behavior to be defined as needed for different Template Sets.

Insert as if typed from the keyboard
Use this option if you prefer that Templates from the current Template Set be inserted
into the text stream as if they had been typed from the keyboard. When this option is
selected, the Autoindent setting will influence the indent level of template text, if the
Template is inserted on an indented line. Note that this option is maintained separately

Command Reference (alphabetically) 779

Copyright © 1991-2010 by Boxer Software

for each Template Set, permitting a different behavior to be defined as needed for
different Template Sets.

If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force.

Templates

New
Use the New button to define a new Template. First, a dialog box will be presented to
get the name of the new Template. Then an editing window will appear into which the
Template text can be typed.

Rename
Use the Rename button to change the name of an existing Template.

Edit
Use the Edit button to edit the content of an existing Template.

Delete
Use the Delete button to delete the currently selected Template. A confirmation is
required before the deletion occurs. If a Template is accidentally deleted, you can
recover it by using the Cancel button.

Boxer's Template information is stored in the file Template.ini, and its format is

that of a simple text file, not a binary file.

If you need to insert one of the special characters (| or ^) into a template in its

textual form, use either || or ^^. If you need to insert the special character ~ into

a template, use \~.

If the need arises to insert a single character which is not easily typed from the
keyboard, consider using the Insert Symbols feature rather than defining a single
character Template. The Insert Symbols feature permits a defined character to be
entered using a single keystroke.

5.275 Templates (Insert)

Menu: Tools > Templates

Default Shortcut Key: Ctrl+T

Macro function: Templates()

The Templates command is used to select a Template for insertion at the text cursor.
Boxer's Templates are an excellent way to save and recall small pieces of text such as
address blocks, copyright notices, programming language constructs, email addresses

Boxer Text Editor780

Copyright © 1991-2010 by Boxer Software

and any other text block which is used frequently during editing.

When the Insert Template command is issued, the Templates menu appears in a popup
window:

The active Template Set is displayed at the bottom of the window, and the Templates
within that set are displayed in the main listing area. Press the first letter of the
Template name or cursor with the arrow keys to select the desired Template. Press
Enter (or double click with the mouse) to insert the selected Template into the file.

Right-clicking on a selected item summons the Template context menu. The context
menu provides options to insert the selected item, or to copy it to the current clipboard.

Template Sets and Templates are defined using the Configure | Templates command.

Text Cursor Placement
The Vertical Rule character (|) can be placed within a Template to dictate where the

text cursor should be placed within the Template following its insertion. This allows, for
example, programming code blocks to be defined in which the text cursor is placed
between a pair of parentheses, ready for additional code to be typed.

Operating on Selected Text
The caret or circumflex character (^) can be placed within a Template to indicate that

the template should operate on a text selection. A pair of examples will help to
illustrate the power of this feature:

Example 1:
The template ^| would cause the current text selection to be surrounded with

HTML bold tags. The text cursor would be placed at the right of the closing bold tag.

Example 2:
The following Template:

Command Reference (alphabetically) 781

Copyright © 1991-2010 by Boxer Software

<html>
<head>
|
</head>
<body>
^
</body>
</html>

could be run after using the Select All Text command to select the entire file. The
effect would be to add the required HTML tags that help make an ordinary text file
ready for viewing on the Internet. The text cursor would be place between the <head>
and </head> tags, awaiting a title for the document.

Unindenting within a Template
If you need to unindent within a defined Template, use the tilde character (~) to

designate the point at which the Backspace command should occur. The tilde will not
be recognized in this way unless the Insert as if typed from the keyboard option is in
force (see Configure | Templates).

If you need to insert one of the special characters (~, | or ^) into a template in its

textual form, use either ~~, || or ^^.

To ensure that special characters are displayed in the Template window as they will
appear when inserted into the editor, the Template window uses the same font as is
used in the editor itself.

If the need arises to insert a single character which is not easily typed from the
keyboard, consider using the Insert Symbols feature rather than defining a single
character Template. The Insert Symbols feature permits a defined character to be
entered using a single keystroke.

If the Template window is left on-screen when Boxer is closed, it will be
automatically reopened if the edit session is later restored.

5.276 Text Highlighting (Configure)

Menu: Configure > Text Highlighting

Default Shortcut Key: none

Macro function: ConfigureTextHighlighting()

The Configure Text Highlighting command allows the user to designate any number of
text strings for on-screen highlighting. This feature might be used to make table
headings stand out, or to add emphasis to any class of words or phrases that might be
desired. The highlighting strings are saved and restored from session to session. The
color used to highlight the designated strings is configurable on the Configure | Colors
dialog. Text Highlighting can be applied to normal text files, or to program files which

Boxer Text Editor782

Copyright © 1991-2010 by Boxer Software

are already being Syntax Highlighted. The highlighting of strings can be quickly toggled
on/off by using the View | Text Highlighting command.

The Find command has an option to highlight all matches of a given search string.

The Apply Highlighting command can be used to quickly add text to the list of
phrases to be highlighted.

5.277 Text Highlighting (View)

Menu: View > Text Highlighting

Default Shortcut Key: Alt+F8

Macro function: ViewTextHighlighting()

This command is used to toggle on/off the text highlighting performed by either the
Text Highlighting command, or the Highlight all matches feature of the Find command.

5.278 Text Ruler

Menu: View > Text Ruler

Default Shortcut Key: Alt+F5

Command Reference (alphabetically) 783

Copyright © 1991-2010 by Boxer Software

Macro function: ViewTextRuler()

The View Text Ruler command is used to toggle on or off the horizontal ruler at the top
of the editing window.

The Text Ruler labels the column numbers of the file being displayed. When the view of
the file is scrolled to the right, the ruler values scroll along with the file. Clicking on a
column number within the ruler will move the text cursor to that column on the current
line. Clicking at the far right of the Ruler will cause the file to scroll to the right.

The current column number is also displayed in the Status Bar.

To enable the display of line numbers, use the View Line Numbers command.

Clicking on the Ruler with the right mouse button provides access to its context menu.
The menu has an option to turn off display of the Ruler.

5.279 Text Width

Menu: Paragraph > Text Width

Default Shortcut Key: Ctrl+W

Macro function: TextWidth()

The Text Width command is used to set the column at which text justification
commands will wrap words to the next line. A popup dialog box will appear to retrieve
a new value for the Text Width:

Boxer Text Editor784

Copyright © 1991-2010 by Boxer Software

The Text Width value is used by the following commands during their operation:

Typing Wrap
Reformat
Quote and Reformat
Align Left
Align Center
Align Right
Align Smooth

The current Text Width is displayed on the Status Bar, next to the 'w' indicator which
displays Typing Wrap status. The Text Width command can also be issued by double
clicking on the Text Width value in the Status Bar.

The maximum value for the Text Width command is 9999.

5.280 Tile Across

Menu: Window > Tile Across

Default Shortcut Key: none

Macro function: TileAcross()

The Tile Across command can be used to resize and reposition all editor windows such
that the client area is fully occupied, and the windows are arranged left-to-right.

Minimized windows are not affected by this operation.

If the number of open windows will not permit a left-to-right arrangement, Windows will
use an alternative arrangement which allows all windows to fit.

5.281 Tile Down

Menu: Window > Tile Down

Default Shortcut Key: none

Command Reference (alphabetically) 785

Copyright © 1991-2010 by Boxer Software

Macro function: TileDown()

The Tile Down command can be used to resize and reposition all editor windows such
that the client area is fully occupied and the windows are arranged top-to-bottom.

Minimized windows are not affected by this operation.

If the number of open windows will not permit a top-to-bottom arrangement, Windows
will use an alternative arrangement which allows all windows to fit.

5.282 Toggle Bookmark

Menu: Jump > Toggle Bookmark

Default Shortcut Key: F9

Macro function: ToggleBookmark()

The Toggle Bookmark command places a bookmark at the current location of the text
cursor, or clears a bookmark if the line is already bookmarked. Bookmarks are
displayed at the far left edge of the window as a small number (0-9) within a gray box.
Up to ten bookmarks can be placed in a file at any one time.

If the bookmarked column is altered due to the addition or deletion of text on the
bookmarked line, the bookmark will be adjusted automatically. If a line containing a

Boxer Text Editor786

Copyright © 1991-2010 by Boxer Software

bookmark is deleted, the bookmark will be cleared.

Bookmarks can be used to mark various points of interest within a text file. Once one
or more lines have been bookmarked, you can use the Previous Bookmark and Next
Bookmark commands to move among the bookmarked lines. The Bookmark Manager
can be used to view all bookmarked lines in a single view, and navigate to, or delete,
selected bookmarks.

Bookmarks will persist for the current editing session, and will be restored when
restoring an edit session.

The display of bookmarks is controlled by the View | Bookmarks command. Bookmarks
remain operational even if they are not currently being shown on-screen.

5.283 Toggle Read-Only

Menu: File > Toggle Read-Only

Default Shortcut Key: None

Macro function: ToggleReadOnly()

The Toggle Read-Only command can be used to toggle the status of the current file
between read-only and writable. The current state is displayed in the status bar. 'WR'
denotes that the file is writable. 'RO' indicates that the file is read-only.

This command duplicates the functionality available by double-clicking within the status
bar in the read-only display panel, but it also provides the ability to assign that function
to a key sequence (via Configure | Keyboard), if desired.

5.284 Toolbar (Configure)

Menu: Configure > Toolbar

Default Shortcut Key: none

Macro function: ConfigureToolbar()

The Configure Toolbar command can be used to add or delete buttons from the toolbar,
and to change the relative position of those buttons. Options are also available to
control the location of the toolbar, whether the buttons are to have text labels, and
several other features related to the toolbar.

Command Reference (alphabetically) 787

Copyright © 1991-2010 by Boxer Software

Available commands

The Available commands listbox contains entries for all editor commands that are
eligible for placement on the toolbar. The commands are initially presented in
menu-order, but can be sorted alphabetically by clicking on the Command header at the
top of the list. Click on the Menu header to return the list to menu-order presentation.

To add a new command to the toolbar, select the command in the Available commands
listbox and click the Add button.

If you first select a button in the Current toolbar buttons listbox, you'll be able to
control where a new button is added. Buttons are added below the selected button
in the Current toolbar buttons listbox.

In addition to the editor commands, several special entries can be used to control the
appearance of the toolbar. The half space and full space entries can be used to insert
extra spacing between toolbar buttons. The divider entry can be used to insert a visible
divider. The new row entry can be placed on the toolbar to create an additional row.
All toolbar buttons situated below a new row entry will appear on a new row of the
toolbar.

Boxer Text Editor788

Copyright © 1991-2010 by Boxer Software

Current toolbar buttons

The Current toolbar buttons listbox contains entries for all of the buttons that are
currently on the toolbar. The order of the list controls the order the buttons will appear
on the toolbar. Use the Move Up and Move Down buttons to move a selected button
within the list. To remove a button from the toolbar, select the button and click the
Remove button. The Reset button can be used to restore the toolbar to its most recent
configuration. The Default button can be used to restore the toolbar to its default
configuration.

Button text
This edit box provides control over the text that will appear below a toolbar button,
when that option has been selected. By default, the full name of the command will be
used, but this text can be changed if desired.

Custom icon
This option allows a user-defined icon to be used in place of Boxer's default icon for a
given command. Some users might wish to customize Boxer's look by using special
icons, or assign more meaningful icons to extra commands that have been added to the
toolbar. For example: the Run Macro ## commands all use the same toolbar icon and,
unless new icons were used, would differ only in the text that is assigned to each
button.

Custom icons can be supplied in either icon (.ICO) or bitmap (.BMP) format. For best
results, use an image that matches the size of the icons that are in use. If the custom
image does not match the icon size that's in use, the image will be scaled
automatically. Boxer uses the convention that the color of the pixel in lower left corner
of the image defines the background color. Pixels of this color are treated as invisible,
allowing the image to blend more naturally with the background color of the button on
which it is drawn.

Location

Use the Top, Left, Bottom, Right and Floating radio buttons to control the location of the
toolbar. The location can be easily changed later on by right-clicking on the toolbar, or
by dragging it from its current location.

Button options

Show text labels
Use this option to control whether or not text labels will appear below each toolbar
button. The Font button allows the font and size to be selected from the available fonts
on your system.

Show button tool tips
Use this option to control whether or not tool tips will be displayed when the mouse is
allowed to hover atop a toolbar button.

Show shortcut keys in tips
Use this option to control whether or not a shortcut key will appear within the toolbar
button tool tips.

Command Reference (alphabetically) 789

Copyright © 1991-2010 by Boxer Software

Show button borders
Use this option to place a visible border around each toolbar button.

Auto-format buttons when floating toolbar is resized
Use this option to control the formatting of the toolbar when it is displayed in floating
mode. If auto-format is selected, the toolbar will ignore any new row entries within the
toolbar and format itself to fill the size of the toolbar. If auto-format is not selected, a
floating toolbar will wrap to a new row only when a new row entry occurs.

As you experiment with the various toolbar button options, use the Apply button to
preview the toolbar as it is currently configured.

Icon size

Small / Medium / Large / Jumbo
Use these options to control the size of the icons displayed on the toolbar. The natural
size of Boxer's built-in icons is 16 x 16; other icon sizes are achieved by scaling these
icons accordingly. You'll find that the built-in 16 x 16 icons scale smoothly to 32 x 32
and 48 x 48. The 24 x 24 icon size will show imprecision for some icons, and may be
most useful when a set of custom 24 x 24 icons is being assigned.

A small collection of icons have been supplied for inspiration and experimentation.
These icons are from the public domain icon set created by the Tango Desktop Project.

The Jumbo icons setting is very large, and may be useful to visually impaired users.

Due to internal limitations, the largest image that can be loaded from an icon (.ICO)
file is 32 x 32. If you are using the Jumbo icons option, and you don't want your
image to be scaled from 32 x 32 to 48 x 48, use a 48 x 48 bitmap (.BMP) file as the
source image file.

5.285 Toolbar (View)

Menu: View > Toolbar

Default Shortcut Key: none

Macro function: ViewToolbar()

The View Toolbar command is used to toggle on and off the display of Boxer's Toolbar.
The Toolbar is located just below the main menu bar, and looks like this:

The Toolbar provides one-click access to Boxer's most common commands. When the
mouse cursor is allowed to hover over a Toolbar button, a Tool Tip will popup showing
the name of the command associated with that button. The display of tool tips can be
disabled with an option on the Configure | Preferences | Display options page. The
option is titled Display Toolbar button tool tips. There is also an option provided to

http://tango.freedesktop.org

Boxer Text Editor790

Copyright © 1991-2010 by Boxer Software

display shortcut keys within the tool tips.

The Toolbar can be repositioned to any edge of the window by clicking on an open area
in the Toolbar and dragging it to the new location. The Toolbar can also be
repositioned--or turned off--by right-clicking on it to gain access to its context menu.

Toolbar buttons can be displayed in a raised, 3-D style using an option on the Configure
| Preferences | Display options page. The option is titled Display Toolbar buttons in 3-D
style.

The dollar bill icon which appears at the far right of the Toolbar is used to summon
Boxer's Order Form. This icon is present only in the evaluation version of Boxer.

5.286 Total and Average

Menu: Block > Total and Average

Default Shortcut Key: None

Macro function: TotalAndAverage()

The Total and Average command can be used to obtain a report on the numeric data
contained on a range of selected lines. In addition to computing the total and average (
mean), the number of items, median, mode and standard deviation are also reported.

The median is the midpoint between the low and high values in the data.

The mode is the most frequently occurring value among the data.

The standard deviation provides a measure of the dispersion of the values within the
data.

Command Reference (alphabetically) 791

Copyright © 1991-2010 by Boxer Software

The Total and Average command can be used on ranges of numbers that include
thousands separators (commas or periods, typically). The data is analyzed to
determine what convention for the thousands and decimal separator is in use. The
format of the report is adjusted to reflect the format in use.

Total and Average can be used on values that contain a leading currency symbol.
The following symbols will be ignored during computation: dollar sign, yen sign,
pound sterling sign, euro sign.

The Total and Average command reports its results using read-only edit boxes so
that any of the fields can be copied to the Windows clipboard. The Copy button can
be used to copy the full report to the current clipboard.

5.287 Typing Wrap

Menu: Paragraph > Typing Wrap

Default Shortcut Key: Ctrl+F5

Macro function: TypingWrap()

The Typing Wrap command is used to toggle on and off typing wrap mode. When
Typing Wrap mode is on, text typed from the keyboard will be wrapped to the next line
when the Text Width value is exceeded. When Typing Wrap mode is off, typed text will
not be wrapped to the next line until the Enter key is pressed.

When Boxer wraps text to the next line in Typing Wrap mode, it does so by adding a
true newline (hard line ender) character at the end of the line. To wrap text
visually, without introducing a hard line ender into the file, see the Visual Wrap
command.

Typing Wrap mode is maintained separately for each edited file. Activating Typing
Wrap in one file does not affect the Typing Wrap mode for other edited files.

The current file's Typing Wrap mode is displayed on the Status Bar. An uppercase 'W'
indicates that Typing Wrap is on. A lowercase 'w' indicates that Typing Wrap is off. The
Typing Wrap command can also be issued by double clicking on the 'w' value in the
Status Bar.

See also the Visual Wrap command.

Typing Wrap will break lines between HTML or XML tags, when appropriate, even if
an intervening space is not present.

Prior to Boxer v14, the Typing Wrap command was called Word Wrap. When the
Visual Wrap command was added, the command was changed to Typing Wrap for
clarity.

Boxer Text Editor792

Copyright © 1991-2010 by Boxer Software

5.288 Uncomment

Menu: Block > Uncomment

Default Shortcut Key: Shift+F5

Macro function: Uncomment()

The Uncomment command will remove commenting from the current line--or the
selected text--according to Boxer's syntax information about the language being edited
(see Configure | Syntax Highlighting).

The Comment command can be used to apply commenting to the current line or to
selected text.

5.289 Undo

Menu: Edit > Undo

Default Shortcut Key: Ctrl+Z

Macro function: Undo()

The Undo command can be used to reverse the effect of the most recent change to the
current file. Successive Undo commands will have the effect of stepping back in time,
with each command undoing the previous change, until the limits of Undo become
exhausted. If a change is undone which you'd like to get back, the Redo command can
be used to 'undo undo'.

By default, cursor motion changes will also be undone. For example, if you're editing
mid-file and then jump to start of file to check something, Undo can be used to return
you to your previous location. If you prefer that cursor motion commands not be stored
for Undo, uncheck the relevant option on the Configure | Preferences | Editing 1 dialog
page.

The Undo command does not affect the content of the current clipboard.

The size of the Undo buffer (in bytes) can be controlled on the Configure | Preferences |
Editing 1 options page. The option is titled Undo buffer size. Values between 2048 and
65535 may be entered. The default value is 65535, which is also the maximum. There
is little reason to select smaller values, as the memory cost is small compared to the
utility that Undo provides.

Undo information is stored separately for each file, so there is no chance that excessive
editing within one file can exhaust the undo capacity in another file.

An option is also provided to control whether or not Undo is allowed after the Save
command. This option is titled Allow Undo after File Save

Command Reference (alphabetically) 793

Copyright © 1991-2010 by Boxer Software

5.290 Undo All

Menu: Edit > Undo All

Default Shortcut Key: none

Macro function: UndoAll()

The Undo All command can be used to reverse the effect of all changes for which undo
information is available. Unless you feel sure about the number of changes which have
been recorded by Undo, it is often safer to use the Undo command to step singly
through the changes so that their effect can be seen on-screen before proceeding.
Should the Undo All command go 'too far', the Redo All command can be used to
reverse its effect, or the Redo command can be used to restore the changes one at a
time.

5.291 Undo All Closed Tabs

Menu: View > File Tabs > Undo All Closed Tabs

Default Shortcut Key: none

Macro function: UndoAllClosedTabs()

The Undo All Closed Tabs command can be used to reopen all files that have been
closed during the current editing session. The names of the last ten (10) files are
stored for reopening.

The "Closed Tabs List" at the bottom of the View | File Tabs submenu shows the
names of the files that are eligible to be reopened, and allows files within the list to
be selectively reopened.

5.292 Undo Closed Tab

Menu: View > File Tabs > Undo Close Tab

Default Shortcut Key: none

Macro function: UndoCloseTab()

The Undo Close Tab command can be used to reopen the file that was last closed during
the current editing session. This command makes it easy to reopen a file if it was
closed accidentally.

The "Closed Tabs List" at the bottom of the View | File Tabs submenu shows the
names of the files that are eligible to be reopened, and allows files within the list to
be selectively reopened.

Boxer Text Editor794

Copyright © 1991-2010 by Boxer Software

Clicking the middle mouse button in an open area of the file tab bar is taken as a
shortcut gesture to reopen the last closed file tab.

5.293 Unformat

Menu: Paragraph > Unformat

Default Shortcut Key: Ctrl+Alt+F10

Macro function: Unformat()

The Unformat command can be used to convert the lines of the current paragraph into
a single, long line. The Unformat operation begins on the current line and includes all
lines to the end of the current paragraph. The text cursor is advanced to the first line
of the next paragraph following Unformat, so that successive Unformat commands will
move smoothly through the document.

If a range of lines is selected, all paragraphs within the selected range will be
processed. Use the Select All Text command before Unformat to process an entire file,
but first check to be sure that the file doesn't contain tables or lists which would be
adversely affected by the new formatting.

See also the Soften Line Enders command.

If the total length of the paragraph being unformatted is greater than the maximum
line length (see Sizes and Limits), the operation will use multiple lines.

The Unformat command is useful for preparing text that is to be imported into a
word processor, email client or other programs that perform 'soft formatting'.
Programs such as these sometimes require that extra newlines be removed before
imported text can be properly formatted.

5.294 Unformat XML / XHTML

Menu: Tools > Unformat XML / XHTML

Default Shortcut Key: none

Macro function: UnformatXML()

The Unformat XML / XHTML command can be used to remove formatting (newline and
indentation) from an XML or XHTML file. This command can be used to remove
formatting that was added by the Format XML / XHTML command, or to remove
formatting from a file from some other source. After formatting is removed, the file will
reside on one long line (subject to Boxer's limitation on line length).

By default, the unformat operation is applied to the whole file. If a range of lines is
selected, unformat will be performed on the range of lines selected.

Command Reference (alphabetically) 795

Copyright © 1991-2010 by Boxer Software

Please see the Format XML / XHTML command for a lengthy discussion of this topic.

5.295 Unhighlight Matches

Menu: Search > Unhighlight Matches

Default Shortcut Key: none

Macro function: UnhighlightMatches()

The Unhighlight Matches command removes on-screen highlighting from any text
strings that matched the most recent Find operation.

The Highlight all matches option on the Find dialog causes matched strings to be
highlighted throughout the current file. The Unhighlight Matches command removes
that highlighting, without disabling the Find dialog option. When a new text string is
searched for and found, it will again be highlighted. Put another way: this command
provides a means to remove the highlighting added by the Find command without the
need to disable the highlighting feature altogether, or perform a new, contrived search
that is designed to fail.

5.296 Unindent

Menu: Block > Unindent

Default Shortcut Key: Shift+Backspace

Macro function: Unindent()

The Unindent command causes a selected range of lines to be unindented by one space
or one tab character. If the range of lines to be unindented contains lines with varying
levels of indent--or mixed indents of spaces and tabs--the Unindent command can still
be used without concern. Once all of the whitespace on a given line has been deleted,
Unindent will not remove additional characters, though it will continue to operate on
other lines within the selection with remaining indent.

If text is not selected, Unindent will act upon the current line.

5.297 Unskip All

Menu: View > File Tabs > Unskip All

Default Shortcut Key: none

Macro function: none

The Skip command can be used to mark a file/window so that it will be skipped over by

Boxer Text Editor796

Copyright © 1991-2010 by Boxer Software

Window Previous and Window Next when these commands are used to cycle through
open files. The Unskip All command restores the state of and and all previously skipped
windows to unskipped.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

5.298 Update All

Menu: Project > Update All

Default Shortcut Key: none

Macro function: ProjectUpdateAll()

Use the Update All command to update the active project file with the current editing
options for all files within the project.

The project file stores the following information about the files contained in the project:

· window sizes and positions

· cursor location

· active file

· bookmarks

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

If you would like the project file to be updated automatically for all member files,
use the Project | Auto-Update feature.

5.299 Update One

Menu: Project > Update One

Default Shortcut Key: none

Macro function: ProjectUpdateOne()

Use the Update One command to update the active project file with the current editing
options for the active file.

The project file stores the following information about the files contained in the project:

· window sizes and positions

· cursor location

· active file

· bookmarks

Command Reference (alphabetically) 797

Copyright © 1991-2010 by Boxer Software

· tab stops

· typing wrap mode

· hex editing mode

· file tab arrangement

If you would like the project file to be updated automatically for all member files,
use the Project | Auto-Update feature.

5.300 User Lists

Menu: Tools > User Lists

Default Shortcut Key: none

Macro function: UserList()

The User Lists command provides access to a submenu of user-defined lists. Several
example User Lists have been supplied with Boxer to suggest ways in which this feature
might be used. You will no doubt think of many other ways.

Selecting a list from the User Lists submenu results in a popup window which displays
the items in the list:

Boxer Text Editor798

Copyright © 1991-2010 by Boxer Software

User Lists can be used for reference or to insert text strings into the file being edited.
To insert a list item at the text cursor, double-click on the entry, highlight it and press
Enter, or click the Insert Item button. If you would like a line ender to be added after
inserting the item, use the Add line ender option.

Right-clicking on a selected item summons the User List context menu. The context
menu provides options to insert the selected item, or to copy it to the current clipboard.

To advance quickly to an item in the list, enter its first letter from the keyboard.

To edit an existing list, click the Edit List button. To edit an empty list, simply select it
from the User Lists submenu. In either case, the file which defines the list will be
loaded into an editor window and can be edited in the usual way. The title of the list
appears on the first line of the file and will be placed in the title bar of the popup
window. The list items are placed one item per line, beginning on line two.

The maximum length of a User List item is 256 characters. The maximum length of a
User List title is 40 characters.

The files which define User Lists are kept in Boxer's data folder in a subdirectory called
'User Lists' and are named userlist.001, userlist.002, etc.

If you prefer that the User List window remain atop other windows, select the Stay on

Command Reference (alphabetically) 799

Copyright © 1991-2010 by Boxer Software

top option. The User List windows are non-modal windows, which allows them to
remain on-screen after focus has been returned to another editing window. Multiple
User List windows can be opened simultaneously.

Email and URL Addresses
If a User List entry contains either an email or internet address, Boxer will launch the
default email client or internet browser when the entry is double-clicked. This makes it
possible for a User List to be used to create a list of email contacts or favorite websites.
Email addresses can be entered in any of the following formats.

Boxer Software <sales@boxersoftware.com>
<sales@boxersoftware.com>
sales@boxersoftware.com

Mailto extensions can be used within an email address. They are appended to the email
address following a question mark (?). Here are some examples:

sales@boxersoftware.com?cc=joe@mycompany.com
sales@boxersoftware.com?bcc=bill@mycompany.com
sales@boxersoftware.com?subject=Order a Site License for Boxer
sales@boxersoftware.com?body=this text will appear in the
message body

Multiple mailto extensions can be combined with the ampersand (&) symbol:

sales@boxersoftware.com?subject=Order Boxer&cc=joe@mycompany.com

Note: Mailto extensions are not supported by all email clients. Experiment with your
email client to learn its capabilities.

Sin Since an address can be launched with a double-click, the Enter key retains the
function of inserting the text of the entry into the current file.

To ensure that special characters are displayed in the User List window as they will
appear when inserted into the editor, the User List uses the same font as is used in
the editor itself.

If a User List is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

5.301 User Tools (Configure)

Menu: Configure > User Tools

Default Shortcut Key: none

Macro function: ConfigureUserTools()

The Configure User Tools command is used to define and configure up to 24 external
programs which can be run from the User Tools submenu on the Tools menu. A variety

Boxer Text Editor800

Copyright © 1991-2010 by Boxer Software

of Tools Macros is available which makes it possible to control the information which is
passed to the program being run.

A common use for a User Tool would be to send the name of the current file to an
external program which processes the file in some way. Examples of such programs
are assemblers, compilers, grammar checkers, parsers, etc.

Use of the Configure User Tools dialog box is described below:

Details

Name of this tool
Use this edit box to supply the name for the User Tool being defined. The name
supplied will appear in the User Tools submenu when definition is complete. Up to 20
characters can be used.

Description
Use this edit box to supply an optional description for the tool being defined. This
description will appear as a menu hint for the Tools | User Tools menu entry that
corresponds to this tool.

Program, document, folder or URL
Use this edit box to supply the full filepath of the program which is to be run. The
button with the ellipsis (...) can be used to browse for and select the desired program.

Command Reference (alphabetically) 801

Copyright © 1991-2010 by Boxer Software

If the program selected has an associated icon, it will be displayed to the right of the
Name edit box.

Tools Macros can be placed into the Program field by clicking on the '$' button. For
example, you might use the $SelWord directive to pass the word at the cursor--or a
short text selection--to a web-based resource that performs a search for that term. The
URL:

 http://www.google.com/search?hl=en&q=$SelWord

would cause the word at the cursor to be sent to Google for search results.

The $Sel and $SelWord directives are processed specially when used in a URL: any
embedded spaces that might result from expansion are automatically converted to
plus signs (+) to create a web-friendly URL.

Working Directory
Use this edit box to supply the working directory for the program being defined. The
working directory will become the current directory for the program being run. The
button with the ellipsis (...) can be used to browse for and select the working

directory.

The $Path Tools Macro (among others) can also be used in the Working Directory
field as a means of specifying the working directory.

Command Line Parameters
The Command Line Parameters edit box is used to supply command line parameters to
the program being defined. These parameters might be option flags required by the
program or any other such information.

Boxer will recognize several different Tools Macros in the Command Line Parameters
edit box to pass information to the defined program. When a macro appears in the
Command Line Parameters field, it will be expanded to its equivalent text at the time
the User Tool is run.

Clicking the ellipsis (...) button to the right of the edit box presents the Tools Macros

list:

Boxer Text Editor802

Copyright © 1991-2010 by Boxer Software

Macros are available to pass the current filepath, filename, extension and other portions
of the filename. The line and column number can also be passed, as can the word
beneath the text cursor. Selected text (or the first line of a multi-line selection) can
also be passed. If needed, two or more macros can be placed in the Command Line
Parameters edit box.

If it is anticipated that the file and/or path being passed to the User Tool might
contain an embedded space, be sure to enclose the $Filepath directive in double
quotes to ensure proper handling.

Before running this program...

Save current file
Use this option to save any changes in the current file before running the defined User
Tool. Be sure to use this option when defining a User Tool which will operate on the
current file, so the program has access to the most recent changes you've made.

Save all modified files
Use this option to save any changes within all edited files before running the defined
User Tool.

Minimize Boxer
Use this option to request that Boxer be minimized to the task bar while the User Tool
is running.

Prompt for parameters
Use this option to request that Boxer prompt for parameters before running the defined
program. This option is useful when running a program whose command line
parameter(s) must be determined according to other conditions and cannot be specified

Command Reference (alphabetically) 803

Copyright © 1991-2010 by Boxer Software

programmatically.

Convert '\'s in Parameters to '/'s
Use this option to request that any backslashes (\) within the Command Line

Parameters edit box be converted to forward slashes (/) before running the defined

program.

Pass short filename to program
Use this option to request that any Tools Macros used in the Command Line Parameters
edit box be converted to short filenames before running the defined program. This
option is needed when defining a User Tool which passes a filename to a DOS program,
or to a 16-bit Windows program, since these programs are typically unable to process
long filenames.

Buttons

Save Tool button
Use the Save Tool button to save the current tool definition. Note that the current tool
will also be saved automatically when moving to a new tool in the Tools list.

Clear Tool button
Use the Clear Tool button to clear the definition for the current tool. No confirmation is
required before the tool is erased.

Test Tool Button
Use the Test Tool button to simulate running the current tool, without actually
executing the defined program or resource. A dialog will appear showing the various
fields, after the expansion of any Tools Macros and other requested conversions have
been made.

Move up in list / Move down in list
Use these buttons to change the order in which tools appear in the User Tools submenu
on the Tools menu. Clicking on a button moves the currently selected User Tool up or
down in the list. Moving a User Tool up or down in the list does not cause a change in
the shortcut key assignments, if any are in use. For example: a shortcut key assigned
to User Tool 2 remains assigned to the second tool in the list and does not travel with a
tool which is moved through that position.

Tips and Notes

The method by which Boxer runs a User Tool program makes it possible to define
User Tools which are mapped to documents, rather than programs. For example, if
the 'program' to be run is defined to be an HTML document, then your Internet
browser will be launched to display that file. If a .DOC file is defined as the

'program' to be run, then Microsoft Word will be launched to display the document.
The browse button will present a file selection dialog box which defaults to showing

.EXE and .COM files, so in order to locate documents it will need to be changed to

show files of all types.

The method described in the above Tip can also be used to create User Tools which
map to your favorite directories. If a directory name is defined as the 'program' to

Boxer Text Editor804

Copyright © 1991-2010 by Boxer Software

be run, then Explorer will be launched with that directory in its view. The browse
button cannot be used to select a directory name, so in order to define a User Tool
in this way, the directory name will need to be typed manually into the Program edit
box.

Some DOS programs issue an on-screen report but do not pause for user interaction
or confirmation before terminating. When such programs are run as User Tools,
they will execute and terminate so quickly that their results cannot be studied. You
can remedy this behavior by making a change to the Properties of the program
being executed. Locate the program in Explorer, right-click on its icon, and select
Properties. Click the Program tab and uncheck the option titled Close on exit. Click
OK to save the change. Thereafter, when the program is run, its window will not
close until its close button is clicked.

By default, Boxer is configured to present a warning message when a file it is
editing is changed by another program or process. This capability is especially
useful when running User Tools since it confirms that a change was made and
provides the opportunity to Reload the file from disk to get the latest copy. If you
will be running a User Tool which operates on the current file, this option should be
kept in force. The option is located on the Configure | Preferences | Messages
option page, and is titled Warn when an edited file is changed by another program.

If you are a user of one of the JP Software command processors and wish to specify
a .BTM file as a User Tool, you may need to make a system configuration change

before doing so. To see if a change is required, create a .BTM file which performs

some passive operation (such as DIR), and try to execute it by double clicking from

within Explorer. If the file executes properly, then the Windows shell is aware that

.BTM files can be executed, and no changes are needed. If the file does not run,

then a change will be needed before a .BTM file can be run as a program in one of

Boxer's User Tools. JP Software has documented this configuration procedure in an
information file on their website. At the time of writing, this file could be found at:
www.jpsoft.com/help/index.htm?deskobjs.htm If the file is not found there, look in
the Support section at www.jpsoft.com.

Here's a tip for users of JP Software's 4DOS and/or 4NT command processors: If you
would like to direct the error output from a DOS program to the Windows clipboard,
you can make use of the clip: logical device to achieve this. At the end of any

Command Line Parameters which might be defined for a given User Tool, add the
following: >&>! clip: This directive causes the standard error stream to be

placed on the Windows clipboard, overwriting the current clipboard content. The
clipboard can later be reviewed in Boxer or manipulated as required.

5.302 Value at Cursor

Menu: Tools > Value at Cursor

Default Shortcut Key: none

Macro function: ValueAtCursor()

http://www.jpsoft.com/help/index.htm?deskobjs.htm
http://www.jpsoft.com

Command Reference (alphabetically) 805

Copyright © 1991-2010 by Boxer Software

The Value at Cursor command can be used to display information about the character at
the text cursor. A popup window displays the character's ANSI representation and its
character value in decimal, hexadecimal, octal and binary formats. The character's
Unicode code point is also displayed. If the character has a named HTML entity, that
name is displayed. Otherwise, the numeric HTML symbol is displayed.

A report for the less than symbol ('<') looks like this:

The dialog box will remain open until dismissed, and will continue to report on the
character at the text cursor each time it changes.

This command can be especially useful for determining the value of characters which do
not have a unique representation in the character set of the current Screen Font. For
example, many ANSI fonts use an open box to represent all characters below the value
32 (Space), making it impossible to determine a character's value simply by looking at
it.

The ANSI Chart and OEM Chart commands can be used to see a full listing of character
values for each of these character encoding schemes.

5.303 Vertical Scroll Bar

Menu: View > Vertical Scroll Bar

Default Shortcut Key: none

Macro function: ViewVScrollBar()

The View Vertical Scroll Bar command is used to toggle on or off the scroll bar at the
right edge on the editing window.

The height of the thumb or scroll box is proportional to the number of lines in the file.
If the height of the thumb is one-third the height of the window, then the portion of the
file visible within the window is approximately one-third of the entire file.

Boxer Text Editor806

Copyright © 1991-2010 by Boxer Software

When the current file has insufficient lines to fill the height of the window, the Vertical
Scroll Bar disappears automatically.

Clicking on the scroll bar with the right mouse button provides access to its context
menu. The menu has an option to turn off display of the scroll bar.

As the thumb is dragged with the mouse, the current line and page count of the new
view is displayed on the status bar in real-time. This makes it easier to locate a
line/page of interest, since the current line need not be changed to get a report on
the text that is in view.

5.304 Visible Spaces

Menu: View > Visible Spaces

Default Shortcut Key: Alt+F1

Macro function: ViewVisibleSpaces()

The Visible Spaces command can be used to toggle on and off a display mode in which
Spaces, Tabs and Newline characters (also known as whitespace) are displayed as
visible symbols. This command is useful for drawing attention to extra Tabs and Spaces
at the ends of lines, and to see whether indents are comprised of Tabs, Spaces, or both.

The color used to display Visible Spaces can be controlled with the Configure Colors
command. In most of the default color schemes, a color has been used which makes
the characters appear less prominent than foreground text. This often makes it
possible to use Visible Spaces mode full-time, without concern for a cluttered display.

The symbols which are used to represent Spaces, Tabs and Newlines are
user-configurable. These can be set using options on the Configure | Preferences |
Display options page. Separate options are provided for use with both ANSI and OEM
screen fonts.

5.305 Visual Wrap

Menu: Paragraph > Visual Wrap

Command Reference (alphabetically) 807

Copyright © 1991-2010 by Boxer Software

Default Shortcut Key: Alt+F10

Macro function: VisualWrap()

The Visual Wrap command toggles a passive display mode that causes long lines to be
wrapped to the window width (or another wrapping margin) without introducing hard
line enders into the file, as would occur if the Reformat command were used. Visual
Wrap is useful when editing files with very long lines that would otherwise extend
off-screen to the right, out of view. It's also useful for preparing text that will later be
imported into another program that prefers a long, flowing stream of text without
intra-paragraph line enders.

When Visual Wrap is active, the line counter in the status bar switches to a paragraph
counter, since a one-to-one relationship between screen lines and physical lines no
longer exists. If Line Numbers are being displayed in the left margin, that display is
also adjusted to show paragraph numbers rather than line numbers. When Visible
Spaces are in use, the soft line enders on wrapped line will be denoted with a double
chevron symbol (<<), while hard line enders are marked with a single chevron (<).
The Go to Paragraph command can be used to jump to a paragraph by its number.

The Visual Wrap Options dialog provides access to options related to the operation of
Visual Wrap. Wrapping can be set to occur at the window width, the Text Width, or at
the Right Margin Rule. By default, Visual Wrap is maintained when edits are made,
although this can be optionally disabled. An option is also provided for dealing with
trailing spaces when Visual Wrap is first applied.

Boxer uses a trailing space to mark lines that are split or wrapped by Visual Wrap.
When Visual Wrap is first applied to a file, a check is performed to see if any lines in the
file already contain trailing spaces. If such lines are found, the following dialog is
presented:

Boxer Text Editor808

Copyright © 1991-2010 by Boxer Software

The nature of the file being processed will determine which option should be selected.
If the trailing spaces are extraneous, the first option (delete) should be used. If the file
is one in which trailing spaces are being used to mark soft line enders, the second
option should be used.

The Soften Line Enders command can be used to prepare a file for processing by
Visual Wrap. It converts hard line enders to soft line enders, with proper
consideration to paragraph boundaries, thereby making the lines of a text file
flowable.

The Harden Line Enders command can be used convert soft line enders to hard line
enders, thereby making permanent the current on-screen formatting.

Visual Wrap Theory

When Visual Wrap is activated, any lines that are longer than the designated wrapping
margin are wrapped to fit within the margin. A trailing space is left at the location
where each line was split to denote that the line has a "soft" line ender. Some word
processing programs insert a special character into the data stream to denote a soft line
ender. As a text editor, Boxer is obliged not to introduce special characters into the
text files it creates, so it simply adds a space to the end of the line. The last line of a
paragraph ends with a hard line ender, and thus has no trailing space.

The use of a trailing space to mark lines with a soft line ender has several advantages:

· The space character can be seen when Visible Spaces mode is active.

· The space character will not be visible when the document is printed.

· Line enders can be easily converted between hard and soft by adding or removing the
space.

Command Reference (alphabetically) 809

Copyright © 1991-2010 by Boxer Software

Note: When Visual Wrap is applied to (or removed from) an entire file, the length of
the text on each line changes, as does the total number of lines. The text itself is
not changed, just its on-screen formatting. But internally, these changes cause any
previously stored Undo information to become invalid. Ordinarily, Visual Wrap will
be enabled just after a file is opened. If the wrapping margin is not changed
thereafter, Visual Wrap will have very little impact on Undo. But if a file is frequently
rewrapped or unwrapped, this side effect is something to bear in mind.

 Visual Wrap mode is incompatible with Typing Wrap. If Typing Wrap is on when
Visual Wrap is enabled, it will be automatically turned off.

5.306 Visual Wrap Options

Menu: Paragraph > Visual Wrap Options

Default Shortcut Key: none

Macro function: VisualWrapOptions()

The Visual Wrap Options dialog contains settings that relate to the operation of Visual
Wrap:

Boxer Text Editor810

Copyright © 1991-2010 by Boxer Software

Wrapping Margin

Wrap to window
Choose this option if you want text to be wrapped to the width of the document
window. The text will re-wrap automatically if the window is resized.

Wrap to the Text Width
Choose this option if you want text to be wrapped to the Text Width value that's used
for various paragraph operations, such as Reformat. When this option is used, text will
only rewrap when the Text Width value is changed, and not when the document window
is simply resized.

Wrap to the Right Margin Rule
Choose this option if you want text to be wrapped to the Right Margin Rule value. The
Right Margin Rule is an optional display feature that causes a fine vertical line to appear
on-screen at the designated column. When this option is used, text will only rewrap
when the Right Margin Rule value is changed, and not when the document window is
simply resized.

Wrapping Options

Maintain Visual Wrap formatting automatically while editing

Command Reference (alphabetically) 811

Copyright © 1991-2010 by Boxer Software

This is option is enabled by default. You might choose to disable this option if you find
yourself distracted by the automatic wrapping that occurs when editing which causes
lines to split and join automatically.

If trailing spaces are found when Visual Wrap is first enabled, display a dialog
with options for handling them
When trailing spaces are found in a file to which Visual Wrap is being applied, Boxer
displays a dialog with options for how these spaces should be handled. On that dialog,
and option appears to disable display of the dialog. This option provides a means to
re-enable the display of that dialog.

5.307 Window Close All

Menu: Window > Close All

Default Shortcut Key: none

Macro function: CloseAll()

The Close All command is used to close all open windows within the editor. If unsaved
changes have been made to any file, a dialog box will appear for each such file to alert
you to this fact. You will then be able to choose whether to save the changes before
closing, close without saving, or cancel the Close All operation.

You can quickly tell whether a file has unsaved changes by looking for an asterisk (*) to

the left of its name in the title bar or on its File Tab.

If you would prefer that Boxer be minimized automatically when the last file is closed,
there is a checkbox on the Configure | Preferences | Other options page to achieve this.
The option is titled Minimize Boxer when closing last file.

The Window | Close All command is functionally equivalent to the File | Close All
command, since each file resides in its own window.

5.308 Window Last Visited

Menu: Window > Last Visited

Default Shortcut Key: Shift+Alt+F6

Macro function: WindowLastVisited()

The Window Last Visited command provides a means to return quickly to the last
window that was active before the current window was activated. When a large number
of files is being edited, using the Window Previous or Window Next command may not
be practical for this purpose. Issuing the command repeatedly has the effect of
toggling focus between the last two windows that were active.

Boxer Text Editor812

Copyright © 1991-2010 by Boxer Software

5.309 Window List

Menu: Window > Window List

Default Shortcut Key: none

Macro function: WindowList()

The Window List command presents a pop-up dialog containing the names of all
currently open windows. A count of the windows is displayed at the top of the dialog.

Double-click or press Enter to make the selected window active. Right-clicking provides
access to the Window List context menu. This menu provides options to Save, switch
to, minimize, maximize, restore or close the selected window. The Delete key can be
used to close the selected file.

The content of the Window List can be sorted by clicking on any of the field headers at
the top of the listbox control. A second click on the same header reverses the order of
the sort.

The Window List dialog is resizeable so it can accommodate long filepaths. The window
is non-modal so that it can remain open while focus returns to an editor window.

Boxer's File Tabs also provide another method of switching among open windows, as do
the Window Next and Window Previous commands.

If the Window List is left on-screen when Boxer is closed, it will be automatically
reopened if the edit session is later restored.

Command Reference (alphabetically) 813

Copyright © 1991-2010 by Boxer Software

5.310 Window Next

Menu: Window > Next

Default Shortcut Key: F6

Macro function: WindowNext()

The Window Next command is used to move to the next window when editing two or
more files. When a window has been split with the Split Horizontal or Split Vertical
commands, Window Next will move to the lower or right window pane, respectively.
Window Next will skip over a minimized window, but the Windows-level service (Ctrl+F6
) will stop on minimized windows.

The next window in the sequence will be determined according to the order of the File
Tabs. If the File Tabs have been configured to sort the files alphabetically, Window
Next will move to the window whose filename occurs next, alphabetically. If the File
Tabs are not sorted, the order is determined
by Windows according to the "z order" ranking of the windows.

When many windows are open, it may prove faster to use the Window List to select a
new window. Boxer's File Tabs can also be used to move quickly among windows.

5.311 Window Previous

Menu: Window > Previous

Default Shortcut Key: Shift+F6

Macro function: WindowPrevious()

The Window Previous command is used to move to the previous window when editing
two or more files. When a window has been split with the Split Horizontal or Split
Vertical commands, Window Next will move to the upper or left window pane,
respectively. Window Previous will skip over a minimized window, but the
Windows-level service (Ctrl+F6) will stop on minimized windows.

The previous window in the sequence will be determined according to the order of the
File Tabs. If the File Tabs have been configured to sort the files alphabetically, Window
Next will move to the window whose filename is previous, alphabetically. If the File
Tabs are not sorted, the order is determined
by Windows according to the "z order" ranking of the windows.

When many windows are open, it may prove faster to use the Window List to select a
new window. Boxer's File Tabs can also be used to move quickly among windows.

Boxer Text Editor814

Copyright © 1991-2010 by Boxer Software

5.312 Window Skip

Menu: Window > Skip -or- View > File Tabs > Skip File

Default Shortcut Key: none

Macro function: WindowSkip()

The Skip command can be used to mark a file/window so that it will be skipped over by
Window Previous and Window Next when these commands are used to cycle through
open files. The skip status of each file is stored when an edit session is closed, so it will
persist if the edit session is later resumed.

 The File Tab context menu also includes options to toggle the skip state for the
current file, or to set or clear the skip status for all open files.

Clicking on a file tab will cause that file's skip status to be released automatically, if
the relevant option on the Configure | Preferences | Cursor dialog page is enabled.

5.313 Word Count

Menu: Block > Word Count

Default Shortcut Key: None

Macro function: WordCount()

The Word Count command reports the number of lines, words and characters in the
current file, or within the currently selected text. The percentage of the processed text,
with respect to the whole file, is also reported.

Command Reference (alphabetically) 815

Copyright © 1991-2010 by Boxer Software

The Word Count command reports its results using read-only edit boxes so that any
of the fields can be copied to the Windows clipboard. The Copy button can be used
to copy the fill report to the current clipboard.

6 Miscellaneous Topics

6.1 Command Line Options

Command Line Options can be used to direct Boxer to position the text cursor specially
upon startup, or to activate other modes or options.

Command Line Options must be preceded with a dash (-) or a forward slash (/).

Options must be placed after the filename for which they are to be applied (see
example below).

The most common use for Command Line Options is to configure Boxer as the external
editor for another program. For example, many development environments offer the
capability to define an external editor, and provide the ability to pass the editor a
starting line and/or column number. The exact syntax to achieve this integration will
vary from program to program, so please consult the program's documentation.

Command Line Options

-C<value>
This option can be used to position the text cursor at a specified column number. The
column number is specified immediately following the C, in decimal format. See
examples below at the -L option flag.

-E<value> <filename>
Designate the end-of-record character for the next file opened. As the file is read, line
breaks will be inserted after character 'value' is encountered.

-F<value>
This option can be used to impose a fixed length record format on the next file that
appears on the command line. The record length is specified immediately following the
F, in decimal format. As the file is read, line breaks will be inserted at column 'value'.

b -F512 MyFile.dat

Note that when the file is saved, line enders will be added. The File | Properties dialog
has an option to request that line enders be removed when the file is saved.

An option to impose a fixed record length also appears on the File | Open dialog.

-G
This option can be used to disable display of Boxer's splash screen graphic upon
startup.

Boxer Text Editor816

Copyright © 1991-2010 by Boxer Software

Display of the splash screen does not slow program startup. The splash screen is
removed from the screen as soon as essential startup tasks are complete. By
general consensus, however, it seems the splash screen does make Boxer appear to
take longer to start up.

-H
This option can be used to request that the next-named file on the command line be
opened in read-only hex mode. If more than one file must be opened in hex mode,
precede each such filename with the option flag:

b -H file1.txt -H file2.txt

-I<settings filename>
Load Boxer's settings from the named INI file. The filename is placed immediately
adjacent to the I, without an intervening space.

-K<keyboard filename>
Load the named keyboard layout at startup. The filename is placed immediately
adjacent to the K, without an intervening space.

-L<value>
This option can be used to position the text cursor at a specified line number. The line
number is specified immediately following the L, in decimal format.

Example: to place the text cursor on line 214, column 35 the following command line
could be used:

b myproj.cpp -L214 -C35

When multiple files are named, place the option flags after the filename to which they
apply:

b myproj.cpp -L214 -C35 main.cpp -L505 -C18

-M<macro filename>
Run the named macro file. The macro name is placed immediately adjacent to the M. If
the macro operates on a text file, the file to be processed should
appear to the left of the -M option flag so it will be opened at the time the macro is run.
If two or more macros are to be applied to a single file, use -M repeatedly for each
macro:

b file.txt -Mmacro1.bm -Mmacro2.bm

<filename> -O<value>
Position the text cursor at a specified byte offset in the immediately preceding filename.
The byte offset is specified immediately following the O, in hexadecimal (use a leading
'x') or decimal format.

-P<project filename>
Open the named project file. The project name is placed immediately adjacent to the P.

Miscellaneous Topics 817

Copyright © 1991-2010 by Boxer Software

If a filepath is not supplied, the file will be opened from the Projects directory. For
complete information about project files, see the Project | New command.

-Q
This option can be used to force Boxer into quiet mode. All use of sound will be
disabled for the current editing session, and for all future sessions. Sounds can be
enabled on the Configure | Preferences | Messages options page.

This option would only be needed if Boxer should fail to start due to a
non-functioning sound card. In such case the normal method for disabling sounds,
via the Configure | Preferences | Messages dialog, would be unavailable.

-R <filename>
Open the next file that appears on the command line in read-only mode.

This option might be employed when Boxer is to be used as an external file viewer.

-S<text>
This option can be used to position the text cursor at the first occurrence of the
specified search string. The search string is entered immediately following the S.
Regular Expressions are not permitted in this context; the search performed is a simple
text search.

Example: to place the text cursor at the first occurrence of the word 'porcelain' the
following command line could be used:

b oldsigns.txt -Sporcelain

-T<tab settings> <filename>
Specify tab settings for the next file, and all other files named on the command line. If
a single value 'n' is present, fixed width tabs of size 'n' will be used. If a
comma-delimited list of values is present, variable width tab stops will be assigned at
the designated columns. Command line tab settings take precedence over default tab
settings, and over tab settings specified in Syntax.ini.

Example 1: open the named files with a fixed width tab size of 8:

b -T8 file1.txt file2.txt

Example 2: open the named file with tab stops at the columns indicated:

b -T4,12,22,30,44,60 orders.dat

-WH<value>
Set the height of the main application window to the value specified.

b -WH580 file1.txt file2.txt

-WL<value>

Boxer Text Editor818

Copyright © 1991-2010 by Boxer Software

Position the main application window with its left edge at the specified pixel location.

b -WL50 file1.txt file2.txt

-WT<value>
Position the main application window with its top edge at the specified pixel location.

b -WT75 file1.txt file2.txt

-WW<value>
Set the width of the main application window to the value specified.

b -WW820 file1.txt file2.txt

-W0
Turn Typing Wrap off for the immediately preceding filename. The following command
line will turn off Typing Wrap for file1.txt, but not for file2.txt.

b file1.txt -W0 file2.txt

-W1
Turn Typing Wrap on for the immediately preceding filename. The following command
line will turn on Typing Wrap for file1.txt, but not for file2.txt.

b file1.txt -W1 file2.txt

-1
Force filenames to be added to an existing session, regardless of the current setting for
Multiple Instances. The option can appear anywhere on the command line, and applies
to all files on the command line.

-2
Force filenames to be opened in a new session, regardless of the current setting for
Multiple Instances. The option can appear anywhere on the command line, and applies
to all files on the command line.

-?
This option causes a pop-up window to appear that displays all of Boxer's command line
options:

Miscellaneous Topics 819

Copyright © 1991-2010 by Boxer Software

Wildcard Expressions

Boxer supports the use of wildcard expressions to match an entire class of files. All files
matched by the wildcard expression will be opened for editing. The use of the asterisk (

*) and question mark (?) are supported. For example, to edit all files in the current

directory with a .cpp file extension, the following command line could be used:

b *.cpp

To edit all files named report with a single character file extension, use this wildcard

expression:

b report.?

6.2 Converting CSV Data to Fixed Width Format

Boxer is a good tool for working with data files that use comma-separated value (CSV)
or fixed width format. Its ability to select and manipulate text in rectangular columns is
especially useful in this regard. Also, the Shaded Tab Zones feature allows fixed width
data files to be viewed in a mode that aids in visually distinguishing between data

Boxer Text Editor820

Copyright © 1991-2010 by Boxer Software

columns.

Sometimes it may be desirable to convert CSV formatted data to fixed width format.
Boxer does not have a built-in command to make this conversion directly, but such a
conversion can be accomplished by using the following steps:

1. Load the CSV file for editing
2. Issue the View | Tab Display Size command
3. Check the checkbox entitled "In addition to tab..."
4. Make sure a comma character appears in the Additional tab character box
5. Click the Intelli-Tabs button
6. Click OK

The comma has now been designated as an additional tab character, so that the CSV
file is displayed on-screen with its fields properly aligned. A series of variable tab stops,
auto-computed by the Intelli-Tabs feature, are being used to align the fields properly.
All that remains is to convert the pseudo tabs (commas) to spaces in the data itself in
accordance with the display settings:

7. Issue the Edit | Select All Text command
8. Issue the Block | Convert Other | Tabs to Spaces command

The CSV file is now in fixed width format, with one extra space between each field. If
you prefer extra spaces, or no space at all, you can reload the original file and perform
the operation again, manually adjusting the variable tab stop values on the Tab Display
Size dialog before proceeding with the conversion.

The steps above presume that the data does not contain embedded commas or tabs
characters. If these characters are present, special attention will be required before
this method can be used.

6.3 Context Menu

Menu: not applicable

Default Shortcut Key: Shift+F10

Boxer provides a context menu which can be accessed by clicking the right mouse
button anywhere within the active editor window. The Context Menu contains a group
of commands which are likely to be useful while editing text. Using the Context Menu is
typically faster than using the mouse to select a command from the main menu, since
the context menu will pop-up at the point where the mouse is clicked.

Miscellaneous Topics 821

Copyright © 1991-2010 by Boxer Software

The operation of the commands which appear on the Context Menu is identical to that
of their main menu counterparts. The Context Menu simply provides an alternative
method of issuing those commands.

In Boxer's default keyboard layout, the Context Menu is assigned to the Shift+F10 key
sequence. The Open Context Menu command is not one which appears in the main
menu, but its assignment can be changed with Configure | Keyboard command.

6.4 Cursor Movement Commands

Cursor Movement Commands

Boxer has a variety of commands for moving the text cursor throughout the edited file.
Most of these commands do not appear within the main menu, but are summarized in
the table below along with their default key assignments:

Command Default Key Assignment Alternative

Up Up Arrow

Down Down Arrow

Boxer Text Editor822

Copyright © 1991-2010 by Boxer Software

Left Left Arrow

Right Right Arrow

Word Left Ctrl+Left Arrow

Word Right Ctrl+Right Arrow

Next Paragraph none ‚

Previous Paragraph none ‚

Page Up PgUp

Page Down PgDn

Start of Line Home

End of Line End

Top of Page Ctrl+PgUp Home - Home •

Bottom of Page Ctrl+PgDn End - End •

Start of File Ctrl+Home Home - Home - Home •

End of File Ctrl+End End - End - End •

Left Window Edge none ‚

Right Window Edge none ‚

Page Left none ‚

Page Right none ‚

Scroll Up none ‚

Scroll Down none ‚

Scroll Left Alt+Left

Scroll Right Alt+Right

Backtab Ctrl+Alt+Left

• These assignments are available when Home-Home-Home and End-End-End

operation is enabled. Options are available on the Configure | Preferences | Cursor
Travel options page.

‚ Though these commands do not have default key assignments, the Configure |

Keyboard dialog can be used to give them assignments if desired.

Text Selection Commands

Most cursor movement commands will respond to the Shift key as an 'accelerator' to
either initiate a text selection, or to extend a text selection that already exists. The
table below summarizes these commands:

Miscellaneous Topics 823

Copyright © 1991-2010 by Boxer Software

Command Default Key
Assignment

Alternative

Select Up Shift+Up Arrow

Select Down Shift+Down Arrow

Select Left Shift+Left Arrow

Select Right Shift+Right Arrow

Select Word Left Shift+Ctrl+Left Arrow

Select Word Right Shift+Ctrl+Right Arrow

Select Page Up Shift+PgUp

Select Page Down Shift+PgDn

Select to Start of Line Shift+Home

Select to End of Line Shift+End

Select to Top of Page Shift+Ctrl+PgUp Shift+Home - Shift+Home

Select Bottom of Page Shift+Ctrl+PgDn Shift+End - Shift+End

Select to Start of File Shift+Ctrl+Home Shift+Home - Shift+Home -
Shift+Home

Select to End of File Shift+Ctrl+End Shift+End - Shift+End - Shift+End

Select Page Left no assignment

Select Page Right no assignment

6.5 Default Key Assignments (command order)

This list was generated using the Make List button in the Configure | Keyboard
dialog box. The same procedure can be used to create a list for other supplied
keyboard layouts, or for layouts you create yourself.

About Boxer No Assignment

Active Spell Checking Alt+F7

Align Center Ctrl+F8

Align Left Ctrl+F7

Align Right Ctrl+F9

Align Smooth Ctrl+F11

ANSI Chart No Assignment

ANSI to OEM No Assignment

Boxer Text Editor824

Copyright © 1991-2010 by Boxer Software

Append Shift+Ctrl+C

Apply Highlighting No Assignment

Arrange Icons No Assignment

ASCII to EBCDIC No Assignment

Auto-Complete Ctrl+Space

Auto-Complete List Alt+Down

Auto-Number No Assignment

Backspace BkSp

Backtab Ctrl+Alt+Left

Bookmark Manager Shift+F9

Bottom of Page Ctrl+PgDn

Boxer Shorts No Assignment

Boxer Software Website No Assignment

Bring User Lists to Top No Assignment

Calculator F11

Calendar No Assignment

Cancel Esc

Cascade No Assignment

Cascade Horizontal No Assignment

Cascade Vertical No Assignment

Check for Latest Version No Assignment

Check Word Shift+F7

Clear All Bookmarks No Assignment

Clear All Clipboards No Assignment

Clear Clipboard 1 No Assignment

Clear Clipboard 2 No Assignment

Clear Clipboard 3 No Assignment

Clear Clipboard 4 No Assignment

Clear Clipboard 5 No Assignment

Clear Clipboard 6 No Assignment

Clear Clipboard 7 No Assignment

Clear Clipboard 8 No Assignment

Clear Recent Files List No Assignment

Miscellaneous Topics 825

Copyright © 1991-2010 by Boxer Software

Clear Recent Projects List No Assignment

Clear Undo No Assignment

Clear Windows Clipboard No Assignment

Close Alt+X

Close All Ctrl+Alt+X

Close All but Active No Assignment

Color Chart No Assignment

Command Multiplier Alt+Y

Comment No Assignment

Configure Auto-Complete No Assignment

Configure Colors No Assignment

Configure Ctags Function Index No Assignment

Configure Keyboard No Assignment

Configure Preferences No Assignment

Configure Printer Font No Assignment

Configure Screen Font No Assignment

Configure Syntax Highlighting No Assignment

Configure Templates No Assignment

Configure Text Highlighting No Assignment

Configure Toolbar No Assignment

Configure User Tools No Assignment

Contact Information No Assignment

Convert Case Invert No Assignment

Convert Case Lower No Assignment

Convert Case Sentences No Assignment

Convert Case Title No Assignment

Convert Case Upper No Assignment

Convert Case Words No Assignment

Copy Ctrl+C

Copy Ctrl+Ins

Copy Filename No Assignment

Ctags Function Index No Assignment

Cut Ctrl+X

Boxer Text Editor826

Copyright © 1991-2010 by Boxer Software

Cut Shift+Del

Cut Append Shift+Ctrl+X

Declaration No Assignment

Decrement No Assignment

Delete Del

Delete Blank Lines No Assignment

Delete Bookmarked Lines No Assignment

Delete Current Line Alt+D

Delete Duplicate Lines No Assignment

Delete Lines that Begin with No Assignment

Delete Lines that Contain No Assignment

Delete Lines that do not Begin with No
Assignment

Delete Lines that do not Contain No Assignment

Delete Lines that do not End with No
Assignment

Delete Lines that End with No Assignment

Delete Next Word Ctrl+Del

Delete Previous Word Ctrl+BkSp

Delete to End of Line No Assignment

Delete to Start of Line Ctrl+K

Divide No Assignment

Down Down

Duplicate & Increment Shift+F2

Duplicate Line F2

Duplicate Line Alt+O

EBCDIC to ASCII No Assignment

Edit Clipboard 1 No Assignment

Edit Clipboard 2 No Assignment

Edit Clipboard 3 No Assignment

Edit Clipboard 4 No Assignment

Edit Clipboard 5 No Assignment

Edit Clipboard 6 No Assignment

Edit Clipboard 7 No Assignment

Miscellaneous Topics 827

Copyright © 1991-2010 by Boxer Software

Edit Clipboard 8 No Assignment

Edit Windows Clipboard No Assignment

Email Boxer Software No Assignment

End of File Ctrl+End

End of Line End

Error Chart No Assignment

Exit Alt+F4

Exit Alt+Q

Explore Data Folder No Assignment

Explore Program Folder No Assignment

FAQs No Assignment

Fast Frame Alt+F12

File Picker Alt+K

File Properties No Assignment

File Tabs Bottom No Assignment

File Tabs Top No Assignment

Fill with String No Assignment

Find Ctrl+F

Find a Disk File No Assignment

Find and Count No Assignment

Find Differing Lines Ctrl+D

Find Distinct Lines No Assignment

Find Duplicate Lines No Assignment

Find Fast Ctrl+F3

Find Mate Ctrl+]

Find Next F3

Find Previous Shift+F3

Find Text in Disk Files No Assignment

Find Unique Lines No Assignment

Flip Case Shift+Ctrl+F

FTP Open Shift+Alt+O

FTP Save As Shift+Alt+F12

Go to Byte Offset No Assignment

Boxer Text Editor828

Copyright © 1991-2010 by Boxer Software

Go to Column Shift+Ctrl+G

Go to Line Ctrl+G

Go to Line Alt+G

Help F1

Help On Shift+F1

Hex Mode Shift+Alt+X

HTML Image Tag No Assignment

Increment No Assignment

Indent one Space No Assignment

Indent one Tabstop Shift+Tab

Indent with String No Assignment

Insert Character No Assignment

Insert File Ctrl+I

Insert File Alt+I

Insert Filename No Assignment

Insert Formfeed No Assignment

Insert Line Above Shift+Ctrl+Enter

Insert Line Below Ctrl+Enter

Insert Long Date Shift+Ctrl+F11

Insert Long Time Shift+Ctrl+F12

Insert Short Date Shift+F11

Insert Short Time Shift+F12

Insert Symbol 1 Shift+Ctrl+1

Insert Symbol 2 Shift+Ctrl+2

Insert Symbol 3 Shift+Ctrl+3

Insert Symbol 4 Shift+Ctrl+4

Insert Symbol 5 Shift+Ctrl+5

Insert Symbol 6 Shift+Ctrl+6

Insert Symbol 7 Shift+Ctrl+7

Insert Symbol 8 Shift+Ctrl+8

Insert Tab Tab

Invert Lines No Assignment

Justification Style Ctrl+J

Miscellaneous Topics 829

Copyright © 1991-2010 by Boxer Software

Left Left

Left Window Edge No Assignment

Line Drawing Ctrl+F12

Load Key Recording No Assignment

Macros F8

Make Line Bottom No Assignment

Make Line Center Center 5

Make Line Top No Assignment

Maximize No Assignment

Maximize All No Assignment

Minimize No Assignment

Minimize All No Assignment

Multiply No Assignment

New Ctrl+N

Next Bookmark Shift+Ctrl+Down

Next Function Ctrl+Alt+Down

Next Paragraph No Assignment

OEM Chart No Assignment

OEM to ANSI No Assignment

Open Ctrl+O

Open Context Menu Shift+F10

Open Email at Cursor Ctrl+E

Open File in Browser Ctrl+B

Open Filename at Cursor Ctrl+L

Open Header File Ctrl+H

Open Hex Mode Ctrl+Alt+O

Open Program at Cursor No Assignment

Open Recent File 1 No Assignment

Open Recent File 2 No Assignment

Open Recent File 3 No Assignment

Open Recent File 4 No Assignment

Open Recent File 5 No Assignment

Open Recent File 6 No Assignment

Boxer Text Editor830

Copyright © 1991-2010 by Boxer Software

Open Recent File 7 No Assignment

Open Recent File 8 No Assignment

Open Recent File 9 No Assignment

Open Recent File 10 No Assignment

Open Recent File 11 No Assignment

Open Recent File 12 No Assignment

Open Recent File 13 No Assignment

Open Recent File 14 No Assignment

Open Recent File 15 No Assignment

Open Recent File 16 No Assignment

Open Recent File 17 No Assignment

Open Recent File 18 No Assignment

Open Recent File 19 No Assignment

Open Recent File 20 No Assignment

Open Recent File 21 No Assignment

Open Recent File 22 No Assignment

Open Recent File 23 No Assignment

Open Recent File 24 No Assignment

Open Recent Project 1 No Assignment

Open Recent Project 2 No Assignment

Open Recent Project 3 No Assignment

Open Recent Project 4 No Assignment

Open Recent Project 5 No Assignment

Open Recent Project 6 No Assignment

Open Recent Project 7 No Assignment

Open Recent Project 8 No Assignment

Open Recent Project 9 No Assignment

Open Recent Project 10 No Assignment

Open Recent Project 11 No Assignment

Open Recent Project 12 No Assignment

Open Recent Project 13 No Assignment

Open Recent Project 14 No Assignment

Open Recent Project 15 No Assignment

Miscellaneous Topics 831

Copyright © 1991-2010 by Boxer Software

Open Recent Project 16 No Assignment

Open System Files No Assignment

Open URL at Cursor Ctrl+U

Order Boxer No Assignment

Order with PayPal No Assignment

Page Down PgDn

Page Left No Assignment

Page Right No Assignment

Page Setup No Assignment

Page Up PgUp

Paste Ctrl+V

Paste Shift+Ins

Paste As Shift+Ctrl+V

Paste Clipboard 1 Shift+Alt+1

Paste Clipboard 2 Shift+Alt+2

Paste Clipboard 3 Shift+Alt+3

Paste Clipboard 4 Shift+Alt+4

Paste Clipboard 5 Shift+Alt+5

Paste Clipboard 6 Shift+Alt+6

Paste Clipboard 7 Shift+Alt+7

Paste Clipboard 8 Shift+Alt+8

Paste Windows Clipboard Shift+Alt+0

Pause Recording No Assignment

Playback Keys F5

Previous Bookmark Shift+Ctrl+Up

Previous Function Ctrl+Alt+Up

Previous Paragraph No Assignment

Print All Color No Assignment

Print All Monochrome No Assignment

Print All Normal No Assignment

Print Color No Assignment

Print Monochrome No Assignment

Print Normal Ctrl+P

Boxer Text Editor832

Copyright © 1991-2010 by Boxer Software

Print Preview Color No Assignment

Print Preview Monochrome No Assignment

Print Preview Normal No Assignment

Print Setup No Assignment

Project Add All No Assignment

Project Add One No Assignment

Project Auto-Update No Assignment

Project Close No Assignment

Project Delete No Assignment

Project Edit Active No Assignment

Project Edit Other No Assignment

Project New No Assignment

Project Open No Assignment

Project Remove No Assignment

Project Update All No Assignment

Project Update One No Assignment

Quote and Reformat Ctrl+Q

Record Keys Shift+F5

Redo Ctrl+Y

Redo All No Assignment

Reference No Assignment

Reformat Ctrl+F10

Reload File Shift+Ctrl+O

Repeat Last Command F10

Replace Ctrl+R

Replace Alt+R

Replace Again Shift+Ctrl+R

Replace Line Enders Ctrl+Alt+R

Restore No Assignment

Restore All No Assignment

Right Right

Right Window Edge No Assignment

Run Macro 1 No Assignment

Miscellaneous Topics 833

Copyright © 1991-2010 by Boxer Software

Run Macro 2 No Assignment

Run Macro 3 No Assignment

Run Macro 4 No Assignment

Run Macro 5 No Assignment

Run Macro 6 No Assignment

Run Macro 7 No Assignment

Run Macro 8 No Assignment

Run Macro 9 No Assignment

Run Macro 10 No Assignment

Run Macro 11 No Assignment

Run Macro 12 No Assignment

Run Macro 13 No Assignment

Run Macro 14 No Assignment

Run Macro 15 No Assignment

Run Macro 16 No Assignment

Run Macro 17 No Assignment

Run Macro 18 No Assignment

Run Macro 19 No Assignment

Run Macro 20 No Assignment

Run Macro 21 No Assignment

Run Macro 22 No Assignment

Run Macro 23 No Assignment

Run Macro 24 No Assignment

Run Macro 25 No Assignment

Run Macro 26 No Assignment

Run Macro 27 No Assignment

Run Macro 28 No Assignment

Run Macro 29 No Assignment

Run Macro 30 No Assignment

Run Macro 31 No Assignment

Run Macro 32 No Assignment

Run Macro 33 No Assignment

Run Macro 34 No Assignment

Boxer Text Editor834

Copyright © 1991-2010 by Boxer Software

Run Macro 35 No Assignment

Run Macro 36 No Assignment

Run Macro 37 No Assignment

Run Macro 38 No Assignment

Run Macro 39 No Assignment

Run Macro 40 No Assignment

Run Macro 41 No Assignment

Run Macro 42 No Assignment

Run Macro 43 No Assignment

Run Macro 44 No Assignment

Run Macro 45 No Assignment

Run Macro 46 No Assignment

Run Macro 47 No Assignment

Run Macro 48 No Assignment

Run Macro 49 No Assignment

Run Macro 50 No Assignment

Save Ctrl+S

Save a Copy As No Assignment

Save All Shift+Ctrl+S

Save As F12

Save Key Recording No Assignment

Save Selection As No Assignment

Scroll Down Ctrl+Up

Scroll Left Alt+Left

Scroll Right Alt+Right

Scroll Up Ctrl+Down

Select All Text Ctrl+A

Select Columnar Alt+2

Select Down Shift+Down

Select Left Shift+Left

Select Page Down Shift+PgDn

Select Page Left No Assignment

Select Page Right No Assignment

Miscellaneous Topics 835

Copyright © 1991-2010 by Boxer Software

Select Page Up Shift+PgUp

Select Right Shift+Right

Select Stream Alt+1

Select to Bottom of Page Shift+Ctrl+PgDn

Select to End of File Shift+Ctrl+End

Select to End of Line Shift+End

Select to Start of File Shift+Ctrl+Home

Select to Start of Line Shift+Home

Select to Top of Page Shift+Ctrl+PgUp

Select Up Shift+Up

Select without Shift Alt+M

Select Word Left Shift+Ctrl+Left

Select Word Right Shift+Ctrl+Right

Set Clipboard 1 Ctrl+1

Set Clipboard 2 Ctrl+2

Set Clipboard 3 Ctrl+3

Set Clipboard 4 Ctrl+4

Set Clipboard 5 Ctrl+5

Set Clipboard 6 Ctrl+6

Set Clipboard 7 Ctrl+7

Set Clipboard 8 Ctrl+8

Set Clipboard Next No Assignment

Set Clipboard Previous No Assignment

Set Windows Clipboard Ctrl+0

Shaded Tab Zones No Assignment

Sort File Tabs by Extension No Assignment

Sort File Tabs by Name No Assignment

Sort File Tabs by Use No Assignment

Sort Lines No Assignment

Spaces to Tabs No Assignment

Spell Checker F7

Split Horizontal No Assignment

Split Vertical No Assignment

Boxer Text Editor836

Copyright © 1991-2010 by Boxer Software

Start of File Ctrl+Home

Start of Line Home

Strip HTML/XML Tags No Assignment

Strip Leading Spaces No Assignment

Strip Trailing Spaces No Assignment

Swap Lines F4

Swap Words Shift+F4

Switch to Window 1 No Assignment

Switch to Window 2 No Assignment

Switch to Window 3 No Assignment

Switch to Window 4 No Assignment

Switch to Window 5 No Assignment

Switch to Window 6 No Assignment

Switch to Window 7 No Assignment

Switch to Window 8 No Assignment

Switch to Window 9 No Assignment

Synchronized Scroll No Assignment

Syntax Highlight As No Assignment

Tab Display Size Alt+F9

Tabs to Spaces No Assignment

Technical Support No Assignment

Templates Ctrl+T

Text Width Ctrl+W

Tile Across No Assignment

Tile Down No Assignment

Toggle Bookmark F9

Toggle Edit Mode Ins

Toggle Read-Only No Assignment

Toolbar Bottom No Assignment

Toolbar Left No Assignment

Toolbar Right No Assignment

Toolbar Top No Assignment

Top of Page Ctrl+PgUp

Miscellaneous Topics 837

Copyright © 1991-2010 by Boxer Software

Typing Wrap Ctrl+F5

Total and Average No Assignment

Uncomment No Assignment

Undo Ctrl+Z

Undo Alt+U

Undo All No Assignment

Unformat Ctrl+Alt+F10

Unindent Shift+BkSp

Up Up

User List 1 (Two-Letter U.S. State Codes) No
Assignment

User List 2 (Internet Country Codes) No
Assignment

User List 3 (Hi-Tech Stock Symbols) No
Assignment

User List 4 (HTML Tags) No Assignment

User List 5 (Fahrenheit / Celsius Table) No
Assignment

User List 6 (Metric/English Conversions) No
Assignment

User List 7 (Email and URL Addresses) No
Assignment

User List 8 (undefined) No Assignment

User Tool 1 (Example: Google) No Assignment

User Tool 2 (Example: Wikipedia) No
Assignment

User Tool 3 (Example: Dictionary) No
Assignment

User Tool 4 (Example: Weather) No Assignment

User Tool 5 No Assignment

User Tool 6 No Assignment

User Tool 7 (undefined) No Assignment

User Tool 8 (undefined) No Assignment

User Tool 9 (undefined) No Assignment

User Tool 10 (undefined) No Assignment

User Tool 11 (undefined) No Assignment

Boxer Text Editor838

Copyright © 1991-2010 by Boxer Software

User Tool 12 (undefined) No Assignment

User Tool 13 (undefined) No Assignment

User Tool 14 (undefined) No Assignment

User Tool 15 (undefined) No Assignment

User Tool 16 (undefined) No Assignment

User Tool 17 (undefined) No Assignment

User Tool 18 (undefined) No Assignment

User Tool 19 (undefined) No Assignment

User Tool 20 (undefined) No Assignment

User Tool 21 (undefined) No Assignment

User Tool 22 (undefined) No Assignment

User Tool 23 (undefined) No Assignment

User Tool 24 (undefined) No Assignment

Value at Cursor No Assignment

View Bookmarks Alt+F2

View File Tabs No Assignment

View Hex Ruler No Assignment

View Horizontal Scroll Bar No Assignment

View Line Numbers Alt+F3

View Right Margin Rule Alt+F6

View Status Bar No Assignment

View Syntax Highlighting No Assignment

View Text Highlighting Alt+F8

View Text Ruler Alt+F5

View Toolbar No Assignment

View Vertical Scroll Bar No Assignment

View Visible Spaces Alt+F1

Window List No Assignment

Window Next F6

Window Previous Shift+F6

Window Skip No Assignment

Word Count No Assignment

Word Left Ctrl+Left

Miscellaneous Topics 839

Copyright © 1991-2010 by Boxer Software

Word Right Ctrl+Right

6.6 Default Key Assignments (key order)

This list was generated using the Make List button in the Configure | Keyboard
dialog box, and then sorted by key names. The same procedure can be used to
create a list for other supplied keyboard layouts, or for layouts you create yourself.

Select Stream Alt+1

Select Columnar Alt+2

Delete Current Line Alt+D

Auto-Complete List Alt+Down

View Visible Spaces Alt+F1

Fast Frame Alt+F12

View Bookmarks Alt+F2

View Line Numbers Alt+F3

Exit Alt+F4

View Text Ruler Alt+F5

View Right Margin Rule Alt+F6

Active Spell Checking Alt+F7

View Text Highlighting Alt+F8

Tab Display Size Alt+F9

Go to Line Alt+G

Insert File Alt+I

File Picker Alt+K

Scroll Left Alt+Left

Select without Shift Alt+M

Duplicate Line Alt+O

Exit Alt+Q

Replace Alt+R

Scroll Right Alt+Right

Undo Alt+U

Close Alt+X

Command Multiplier Alt+Y

Boxer Text Editor840

Copyright © 1991-2010 by Boxer Software

Backspace BkSp

Make Line Center Center 5

Set Windows Clipboard Ctrl+0

Set Clipboard 1 Ctrl+1

Set Clipboard 2 Ctrl+2

Set Clipboard 3 Ctrl+3

Set Clipboard 4 Ctrl+4

Set Clipboard 5 Ctrl+5

Set Clipboard 6 Ctrl+6

Set Clipboard 7 Ctrl+7

Set Clipboard 8 Ctrl+8

Select All Text Ctrl+A

Next Function Ctrl+Alt+Down

Unformat Ctrl+Alt+F10

Backtab Ctrl+Alt+Left

Open Hex Mode Ctrl+Alt+O

Replace Line Enders Ctrl+Alt+R

Previous Function Ctrl+Alt+Up

Close All Ctrl+Alt+X

Open File in Browser Ctrl+B

Delete Previous Word Ctrl+BkSp

Copy Ctrl+C

Find Differing Lines Ctrl+D

Delete Next Word Ctrl+Del

Scroll Up Ctrl+Down

Open Email at Cursor Ctrl+E

End of File Ctrl+End

Insert Line Below Ctrl+Enter

Find Ctrl+F

Reformat Ctrl+F10

Align Smooth Ctrl+F11

Line Drawing Ctrl+F12

Find Fast Ctrl+F3

Miscellaneous Topics 841

Copyright © 1991-2010 by Boxer Software

Typing Wrap Ctrl+F5

Align Left Ctrl+F7

Align Center Ctrl+F8

Align Right Ctrl+F9

Go to Line Ctrl+G

Open Header File Ctrl+H

Start of File Ctrl+Home

Insert File Ctrl+I

Copy Ctrl+Ins

Justification Style Ctrl+J

Delete to Start of Line Ctrl+K

Open Filename at Cursor Ctrl+L

Word Left Ctrl+Left

New Ctrl+N

Open Ctrl+O

Print Normal Ctrl+P

Bottom of Page Ctrl+PgDn

Top of Page Ctrl+PgUp

Quote and Reformat Ctrl+Q

Replace Ctrl+R

Word Right Ctrl+Right

Save Ctrl+S

Auto-Complete Ctrl+Space

Templates Ctrl+T

Open URL at Cursor Ctrl+U

Scroll Down Ctrl+Up

Paste Ctrl+V

Text Width Ctrl+W

Cut Ctrl+X

Redo Ctrl+Y

Undo Ctrl+Z

Find Mate Ctrl+]

Delete Del

Boxer Text Editor842

Copyright © 1991-2010 by Boxer Software

Down Down

End of Line End

Cancel Esc

Help F1

Repeat Last Command F10

Calculator F11

Save As F12

Duplicate Line F2

Find Next F3

Swap Lines F4

Playback Keys F5

Window Next F6

Spell Checker F7

Macros F8

Toggle Bookmark F9

Start of Line Home

Toggle Edit Mode Ins

Left Left

Cascade Horizontal No Assignment

Configure Syntax Highlighting No Assignment

Delete Lines that End with No Assignment

Delete to End of Line No Assignment

Apply Highlighting No Assignment

Clear Clipboard 8 No Assignment

Clear Recent Projects List No Assignment

Edit Clipboard 5 No Assignment

Configure Templates No Assignment

Project Close No Assignment

Clear Clipboard 6 No Assignment

Calendar No Assignment

Delete Lines that Contain No Assignment

Delete Lines that do not Begin withNo
Assignment

Edit Clipboard 4 No Assignment

Miscellaneous Topics 843

Copyright © 1991-2010 by Boxer Software

Cascade No Assignment

File Properties No Assignment

Edit Clipboard 7 No Assignment

Configure Text Highlighting No Assignment

Configure Toolbar No Assignment

ANSI Chart No Assignment

Edit Clipboard 2 No Assignment

Edit Clipboard 3 No Assignment

Find Text in Disk Files No Assignment

Arrange Icons No Assignment

Clear Clipboard 5 No Assignment

Run Macro 21 No Assignment

Edit Clipboard 8 No Assignment

Declaration No Assignment

Clear Clipboard 2 No Assignment

Run Macro 42 No Assignment

Clear Clipboard 3 No Assignment

File Tabs Bottom No Assignment

Find Duplicate Lines No Assignment

Edit Clipboard 1 No Assignment

Delete Lines that Begin with No Assignment

Increment No Assignment

Indent one Space No Assignment

Delete Lines that do not Contain No Assignment

Delete Lines that do not End with No
Assignment

Insert Character No Assignment

Cascade Vertical No Assignment

File Tabs Top No Assignment

Insert Filename No Assignment

Divide No Assignment

Clear All Clipboards No Assignment

Convert Case Lower No Assignment

Find Distinct Lines No Assignment

Boxer Text Editor844

Copyright © 1991-2010 by Boxer Software

Boxer Shorts No Assignment

EBCDIC to ASCII No Assignment

Project Remove No Assignment

Switch to Window 1 No Assignment

Switch to Window 2 No Assignment

Switch to Window 3 No Assignment

Switch to Window 4 No Assignment

Switch to Window 5 No Assignment

Clear Undo No Assignment

Switch to Window 7 No Assignment

Switch to Window 8 No Assignment

Switch to Window 9 No Assignment

Decrement No Assignment

Clear Clipboard 1 No Assignment

Strip Leading Spaces No Assignment

Strip Trailing Spaces No Assignment

Clear Clipboard 4 No Assignment

Delete Duplicate Lines No Assignment

HTML Image Tag No Assignment

Configure Keyboard No Assignment

Configure Preferences No Assignment

Sort File Tabs by Use No Assignment

Indent with String No Assignment

Maximize All No Assignment

Minimize No Assignment

Minimize All No Assignment

Multiply No Assignment

Clear All Bookmarks No Assignment

Contact Information No Assignment

Delete Blank Lines No Assignment

Next Paragraph No Assignment

Set Clipboard Previous No Assignment

Convert Case Title No Assignment

Miscellaneous Topics 845

Copyright © 1991-2010 by Boxer Software

Convert Case Upper No Assignment

Convert Case Words No Assignment

ANSI to OEM No Assignment

Run Macro 16 No Assignment

Copy Filename No Assignment

Ctags Function Index No Assignment

ASCII to EBCDIC No Assignment

Open Program at Cursor No Assignment

Run Macro 22 No Assignment

Open Recent File 2 No Assignment

Open Recent File 3 No Assignment

Convert Case Invert No Assignment

Open Recent File 5 No Assignment

Convert Case Sentences No Assignment

Open Recent File 7 No Assignment

Boxer Software Website No Assignment

Open Recent File 9 No Assignment

Open Recent File 10 No Assignment

Open Recent File 11 No Assignment

Open Recent File 12 No Assignment

Open Recent File 13 No Assignment

Open Recent File 14 No Assignment

Open Recent File 15 No Assignment

Open Recent File 16 No Assignment

Open Recent File 17 No Assignment

Open Recent File 18 No Assignment

Open Recent File 19 No Assignment

Open Recent File 20 No Assignment

Open Recent File 21 No Assignment

Open Recent File 22 No Assignment

Open Recent File 23 No Assignment

Open Recent File 24 No Assignment

Open Recent Project 1 No Assignment

Boxer Text Editor846

Copyright © 1991-2010 by Boxer Software

Open Recent Project 2 No Assignment

Open Recent Project 3 No Assignment

Open Recent Project 4 No Assignment

Open Recent Project 5 No Assignment

Switch to Window 6 No Assignment

Open Recent Project 7 No Assignment

Open Recent Project 8 No Assignment

Open Recent Project 9 No Assignment

Email Boxer Software No Assignment

Open Recent File 4 No Assignment

Open Recent Project 12 No Assignment

Delete Bookmarked Lines No Assignment

Configure Auto-Complete No Assignment

Open Recent File 8 No Assignment

Configure Ctags Function Index No Assignment

Open System Files No Assignment

FAQs No Assignment

Configure Printer Font No Assignment

Configure Screen Font No Assignment

Order with PayPal No Assignment

Page Left No Assignment

Page Right No Assignment

Fill with String No Assignment

Configure User Tools No Assignment

About Boxer No Assignment

Find and Count No Assignment

Run Macro 10 No Assignment

Run Macro 11 No Assignment

Run Macro 12 No Assignment

Run Macro 13 No Assignment

Run Macro 14 No Assignment

Run Macro 15 No Assignment

Clear Clipboard 7 No Assignment

Miscellaneous Topics 847

Copyright © 1991-2010 by Boxer Software

Run Macro 17 No Assignment

Run Macro 18 No Assignment

Find Unique Lines No Assignment

Pause Recording No Assignment

Open Recent File 1 No Assignment

User List 5 No Assignment

Auto-Number No Assignment

Previous Paragraph No Assignment

Print All Monochrome No Assignment

Open Recent File 6 No Assignment

Print All Normal No Assignment

Print Color No Assignment

Print Monochrome No Assignment

Bring User Lists to Top No Assignment

Print Preview Color No Assignment

Print Preview Monochrome No Assignment

Print Preview Normal No Assignment

Print Setup No Assignment

Project Add All No Assignment

Check for Latest Version No Assignment

Project Auto-Update No Assignment

Split Vertical No Assignment

Project Delete No Assignment

Project Edit Active No Assignment

Project Edit Other No Assignment

Project New No Assignment

Project Open No Assignment

Run Macro 44 No Assignment

Project Update All No Assignment

Project Update One No Assignment

Run Macro 47 No Assignment

Run Macro 48 No Assignment

Clear Recent Files List No Assignment

Boxer Text Editor848

Copyright © 1991-2010 by Boxer Software

Redo All No Assignment

Reference No Assignment

Clear Windows Clipboard No Assignment

View Hex Ruler No Assignment

Invert Lines No Assignment

Close All but Active No Assignment

Color Chart No Assignment

Left Window Edge No Assignment

Comment No Assignment

Configure Colors No Assignment

Restore All No Assignment

Make Line Bottom No Assignment

Right Window Edge No Assignment

Run Macro 1 No Assignment

Run Macro 2 No Assignment

Run Macro 3 No Assignment

Run Macro 4 No Assignment

Run Macro 5 No Assignment

Run Macro 6 No Assignment

Run Macro 7 No Assignment

Run Macro 8 No Assignment

Run Macro 9 No Assignment

Total and Average No Assignment

Uncomment No Assignment

OEM Chart No Assignment

OEM to ANSI No Assignment

Undo All No Assignment

Run Macro 46 No Assignment

User Tool 22 No Assignment

User Tool 23 No Assignment

User List 1 No Assignment

Run Macro 19 No Assignment

Run Macro 20 No Assignment

Miscellaneous Topics 849

Copyright © 1991-2010 by Boxer Software

User List 4 No Assignment

Run Macro 37 No Assignment

Run Macro 23 No Assignment

Run Macro 24 No Assignment

Run Macro 25 No Assignment

Run Macro 26 No Assignment

Run Macro 27 No Assignment

Run Macro 28 No Assignment

Run Macro 29 No Assignment

Run Macro 30 No Assignment

Run Macro 31 No Assignment

Run Macro 32 No Assignment

Run Macro 33 No Assignment

Run Macro 34 No Assignment

Run Macro 35 No Assignment

Run Macro 36 No Assignment

Save a Copy As No Assignment

Run Macro 38 No Assignment

Run Macro 39 No Assignment

Run Macro 40 No Assignment

Run Macro 41 No Assignment

User Tool 17 No Assignment

Run Macro 43 No Assignment

User Tool 19 No Assignment

Run Macro 45 No Assignment

User Tool 21 No Assignment

Explore Program Folder No Assignment

Order Boxer No Assignment

Run Macro 49 No Assignment

Run Macro 50 No Assignment

Edit Clipboard 6 No Assignment

Select Page Right No Assignment

Word Count No Assignment

Boxer Text Editor850

Copyright © 1991-2010 by Boxer Software

Edit Windows Clipboard No Assignment

Save Key Recording No Assignment

Save Selection As No Assignment

Open Recent Project 13 No Assignment

Error Chart No Assignment

Restore No Assignment

Open Recent Project 16 No Assignment

Explore Data Folder No Assignment

Shaded Tab Zones No Assignment

Sort File Tabs by Extension No Assignment

Window List No Assignment

Maximize No Assignment

Select Page Left No Assignment

User List 3 No Assignment

View File Tabs No Assignment

Page Setup No Assignment

Find a Disk File No Assignment

User Tool 15 No Assignment

Strip HTML/XML Tags No Assignment

User Tool 1 No Assignment

User Tool 18 No Assignment

User Tool 3 No Assignment

User Tool 20 No Assignment

Load Key Recording No Assignment

View Toolbar No Assignment

Sort File Tabs by Name No Assignment

User Tool 24 No Assignment

User List 2 No Assignment

Spaces to Tabs No Assignment

Project Add One No Assignment

Split Horizontal No Assignment

Go to Byte Offset No Assignment

User List 7 No Assignment

Miscellaneous Topics 851

Copyright © 1991-2010 by Boxer Software

Print All Color No Assignment

User Tool 16 No Assignment

Set Clipboard Next No Assignment

Tabs to Spaces No Assignment

User Tool 4 No Assignment

Open Recent Project 14 No Assignment

Open Recent Project 15 No Assignment

Tile Across No Assignment

User Tool 8 No Assignment

Sort Lines No Assignment

Value at Cursor No Assignment

Open Recent Project 6 No Assignment

Toolbar Bottom No Assignment

User Tool 13 No Assignment

Insert Formfeed No Assignment

Synchronized Scroll No Assignment

Syntax Highlight As No Assignment

View Status Bar No Assignment

Open Recent Project 11 No Assignment

Technical Support No Assignment

View Syntax Highlighting No Assignment

Toolbar Left No Assignment

User Tool 5 No Assignment

Tile Down No Assignment

Make Line Top No Assignment

User Tool 9 No Assignment

Toggle Read-Only No Assignment

User Tool 10 No Assignment

Open Recent Project 10 No Assignment

View Horizontal Scroll Bar No Assignment

Toolbar Top No Assignment

User Tool 2 No Assignment

User List 8 No Assignment

Boxer Text Editor852

Copyright © 1991-2010 by Boxer Software

View Vertical Scroll Bar No Assignment

Toolbar Right No Assignment

User Tool 6 No Assignment

User Tool 11 No Assignment

User Tool 14 No Assignment

Window Skip No Assignment

User Tool 7 No Assignment

User Tool 12 No Assignment

User List 6 No Assignment

Page Down PgDn

Page Up PgUp

Right Right

Paste Windows Clipboard Shift+Alt+0

Paste Clipboard 1 Shift+Alt+1

Paste Clipboard 2 Shift+Alt+2

Paste Clipboard 3 Shift+Alt+3

Paste Clipboard 4 Shift+Alt+4

Paste Clipboard 5 Shift+Alt+5

Paste Clipboard 6 Shift+Alt+6

Paste Clipboard 7 Shift+Alt+7

Paste Clipboard 8 Shift+Alt+8

FTP Save As Shift+Alt+F12

FTP Open Shift+Alt+O

Hex Mode Shift+Alt+X

Unindent Shift+BkSp

Insert Symbol 1 Shift+Ctrl+1

Insert Symbol 2 Shift+Ctrl+2

Insert Symbol 3 Shift+Ctrl+3

Insert Symbol 4 Shift+Ctrl+4

Insert Symbol 5 Shift+Ctrl+5

Insert Symbol 6 Shift+Ctrl+6

Insert Symbol 7 Shift+Ctrl+7

Insert Symbol 8 Shift+Ctrl+8

Miscellaneous Topics 853

Copyright © 1991-2010 by Boxer Software

Append Shift+Ctrl+C

Next Bookmark Shift+Ctrl+Down

Select to End of File Shift+Ctrl+End

Insert Line Above Shift+Ctrl+Enter

Flip Case Shift+Ctrl+F

Insert Long Date Shift+Ctrl+F11

Insert Long Time Shift+Ctrl+F12

Go to Column Shift+Ctrl+G

Select to Start of File Shift+Ctrl+Home

Select Word Left Shift+Ctrl+Left

Reload File Shift+Ctrl+O

Select to Bottom of Page Shift+Ctrl+PgDn

Select to Top of Page Shift+Ctrl+PgUp

Replace Again Shift+Ctrl+R

Select Word Right Shift+Ctrl+Right

Save All Shift+Ctrl+S

Previous Bookmark Shift+Ctrl+Up

Paste As Shift+Ctrl+V

Cut Append Shift+Ctrl+X

Cut Shift+Del

Select Down Shift+Down

Select to End of Line Shift+End

Help On Shift+F1

Open Context Menu Shift+F10

Insert Short Date Shift+F11

Insert Short Time Shift+F12

Duplicate & Increment Shift+F2

Find Previous Shift+F3

Swap Words Shift+F4

Record Keys Shift+F5

Window Previous Shift+F6

Check Word Shift+F7

Bookmark Manager Shift+F9

Boxer Text Editor854

Copyright © 1991-2010 by Boxer Software

Select to Start of Line Shift+Home

Paste Shift+Ins

Select Left Shift+Left

Select Page Down Shift+PgDn

Select Page Up Shift+PgUp

Select Right Shift+Right

Indent one Tabstop Shift+Tab

Select Up Shift+Up

Insert Tab Tab

Up Up

6.7 Dropping Text Files onto Boxer

Dragging and Dropping Files refers to the process of selecting one or more file icons,
dragging them to a destination program, and releasing the left mouse button. A single
file icon can be selected by clicking on it with the left mouse button. Additional files
can be added to the selection by depressing Ctrl while clicking with the left mouse
button. A range of file icons can be selected by selecting the first icon in the range, and
depressing Shift before selecting the last icon in the range.

While Boxer is active, it recognizes the dropping of files onto its window as a request to
add the file(s) to the existing editing session.

When Boxer is inactive, dropping one or more files onto its program icon will cause a
new edit session to be launched. If files are dropped onto the program icon while an
editing session is underway, these files will be added to the existing session.

When a Project file is dropped onto Boxer, the files named within the Project file will be
opened. See the New Project topic for more details on this capability.

6.8 Dropping Image Files onto Boxer

Boxer will react to a dropped image file by creating an HTML image tag declaration in
the current file, at the location of the text cursor. The image tag will use the filename,
image height, and image width of the dropped image file. The following image file
formats are supported: BMP, GIF and JPEG.

Before the image tag is created, a dialog appears to confirm the operation, and to
provide access to the image template:

Miscellaneous Topics 855

Copyright © 1991-2010 by Boxer Software

You can control the format of the image tag by editing the HTML Image Tag Template in
the upper edit box. The format of the template string can be changed freely, so long as
the %1, %2 and %3 sequences appear in the string, and remain associated with the

filename (src), width and height properties, respectively. The image tag that will be

inserted appears in the lower edit box. Buttons are provided to quickly convert the tag
to uppercase or lowercase, as well as a Reset to Default button that will restore the
template string to its original form.

This function is also accessible by issuing the HTML Image Tag command from the
main menu.

6.9 File Associations

Windows provides the ability to associate a file type (file extension) with the application
program which is used to open that file. This relationship is termed a file association.
Microsoft Word establishes a file association so that when a .DOC file is double-clicked,

Word will be used to open that file. Likewise, your Internet browser has established an
association between itself and files with an HTML extension.

You might wish to associate one or more file types with Boxer so that it will be launched
whenever one of these file types is double-clicked from within Explorer. Some users
prefer this method of opening or loading files to using the Open command from within
Boxer to open files.

During installation, Boxer's Setup program provided the opportunity to associate several
common text file extensions with Boxer. If you elected to do this, some file types will
already be associated with Boxer. In this case you will not need to establish
associations for these file types: .TXT files, .INI files, .BAT files and .BTM files.

The method by which a file association is established depends on whether or not that
file type is already associated with another application.

When the File Type is Not Yet Associated
When you double-click on a file whose type has not yet been associated with another
program, Windows presents a dialog box that allows you to select the program which

Boxer Text Editor856

Copyright © 1991-2010 by Boxer Software

should be used to open files of that type. Boxer should appear in the list of programs
which can be used to open the file. If it does not, use the Other... button to locate the
Boxer program. This dialog box contains a checkbox titled Always use this program to
open this file. If you select this option, Windows will remember the association and
Boxer will automatically be used to open files of this type in the future. By supplying a
short description in the box provided, the file type will become registered using the
description provided.

When the File Type is Already Associated
If the file type you would like to associate with Boxer has already been associated with
another program, a different method must be used to establish the new association.
Double-clicking on the file will simply launch the associated program, and no
opportunity will be provided to specify the program to be launched as occurs for an
unassociated file type.

The first step is to remove the existing file association. From within Explorer, select
the Options command in the View menu (in Windows 98 this command is titled Folder
Options). Click the File Types tab in the Options dialog box. A list of registered file
types is displayed. Find the file type which is to be changed within the list of registered
types. Check the information in the File type details display to be sure the right file
type has been located. When you are sure you have located the correct file type,
proceed as follows:

Click the Edit... button in the Options dialog box
 the Edit File Type dialog box appears

Click the open action in the Actions listbox

Click the Edit... button in the Edit File Type dialog box
 the Editing Action for Type: dialog box appears

In the edit box titled Application used to perform action, enter the full filepath to the
Boxer program. Use the Browse... button if needed to locate file.

Make sure that following the filepath is a Space character and the characters "%1",

including the double quotes. This is very important.

Click OK in the Editing Action for Type: dialog box

Click Close in the Edit File Type dialog box appears

Click Close in the Options dialog box appears

The file association has been changed. Repeat this process as required to create other
file associations.

In the most recent versions of Windows, it is no longer possible to establish a file
association between an application (such as Boxer) and a file that has no file
extension. Such associations had been permitted in earlier versions of Windows,
but this appears to have changed in Windows Me, 2000, XP etc.

Miscellaneous Topics 857

Copyright © 1991-2010 by Boxer Software

When creating a file association to edit a Batch file, be sure to associate Boxer with
the edit action, and not the open action. 'Opening' a batch file has special
meaning, as compared to other text files, because the command processor is
charged with interpreting and processing the commands in the batch file.

You might wish to associate Boxer with the print action for some file types to gain
quicker access to Boxer's Color Syntax Printing capability. Once this association is
made, right-clicking on a file of the defined type and selecting the Print option from
its context menu will launch Boxer so the file can be printed.

6.10 HTML Color Code Popup Hints

Boxer will display a popup color hint when the mouse cursor is allowed to hover over an
HTML color code, such as "#3D121F", or "DarkSlateBlue".

This feature can be very helpful when editing HTML code, as it provides a means to
check colors visually without the need to refer to a chart.

Color codes of the following forms are recognized:

=red
="red"
= "red"
=#FF0000
="#FF0000"
= "#FF0000"
rgb(255,0,0)

More than 150 official HTML color code names are recognized.

This feature can be disabled with a checkbox on the Configure | Preferences | Display
dialog page.

To select colors and insert HTML color codes, use the HTML Color Chart command.

6.11 Insert Symbols

Default Shortcut Key: Shift+Ctrl+1 to Shift+Ctrl+8

The Insert Symbols feature provides a mechanism for defining up to eight character
values which can be entered into a text file using an associated key assignment. This
feature is useful for defining characters which are not readily insertable from the

Boxer Text Editor858

Copyright © 1991-2010 by Boxer Software

keyboard, such as accented characters or special symbols which reside in the upper half
of the ASCII character set.

The symbol values are defined on the Configure | Preferences | Editing 2 options page.
The default key assignments used for inserting the eight symbols are Shift+Ctrl+1 to
Shift+Ctrl+8. After defining the symbols you prefer you might wish to use the
Configure | Keyboard command to associate mnemonic assignments with each symbol,
such as Shift+Ctrl+A to insert an accented letter 'a'.

6.12 Inserting Special Characters

For purposes of this discussion, special characters are those characters that are not
readily insertable from a keyboard using the standard keys provided. For many users
these characters are the Greek characters, math symbols, frame drawing characters
and accented characters. The ANSI Chart and OEM Chart commands can be used to
view the characters available in each character set, along with their associated
character values.

While special characters cannot be inserted directly from the keyboard using a single
key, there is a technique that enables these characters to be inserted. The technique
involves typing the character's value from the Numeric keypad while the Alt key is
depressed. The method is slightly different depending upon whether ANSI or OEM
character values are being used:

ANSI Characters
To insert a special character by entering its ANSI character value, do the following:

1. Depress and hold the Alt key
2. Type a zero from the Numeric keypad
3. Type the digits that define the character value from the Numeric keypad
4. Release the Alt key

OEM Characters
To insert a special character by entering its OEM character value, do the following:

1. Depress and hold the Alt key
2. Type the digits that define the character value from the Numeric keypad
3. Release the Alt key

Notice that ANSI character values have the form 0### while OEM character values lack

the leading zero: ###

The ANSI Chart and OEM Chart permit characters to be inserted by double-clicking
or pressing Enter.

A special character can also be inserted by supplying its value to the Insert
Character command.

The Insert Symbols feature permits up to eight special characters to be defined for
easier input. Once defined, these symbols can be entered with a single key

Miscellaneous Topics 859

Copyright © 1991-2010 by Boxer Software

sequence.

The standard Windows controls (editbox, combobox, etc) do not normally permit
most low ASCII values (below 32) to be entered, even using the special technique
described above. Boxer has taken special care to defeat this default behavior so
that the following dialogs can accept low ASCII values for input: Find, Replace,
Replace Line Enders, Find and Count, Find Text in Disk Files and Fill with String.

If an OEM character value is typed into the editor while an ANSI font is in use, an
automatic conversion takes place. Example: In the OEM character set, the value of
the ¼ character is 172. In the ANSI character set, this character has the value 188.
But if the value 172 is entered using the technique described above, while an ANSI
font is in use, character value 188 is inserted. The converse will occur if an ANSI
character value is inserted while an OEM font is in use.

6.13 Installing or Reinstalling Boxer

Installing from CD

To install or reinstall Boxer, locate your Boxer CD and place it into your CD drive.
Ordinarily, the setup program will run automatically and you will be guided through the
quick installation. If the setup program does not run automatically, do the following:
from the Start Menu, choose Run, and then type J:\Setup.exe, where 'J' represents

the drive letter of your CD-ROM drive. Follow the on-screen instructions which are
presented by the setup program.

Installing from a Downloaded File

To install or reinstall Boxer, execute the file which was downloaded in order to run
Boxer's setup program. Follow the on-screen instructions which are presented by the
setup program.

Installing from Diskette

To install or reinstall Boxer, locate your Boxer diskette and place Disk 1 into your floppy
drive. From the Start Menu, choose Run, and then type A:\Setup.exe. Follow the

on-screen instructions which are presented by the setup program. When prompted,
insert Disk 2 into the floppy drive.

Reinstalling atop a Previous Version

If you are reinstalling, Boxer's setup program will automatically sense the existing
installation and suggest the directory in which Boxer is installed as the location for the
new installation. Unless you have a compelling reason not to do so, you should accept
this location.

· Boxer will not overwrite any data files you may have created in its data folder or
program folder, or anywhere else.

· Boxer will not overwrite the User List files from a prior installation, since you may

Boxer Text Editor860

Copyright © 1991-2010 by Boxer Software

have created custom lists.

· Boxer will not overwrite the Auto-Complete dictionary file AC_words.txt, since you

might have edited it.

· Boxer will not overwrite the Template.ini file, since you may have defined

custom Templates.

· Boxer will not overwrite the Syntax Highlighting information file named

Syntax.ini, since you may have added new language information to it. Boxer will

install a new copy of Syntax.ini using the name New Syntax.ini, so that you

will have access to any new language information which may have been added since
your version was released. In this case you will need to manually copy the new
information from New Syntax.ini into Syntax.ini so that your custom additions

in Syntax.ini will be preserved.

6.14 Intellimouse Support

Boxer supports the use of the Microsoft Intellimouse pointing device. The Intellimouse
features a mousewheel which can be used to scroll the document within the current
window. The amount of scroll which results from a single turn of the wheel can be
configured from the device settings for the Intellimouse.

The mousewheel behaves like a center mouse button when pressed. In Boxer, this
means that the mousewheel can be used to initiate columnar text selection.

By default, support for the Intellimouse is enabled. Support can be disabled from the
Configure | Preferences | Other options page.

6.15 Macro Examples

The following example macros show the syntax of Boxer's macro language, while also
suggesting useful methods of attack for common programming tasks:

Move cursor to bottom of paragraph

// move the cursor to the bottom line of the current paragraph

macro BottomOfParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber+1))
 Down;
}

Move cursor to top of previous paragraph

Miscellaneous Topics 861

Copyright © 1991-2010 by Boxer Software

// move the cursor to the top line of the previous paragraph

macro TopOfPreviousParagraph()
{
Up;

while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))
 Up;

StartOfLine;
}

Move cursor to top of current paragraph

// move the cursor to the top line of the current paragraph

macro TopOfCurrentParagraph()
{
while (LineNumber > 1 && !LineIsEmpty(LineNumber-1))
 Up;
}

Move cursor to top of next paragraph

// move the cursor to the first line of the next paragraph

macro TopOfNextParagraph()
{
while (LineNumber < LineCount && !LineIsEmpty(LineNumber))
 Down;

Down;
StartOfLine;
}

Add a newline after every closing angle bracket

// add a newline after each closing angle (>) character
// unless the angle already appears at end of line

Boxer Text Editor862

Copyright © 1991-2010 by Boxer Software

macro AddNewlineAfterCloseAngle()
{
int line, i, j;
string str;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // get the index of the closing angle
 j = strchr(str, '>');

 // if the character was found and was not at end-of-line...
 if (j != -1 && str[j+1] != '\0')
 {
 GotoLine(line);
 GotoColumn(1);

 // advance the cursor to the character
 while (ValueAtCursor() != '>')
 Right;

 // and past the character
 Right;

 // insert a newline
 Enter;

 // process this line again in case other tags exist
 line--;
 }
 }
}

Apply HTML markup to a simple text file

// apply HTML markup to a simple text file
// also converts double quote, ampersand, and
// angle brackets to HTML equivalents

macro ApplyHTMLMarkup()
{

Miscellaneous Topics 863

Copyright © 1991-2010 by Boxer Software

int prevlen, len, i;
string str;
int numchanges;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the text of line 'i' into 'str'
 GetLineText(i, str);

 // reset the change counter
 numchanges = 0;

 // convert sensitive characters to HTML codes
 numchanges += ChangeString(str, "&", "&");
 numchanges += ChangeString(str, "<", "<");
 numchanges += ChangeString(str, ">", ">");
 numchanges += ChangeString(str, "\"", """);

 // if changes were made, replace the line's text
 if (numchanges > 0)
 PutLineText(i, str);
 }

// move to top of file
StartOfFile;
Down;

// loop on all lines in the file, starting on line 2
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

 // get the length of this line
 len = LineLength(i);

 // if this line is empty, and the previous line isn't...
 // apply
 markers to the end of the line
 if (len == 0 && prevlen != 0)
 {
 Up;
 EndOfLine;
 PutString("

");
 StartofLine;
 Down;

Boxer Text Editor864

Copyright © 1991-2010 by Boxer Software

 }

 Down; // move down to the next line
 }

StartOfFile;

PutString("<html>\n");
PutString("<head>\n");
PutString("<title></title>\n");
PutString("</head>\n\n");
PutString("<body>\n");

EndOfFile;
EndOfLine;
PutString("\n");
PutString("</body>\n");
PutString("</html>\n");

// place cursor between title and /title
GotoLine(3);
GotoColumn(8);
}

Display an ASCII chart in a new file

// ASCII chart example

macro ASCIIchart(void)
{
char i;

// open a new file
New;

// loop from space to 255 to show all chars
for (i = ' '; i <= 255; i++)
 printf("The ASCII value of '%c' is %d\n", i, i);
}

Convert comma-separated-value (CSV) data

// convert comma-separated-value (CSV) data on the current

Miscellaneous Topics 865

Copyright © 1991-2010 by Boxer Software

// line so that each field is placed on its own line

macro ConvertCSV()
{
string str;
int numquotes, numcommas;

// get the count of quotes/commas on this line
numquotes = LineContains(linenumber, "\"");

numcommas = LineContains(linenumber, ",");

// if this appears to be CSV data...
if (numcommas+1 == numquotes / 2)
 {
 // get the text of the current line
 GetLineText(linenumber, str);

 // remove any empty data fields
 ChangeString(str, "\"\",", "");

 // convert "," to a newline
 ChangeString(str, "\",\"", "\n");

 // remove the first and last quotes
 ChangeString(str, "\"", "");

 // select the line
 GoToColumn(1);
 SelectToEndOfLine;

 // replace the selection
 PutString(str);
 }

// position for next line
Down;
StartOfLine;
}

Cut lines containing a user-defined string

// cut lines containing a user-defined string to the Windows clipboard

Boxer Text Editor866

Copyright © 1991-2010 by Boxer Software

macro CutLinesContaining();
{
int line;
int len;
string str;
int numcut = 0;

// get the string from the user
len = GetString("Cut lines containing this string:", str);

if (len == 0)
 return;

// make the Windows clipboard the active clipboard
SetClipboard(0);

// clear the Windows clipboard
ClearClipboard(0);

// move cursor to start of file
StartOfFile();

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 GotoLine(line);
 CutAppend();
 numcut++; // tally the cut
 line--; // stay here for next line
 }
 }

// report the results
if (numcut == 1)
 message("Results", "1 line was cut to the Windows clipboard");
else
 message("Results", numcut,
 " lines were cut to the Windows clipboard");
}

Delete blank lines

Miscellaneous Topics 867

Copyright © 1991-2010 by Boxer Software

// delete blank lines in the current file

macro DeleteBlankLines(void)
{
int i, len;

// start at the top of the file
StartOfFile;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // get the length of this line
 len = LineLength(i);

 // is this line empty?
 if (len == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #
 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Delete lines containing a user-defined string

// deletes lines containing a user-defined string

macro DeleteLinesContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines containing this string:", str);

Boxer Text Editor868

Copyright © 1991-2010 by Boxer Software

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (LineContains(line, str))
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Delete lines NOT containing a user-defined string

// deletes lines NOT containing a user-defined string

macro DeleteLinesNotContaining()
{
int line;
int len;
string str;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that do NOT contain this string:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // does this line contain the string?
 if (!LineContains(line, str))

Miscellaneous Topics 869

Copyright © 1991-2010 by Boxer Software

 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Compute return on a deposited amount

// Compute result of amount left on deposit with continuous
// compounding. Uses the formula: P = pe^rt

macro ComputeDeposit()
{
float amt, newamt, rate, years;
string str;

GetFloat("Enter the amount on deposit:", amt);

GetFloat("Enter the interest rate:", rate);

// if user entered 5, make it .05, for example
if (rate > 1.0)
 rate /= 100.0;

GetFloat("Enter the number of years on deposit:", years);

newamt = amt * pow(e, rate * years);

sprintf(str, "The amount with interest applied is: %.2f", newamt);
Message("Result", str);
}

Add blank lines after lines ending with !.?

Boxer Text Editor870

Copyright © 1991-2010 by Boxer Software

// add a blank line after any line that ends with !.?

macro AddBlankLines(void)
{
char ch;
int i;

// loop on all lines in the file
for (i = 1; i <= LineCount; i++)
 {
 // make sure this line is not empty
 if (LineLength(i) > 1)
 {
 // move the cursor to this line
 GotoLine(i);

 // move to the end of the line
 EndOfLine;

 // backup off newline and onto last char
 Left;

 // get the value of char at the cursor
 ch = ValueAtCursor();

 // if it's a line ender, add Enter
 if (ch == '.' || ch == '?' || ch == '!')
 {
 EndOfLine;
 Enter;
 }
 }
 }
}

Double space and reformat

// double space and reformat the text on the clipboard
// prepares a web document for printing

macro DoubleSpaceAndReformat(void)
{
int i;
int numlines;

Miscellaneous Topics 871

Copyright © 1991-2010 by Boxer Software

// save various editor settings
SaveSettings;

// open a new file and paste from clipboard
New;
Paste;

// set Text Width to 96
TextWidth(96);

// delete all blank lines
DeleteBlankLines;

// record the number of lines BEFORE we start adding lines
numlines = LineCount - 1;

// go to the top
StartOfFile;

// double space the file
for (i = 1; i <= numlines; i++)
 {
 Down;
 PutString("\n");
 }

// reformat the whole file
SelectAllText;
Reformat;

// remove any small indents that might be present
SelectAllText;
for (i = 1; i <= 12; i++)
Unindent;

// release the selection
Deselect;

// restore various editor settings
RestoreSettings;
}

Extract email addresses

Boxer Text Editor872

Copyright © 1991-2010 by Boxer Software

// extract email addresses from all lines within the current file
// and append them to the end of the file

macro ExtractEmailAddresses()
{
int i, line, origlinecount;
int inword, isdelim;
int atsigns, dots;
int startword, endword;
string linetext, email;
char c;

// note the linecount before we start adding more lines
origlinecount = LineCount;

// loop on all lines in the file
for (line = 1; line <= origlinecount; line++)
 {
 // get the text of the whole line into the string 'linetext'
 GetLineText(line, linetext);

 // add a space to make end-of-line handling smoother
 strcat(linetext, " ");

 // loop on all characters in 'linetext'
 for (inword = FALSE, i = 0; linetext[i] != 0; i++)
 {
 c = linetext[i];

 // set a flag if this character is one that delimits words
 if (isalnum(c) || (strchr("_@.-", c) != -1))
 isdelim = FALSE;
 else
 isdelim = TRUE;

 // decide whether this character starts a new word,
 // or ends an existing word
 if (inword && isdelim)
 {
 inword = FALSE;
 endword = i-1;

 // we've just left a word: see if it had both
 // the required characters
 if (atsigns == 1 && dots >= 1)
 {

Miscellaneous Topics 873

Copyright © 1991-2010 by Boxer Software

 // get the linetext address into a string
 SubString(email, linetext, startword, endword-startword+1);

 // add it to the end of the file
 EndOfFile;
 EndOfLine;
 Enter;
 PutString(email);
 }
 }
 else if (!inword && !isdelim)
 {
 inword = TRUE;
 startword = i;
 atsigns = 0;
 dots = 0;
 }

 // tally whether or not we see the required chars while we're in a
 if (inword)
 {
 if (linetext[i] == '@')
 atsigns++;

 if (linetext[i] == '.')
 dots++;
 }
 }
 }
}

Hex to Decimal

// shows hex to decimal conversion technique

macro HexToDecimal()
{
string str;
int x = 0;
int i, val;
char ch;

GetString("Enter a hexadecimal string", str);

Boxer Text Editor874

Copyright © 1991-2010 by Boxer Software

for (i = 0; str[i] != '\0'; i++)
 {
 ch = str[i];

 if (!isxdigit(ch))
 {
 message("Error", "Invalid character encountered: ", ch);
 return;
 }

 ch = toupper(ch);

 if (isalpha(ch))
 val = ch - 'A' + 10;
 else
 val = ch - '0';

 x = x * 16;
 x = x + val;
 }

message("Result", "The decimal value is ", x);
}

Obfuscate the selected text with HTML codes

// convert the word selected into its HTML coded format

// this can be used to convert phone numbers and email addresses
// in web pages to frustrate automated crawlers from harvesting
// your information for spam lists

macro Obfuscate()
{
int i;
string str;
string result;
string tmp;

if (!TextIsSelected)
 {
 Message("Error",
 "Please select a word before\nrunning the macro.\n");
 return;

Miscellaneous Topics 875

Copyright © 1991-2010 by Boxer Software

 }

GetSelection(str);

// loop on all characters in 'str'
for (i = 0; str[i] != '\0'; i++)
 {
 sprintf(tmp, "&#%03d;", str[i]);
 strcat(result, tmp);
 }

PutSelection(result);
}

Display 24-hour time

// display the current time in 24-hour time format

macro Print24HourTime()
{
int h, m, s;

GetTime24(h, m, s);
printf("%d:%02d:%02d", h, m, s);
}

Reduce blank lines

// reduce multiple blank lines to one blank line

macro ReduceBlankLines(void)
{
int thislen, prevlen, i;

// position cursor to line 2
StartOfFile;
Down;

// loop on all lines in the file (starting with line 2)
for (i = 2; i <= LineCount; i++)
 {
 // get the length of the previous line
 prevlen = LineLength(i-1);

Boxer Text Editor876

Copyright © 1991-2010 by Boxer Software

 // get the length of this line
 thislen = LineLength(i);

 // are both previous and this line empty?
 if (prevlen == 0 && thislen == 0)
 {
 DeleteLine; // delete this line
 i--; // stay at this line #
 }
 else
 {
 Down; // move down to the next line
 }
 }
}

Reformat to an alternative text width

// Reformat the current paragraph to 70 characters, regardless
// of what the current Text Width setting is

macro ReformatAlternative()
{
SaveSettings;
TextWidth(70);
Reformat;
RestoreSettings;
}

Extract double quoted strings

// extract double quoted strings from the current file
// and append them at the bottom of the file

macro ExtractStrings()
{
string s, s1, s2, s3;
int i, j, k;
int found = 0;
int original_linecount = LineCount();

Miscellaneous Topics 877

Copyright © 1991-2010 by Boxer Software

// loop on all lines in the current file
for (i = 1; i <= original_linecount; i++)
 {
 // does this line have two or more double quotes?
 while (LineContains(i, "\"") >= 2)
 {
 // tally number of strings found
 found++;

 // get the text of line 'i' into string 's'
 GetLineText(i, s);

 // get the offset of the first double quote
 j = strchr(s, '\"');

 // get the index of the second double quote
 for (k = j + 1; s[k] != '\"'; k++)
 ;

 // get the first portion into 's1'
 SubString(s1, s, 0, j);

 // get the second portion (the string) into 's2'
 SubString(s2, s, j, k-j+1);

 // get the third portion into 's3'
 SubString(s3, s, k+1, 2048);

 // build the new line and replace it
 s = s1;
 s += s3;
 PutLineText(i, s);

 // gather the strings at the bottom of the current file
 EndOfFile();
 EndOfLine();
 printf("\n%s", s2);
 }
 }

// report the results
if (found == 1)
 printf("\n\n%d string was found and removed\n", found);
else
 printf("\n\n%d strings were found and removed\n", found);
}

Boxer Text Editor878

Copyright © 1991-2010 by Boxer Software

Reverse the text of each line

// reverse the text on every line in the file
// "abcdefg" becomes "gfedcba"

macro ReverseLineText()
{
int i, len, line;
string str;
char tmp;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 len = linelength(line);

 // ignore lines too short/long
 if (len >= 2 && len < 2000)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // loop through half this line
 for (i = 0; i < len/2; i++)
 {
 // swap the characters...
 tmp = str[i];
 str[i] = str[len-1-i];
 str[len-1-i] = tmp;
 }

 // replace line with reversed line
 PutLineText(line, str);
 }
 }
}

Reverse names: Smith.Bob to Bob.Smith

// changes a list of "Smith.Bob" entries to "Bob.Smith"

Miscellaneous Topics 879

Copyright © 1991-2010 by Boxer Software

macro ReverseNames()
{
int line, i;
string str;
string first, last;
string newstring;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 // get the text of line 'line' into string 'str'
 GetLineText(line, str);

 // look for a '.' within 'str'
 i = strstr(str, ".");

 if (i != -1)
 {
 // 'last' gets 'i' chars from 'str' starting at index 0
 SubString(last, str, 0, i);

 // 'first' gets up to 100 chars from 'str' starting at index i+1
 SubString(first, str, i+1, 100);

 // build a new string from 'first' and 'last'
 sprintf(newstring, "%s.%s", first, last);

 // replace the text of the line
 PutLineText(line, newstring);
 }
 }
}

Truncate lines after a user-defined string

// truncate lines after a user-defined string

macro TruncateLineAfterString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user

Boxer Text Editor880

Copyright © 1991-2010 by Boxer Software

len = GetString("Truncate lines after this string:", str);

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j+len);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;
 }
 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Truncate lines at a user-defined string

// truncate lines at a user-defined string

macro TruncateLineAtString()
{
int j, line, len;
int truncated = 0;
string str, linestr, newstr;

// get the string from the user
len = GetString("Truncate lines at this string:", str);

Miscellaneous Topics 881

Copyright © 1991-2010 by Boxer Software

// if the string is empty, quit
if (len == 0)

return;

// loop on all lines in the file
for (line = 1; line <= LineCount; line++)
 {
 GetLineText(line, linestr);

 // does this line contain the string?
 if ((j = strstr(linestr, str)) != -1)
 {
 // create a new string without the trailing text
 SubString(newstr, linestr, 0, j);

 // replace this line with the new text
 PutLineText(line, newstr);

 // tally the truncation
 truncated++;
 }
 }

// report the results
if (truncated == 1)
 message("Results", "1 line was truncated");
else
 message("Results", truncated, " lines were truncated");
}

Delete lines that begin with a user-defined string

// deletes lines that begin with a user-defined string

macro DeleteLinesThatBeginWith()
{
int line, len;
string str, linestr;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that begin with:", str);

Boxer Text Editor882

Copyright © 1991-2010 by Boxer Software

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {

// get the text of line 'line' into 'linestr'
GetLineText(line, linestr);
 // does this line start with 'str'?
if (strncmp(linestr, str, len) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
}

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Delete lines that end with a user-defined string

// deletes lines that end with a user-defined string

macro DeleteLinesThatEndWith()
{
int line, len, linelen;
string str, linestr, str2;
int deleted = 0;

// get the string from the user
len = GetString("Delete lines that end with:", str);

if (len == 0)
 return;

// loop on all lines in the file
for (line = 1; line <= LineCount(); line++)
 {
 // get the text of line 'line' into 'linestr'

Miscellaneous Topics 883

Copyright © 1991-2010 by Boxer Software

 linelen = GetLineText(line, linestr);

 // if the line is too short, do nothing
 if (linelen < len)
 {
 ;
 }
 // does this line end with 'str' ?
 else
 {
 // isolate the tail of the line into a string
 SubString(str2, linestr, linelen - len, len);

 if (strcmp(str2, str) == 0)
 {
 DeleteLine(line); // delete it
 deleted++; // tally the deletion
 line--; // stay here for next line
 }
 }
 }

// report the results
if (deleted == 1)
 message("Results", "1 line was deleted");
else
 message("Results", deleted, " lines were deleted");
}

Call MapQuest to show a map

// get an address from the user and call it up on MapQuest

macro CallMapQuest()
{
string city, state, address, country, url;
int zoom = 7;

// get information from the user
GetString("Enter street address:", address);
GetString("Enter city/town:", city);
GetString("Enter state/province:", state);
GetString("Enter country:", country);

Boxer Text Editor884

Copyright © 1991-2010 by Boxer Software

// state level maps are better at zoom level 3
if (city == "")
 zoom = 3;

// country level maps are better at zoom level 1
if (state == "")
 zoom = 1;

// convert embedded spaces to plus signs
ChangeString(address, " ", "+");
ChangeString(city," ", "+");
ChangeString(state, " ", "+");
ChangeString(country, " ", "+");

// build the URL that will be used
sprintf(url,
"http://www.mapquest.com/maps/map.adp?city=%s&state=%s&address=%s&c
ountry=%s&zoom=%d" , city, state, address, country, zoom);

// send the URL to Windows so the default browser is run
OpenURL(url);
}

Convert British English punctuation to American English punctuation

// Convert British English punctuation to American English punctuation
// (in Britain, periods and commas are placed outside double quotes)

macro BritishPunctuation()
{
// notice that the double quote character must be escaped with a
// backslash when it appears within a string

// change ". to ."
ReplaceAll("\".", ".\"");

// change ", to ,"
ReplaceAll("\"\,", ",\"");
}

Miscellaneous Topics 885

Copyright © 1991-2010 by Boxer Software

6.16 Macro Function Reference

Function Prototype and Description

abs() int abs(int n)
Returns the absolute value of 'n'.

acos() float acos(float x)
Returns the arc cosine of 'x' in radians. 'x' must be
in the range -1 to 1.

ActiveClipboard int ActiveClipboard
Returns the number of the active clipboard. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

ActiveSpellChecking() int ActiveSpellCheck(int mode)
Enables or disables Active Spell Checking according
to 'mode'.

AlignCenter Issues the Align Center command

AlignLeft Issues the Align Left command

AlignRight Issues the Align Right command

AlignSmooth Issues the Align Smooth command

ANSIChart Issues the ANSI Chart command

ANSItoOEM Issues the ANSI to OEM command

Append Append
Append the selected text to the current clipboard. If
no text is selected, the current line is appended to
the clipboard.

AppendToClipboard() int AppendToClipboard(string str, int n)
Appends string 'str' to Clipboard 'n'. Returns the
total length of the text on the clipboard, or -1 for
error. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

See also PutClipboardText().

ApplyHighlighting Issues the Apply Highlighting command

ArrangeIcons Issues the Arrange Icons command

ASCIItoEBCDIC Issues the ASCII to EBCDIC command

asin() float asin(float x)
Returns the arc sine of 'x' in radians. 'x' must be in
the range -1 to 1.

atan() float atan(float x)
Returns the arc tangent of 'x' in radians.

Boxer Text Editor886

Copyright © 1991-2010 by Boxer Software

atof() float atof(string str)
Returns the floating point value of the number
described by string 'str'.

atoi() int atoi(string str)
Returns the integer value of the decimal number
described by string 'str'.

AutoNumber Issues the Auto-Number command

Backspace Issues the Backspace command

Backtab Issues the Backtab command

Beep() Beep(int freq, int duration)
Makes a sound through the PC speaker using the
supplied values for frequency and duration.
Frequency is in Hz and duration is in milliseconds.
Beep(1000, 300) produces a standard beep.

BookmarkManager Issues the Bookmark Manager command

BottomOfPage Issues the Bottom of Page command

BringUserListsToTop Issues the Bring User Lists to Top command

BrowseForFilename() BrowseForFilename(string fn, int mustexist)
Browse for a filename using a standard Windows
open dialog and place the selected filename in 'fn'. If
'mustexist' is non-zero, the selected filename must
already exist. If 'mustexist' is 0, a new filename can
be selected. Returns 1 for success or -1 for error.

ByteCount int ByteCount
Returns the number of characters in the current file.

Calculator Issues the Calculator command

Calendar Issues the Calendar command

Cascade Issues the Cascade command

CascadeHorizontal Issues the Cascade Horizontal command

CascadeVertical Issues the Cascade Vertical command

CaseInvert Issues the Case Invert command

CaseLower Issues the Case Lower command

CaseSentences Issues the Case Sentences command

CaseTitle Issues the Case Title command

CaseUpper Issues the Case Upper command

CaseWords Issues the Case Words command

ceil() float ceil(float x)
Returns (as a float) the smallest integer not less
than 'x'. Example: ceil(1.5) returns 2.0.

Miscellaneous Topics 887

Copyright © 1991-2010 by Boxer Software

ChangeString() int ChangeString(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case sensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringi() int ChangeStringi(string str1, str2, str3)
Searches 'str1' and changes all occurrences of 'str2'
to the string 'str3'. Returns the number of changes
made or -1 for error. The search is case insensitive.
Regular expressions are not recognized. If 'str3' is
an empty string, the effect will be to delete all
occurrences of 'str2' within 'str1'.

ChangeStringRE() int ChangeStringRE(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
sensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

ChangeStringREi() int ChangeStringREi(string str1, str2, str3)
Searches 'str1' and changes all instances matching
'str2' to the string 'str3'. Returns the number of
changes made or -1 for error. The search is case
insensitive. Regular expressions ARE recognized in
'str2'. If 'str3' is an empty string, the effect will be
to delete all occurrences of 'str2' within 'str1'.

CheckWord Issues the Check Word command

ClearAllBookmarks Issues the Clear All Bookmarks command

ClearAllClipboards Issues the Clear All Clipboards command

ClearClipboard() ClearClipboard(int n)
Clears the content of Clipboard 'n'. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

ClearClosedTabsList Issues the Clear Closed Tabs List

ClearRecentFilesList Issues the Clear Recent Files List command

ClearRecentProjectsList Issues the Clear Recent Projects List command

ClearUndo Issues the Clear Undo command

Close Issues the Close command

CloseAll Issues the Close All command

CloseAllButActive Issues the Close All But Active command

ColorChart Issues the HTML Color Chart command

Boxer Text Editor888

Copyright © 1991-2010 by Boxer Software

Column int Column
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is
1-based, not 0-based, and does not give
consideration to the display value of any tabs that
may appear in the line.

See also DisplayColumn().

Comment Issues the Comment command

ConfigureColors Issues the Configure Colors command

ConfigureCtagsFunctionInde
xing

Issues the Configure Ctags Function Indexing
command

ConfigureKeyboard Issues the Configure Keyboard command

ConfigurePreferences Issues the Configure Preferences command

ConfigurePrinterFont Issues the Configure Printer Font command

ConfigureScreenFont Issues the Configure Screen Font command

ConfigureSyntaxHighlightin
g

Issues the Configure Syntax Highlighting command

ConfigureTemplates Issues the Configure Templates command

ConfigureTextHighlighting Issues the Configure Text Highlighting command

ConfigureToolbar Issues the Configure Toolbar command

ConfigureUserTools Issues the Configure User Tools command

Copy Copy
Copy the selected text to the current clipboard. If
text is not selected, the current line is copied to the
clipboard.

CopyFile() int CopyFile(string oldname, string newname)
Copies the file 'oldname' to the file 'newname',
overwriting the output file if it already exists.
Returns 1 for success or -1 for error.

CopyFilename Issues the Copy Filename command

cos() float cos(float x)
Returns the cosine of 'x'. The angle 'x' must be in
radians.

cosh() float cosh(float x)
Returns the hyperbolic cosine of 'x'. The angle 'x'
must be in radians.

CreateDirectory() int CreateDirectory(string dir)
Creates a new directory according to the fully
qualified filepath in 'dir'. Returns 1 for success or -1
for error.

Miscellaneous Topics 889

Copyright © 1991-2010 by Boxer Software

CtagsFunctionIndex Issues the Ctags Function Index command

Cut Cut
Cut the selected text to the current clipboard. If text
is not selected, the current line is cut to the
clipboard.

CutAppend CutAppend
Cut the selected text and append it to the current
clipboard. If text is not selected, the current line is
cut and appended to the clipboard.

Declaration Issues the Declaration command

Decrement() int Decrement(int n)
Subtracts 'n' from the value at the text cursor and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Decrement dialog will appear when the macro is
run.

Delete Delete
Deletes the character at the text cursor, or the
selected text.

DeleteBlankLines Issues the Delete Blank Lines command

DeleteBookmarkedLines Issues the Delete Bookmarked Lines command

DeleteDuplicateLines Issues the Delete Duplicate Lines command

DeleteFile() int DeleteFile(string name)
Deletes the fully qualified filepath 'name' from the
disk, without requesting confirmation. Returns 1 for
success or -1 for error.

DeleteLine int DeleteLine(int n)
Deletes line 'n' in the current file. Returns 1 for
success or -1 for error. If 'n' is not supplied, the
current line is deleted.

DeleteLinesThatBeginWith int DeleteLinesThatBeginWith(string str)
Delete lines that begin with the string 'str'. Returns
1 for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatContain int DeleteLinesThatContain(string str)
Delete lines that contain the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteLinesThatDoNotBegin
With

int DeleteLinesThatDoNotBeginWith(string str)
Delete lines that do not begin with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotConta
in

int DeleteLinesThatDoNotContain(string str)
Delete lines that do not contain the string 'str'.

Boxer Text Editor890

Copyright © 1991-2010 by Boxer Software

Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatDoNotEndW
ith

int DeleteLinesThatDoNotEndWith(string str)
Delete lines that do not end with the string 'str'.
Returns 1 for success or -1 for error. If 'str' is not
supplied a dialog will appear when the macro is run.

DeleteLinesThatEndWith int DeleteLinesThatEndWith(string str)
Delete lines that end with the string 'str'. Returns 1
for success or -1 for error. If 'str' is not supplied a
dialog will appear when the macro is run.

DeleteNextWord Issues the Delete Next Word command

DeletePreviousWord Issues the Delete Previous Word command

DeleteToEndOfLine Issues the Delete to End of Line command

DeleteToStartOfLine Issues the Delete to Start of Line command

Deselect() Deselect(int mode)
Releases the text selection, if one exists. If 'mode' is
0, the text cursor is placed at the beginning of the
selection. If 'mode' is 1, the text cursor is placed at
the end of the selection. If 'mode' is 2, the current
position of the text cursor is maintained. Returns 1
for success or -1 for error.

DisplayColumn int DisplayColumn
Returns the column number of the text cursor in the
current file, or -1 for error. The column returned is
1-based, not 0-based, and gives consideration to the
display value of any tabs that may appear in the
line.

See also Column().

Divide() int Multiply(int n)
Divides the value at the text cursor by 'n' and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Divide dialog will appear when the macro is run.

Down int Down(int n)
Issues the Down command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

DuplicateAndIncrement Issues the Duplicate and Increment command

DuplicateLine Issues the Duplicate Line command

e float e
Returns the value of Euler's number 'e', which is
approximately 2.7182818285.

Miscellaneous Topics 891

Copyright © 1991-2010 by Boxer Software

EBCDICtoASCII Issues the EBCDIC to ASCII command

EditClipboard() EditClipboard(int n)
Opens Clipboard 'n' in a window for editing. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

EndOfFile Issues the End of File command

EndOfLine Issues the End of Line command

Enter Issues the Enter command

EraseValue() int EraseValue(string name)
Erases the variable 'name' from the macro variable
storage area. Returns 1 for success or -1 for error.

See also ReadValue(), WriteValue(), ValueExists().

ErrorChart Issues the Error Chart command

Exit Exit
Issues the File|Exit command to close the editor. If
one or more files have not been saved a prompt will
appear when the macro is run.

exp() float exp(float x)
Returns the value 'e' raised to the 'x'.

ExploreDataFolder Issues the Explore Data Folder command

ExploreProgramFolder Issues the Explore Program Folder command

ExtractDrive() int ExtractDrive(string str)
Converts the string 'str' so that it contains only the
drive designation portion of itself (eg 'C:'). Returns
the length of 'str' or -1 for error.

ExtractFileExt() int ExtractFileExt(string str)
Converts the string 'str' so that it contains only the
file extension portion of itself. The leading '.' is
retained in the resulting string. Returns the length
of 'str' or -1 for error.

ExtractFileNameAndExt() int ExtractFileNameAndExt(string str)
Converts the string 'str' so that it contains the
filename.ext portion of itself. Returns the length of
'str' or -1 for error.

ExtractFileNameOnly() int ExtractFileNameOnly(string str)
Converts the string 'str' so that it contains only the
filename portion of itself. Returns the length of 'str'
or -1 for error.

ExtractFilePath() int ExtractFilePath(string str)
Converts the string 'str' so that it contains only the
filepath portion of itself. The trailing backslash is
retained in the resulting string. Returns the length

Boxer Text Editor892

Copyright © 1991-2010 by Boxer Software

of 'str' or -1 for error.

fabs() float fabs(float x)
Returns the absolute value of 'x'.

factorial() int factorial(int x)
Returns the value of x factorial, also known as x!
Returns -1 for error or overflow.

FastFrame() int FastFrame(int style)
Surrounds the columnar selection with a frame
according to 'style'. When 'style' is in the range 1 to
11, a corresponding line style from the Fast Frame
dialog is used. If 'style' is not supplied the Fast
Frame dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

FileCount int FileCount
Returns the number of files currently open in the
editor.

FileExists() int FileExists(string filepath)
Returns 1 if 'filepath' exists, 0 if it does not exists,
or -1 for error.

FileName int FileName(string fn)
Fills 'fn' with the full path of the current file. Returns
the length of the filepath or -1 for error.

FilePicker Issues the File Picker command

FileProperties Issues the File Properties command

FileTabsBottom Issues the File Tabs Bottom command

FileTabsTop Issues the File Tabs Top command

FillWithString() int FillWithString(string str)
Fills the selected region with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the Fill
with String dialog will appear when the macro is
run.

Find() int Find(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Find() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Findi(), FindRE() and FindREi().

FindADiskFile Issues the Find a Disk File command

FindAndCount() int FindAndCount(string str)
Searches for occurrences of 'str' and returns the

Miscellaneous Topics 893

Copyright © 1991-2010 by Boxer Software

number found. If 'str' is not supplied the Find and
Count dialog will appear when the macro is run.

FindDifferingLines int FindDifferingLines()
Issues the Find Differing Lines command and
returns 1 if a mismatch is found, or 0 if no
additional mismatches exist.

FindDistinctLines Issues the Find Distinct Lines command

FindDuplicateLines Issues the Find Duplicate Lines command

FindFast Issues the Find Fast command

Findi() int Findi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. Findi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Find(), FindRE() and FindREi().

FindMate int FindMate
search for a mate to the parenthetical sequence at
the text cursor. Returns TRUE if found, FALSE if not
found.

FindNext int FindNext
Returns 1 if the string is found, 0 if not found, -1 for
error.

FindPrevious int FindPrevious
Returns 1 if the string is found, 0 if not found, -1 for
error.

FindRE() int FindRE(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindRE() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option
ON.

See also Find(), Findi() and FindREi().

FindREi() int FindREi(string str)
Searches for string 'str'. Returns TRUE if found,
FALSE if not found, -1 for error. If 'str' is not
supplied the Find dialog will appear when the macro
is run. FindREi() will use the current settings on the
Find dialog, but it will force the Perl Regular
Expressions option ON, and the Match Case option

Boxer Text Editor894

Copyright © 1991-2010 by Boxer Software

OFF.

See also Find(), Findi() and FindRE().

FindTextInDiskFiles Issues the Find Text in Disk Files command

FindUniqueLines Issues the Find Unique Lines command

FlipCase Issues the Flip Case command

floor() float floor(float x)
Returns (as a float) the largest integer not greater
than 'x'. Example: floor(1.5) returns 1.0.

FormatXML Issues the Format XML command

Formfeed Issues the Formfeed command

FTPOpen() int FTPOpen(string fn)
Opens the FTP file 'fn' for editing. If 'fn' is already
open for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

GetChar() int GetChar(string prompt, char c)
Displays a message box with 'prompt' and fills 'c'
with the character entered by the user. Returns 1
for success or -1 for error.

See also PressChar().

GetClipboardText() int GetClipboardText(string str, int n)
Fills 'str' with the text of Clipboard 'n'. Returns the
length of the text installed or -1 for error. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

GetCurrentDirectory() int GetCurrentDirectory(string str)
Retrieves the current directory for the active process
and places it in 'str'. Returns 1 for success or -1 for
error.

See also SetCurrentDirectory().

GetDataDirectory() int GetDataDirectory(string str)
Fills 'str' with the full path of the data directory.
Returns 1 for success or -1 for error.

See also GetProgramDirectory().

GetDate() int GetDate(int y, int m, int d)
Gets the current date and fills 'y', 'm' and 'd' with
the year, month and date, respectively. Returns 1
for success or -1 for error.

GetDayName() int GetDayName(string str, int n)
Fills 'str' with the 3-character name of weekday

Miscellaneous Topics 895

Copyright © 1991-2010 by Boxer Software

number 'n' (1-7). The string returned is sensitive to
the local language. Returns 1 for success or -1 for
error.

GetEditMode() int GetEditMode()
Returns the edit mode of the current file. Returns 0
if the edit mode is Insert, or 1 if the edit mode is
Typeover. Returns -1 if a file is not open.

GetEnv() int GetEnv(string str1, string str2)
Fills 'str1' with the content of the environment
variable named in 'str2'. Returns 1 for success or -1
for error.

GetFloat() int GetFloat(string prompt, float x)
Displays a message box with 'prompt' and fills 'x'
with the value entered by the user. Returns 1 for
success or -1 for error.

GetGMTDateTime() int GetGMTDateTime(int y, int m, int d, int hh, int
mm, int ss)
Gets the current date and time at GMT (Greenwich
Mean Time) and fills 'y', 'm', 'd', 'hh', 'mm' and 'ss'
with year/month/day/hour/minute/second,
respectively. Hours will be in 24-hour format.
Returns 1 for success or -1 for error.

GetInt() int GetInt(string prompt, int n)
Displays a message box with 'prompt' and fills 'n'
with the value entered by the user. Returns 1 for
success or -1 for error.

GetLineText() int GetLineText(int n, string str)
Fills 'str' with the text of line 'n'. Returns the length
of line 'n' or -1 for error.

GetMonName() int GetMonName(string str, int n)
Fills 'str' with the 3-character name of month
number 'n' (1-12). The string returned is sensitive
to the local language. Returns 1 for success or -1 for
error.

GetMonthName() int GetMonthName(string str, int n)
Fills 'str' with the full name of month number 'n'
(1-12). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetProgramDirectory() int GetProgramDirectory(string str)
Fills 'str' with the full path of the program directory.
Returns 1 for success or -1 for error.

See also GetDataDirectory().

GetReadOnly int GetReadOnly
Returns the read-only state of the current file.
Returns 1 if the file is read-only, 0 if the file is not

Boxer Text Editor896

Copyright © 1991-2010 by Boxer Software

read-only, or -1 for error.

See also: ToggleReadOnly()

GetSelection() int GetSelection(string str)
Fills 'str' with the currently selected text. Returns
the length of the selection or -1 for error.

See also: ActiveClipboard

GetSelectionBounds() int GetSelectionBounds(int l1, int c1, int l2, int c2)
Fills l1, c1, l2, c2 with the bounds of the currently
selected text. Returns 1 for success or -1 for error.

GetSelectionMode() int GetSelectionMode()
Returns 0 if the current selection mode is Stream, 1
if the current selection mode is Columnar

GetSelectionSize int GetSelectionSize
Returns the number of character currently selected,
0 if a selection is not present, or -1 for error.

GetShortName() int GetShortName(string shortname, string
fullname)
Fills 'shortname' with the 8.3/DOS format short
filename that corresponds to 'longname'. Returns 1
for success, or -1 for error.

GetString() int GetString(string prompt, string result [, string
default])
Displays a message box with 'prompt' and fills
'result' with the string entered by the user. If the
optional third parameter 'default' is present, it is
suggested as the default entry string. Returns the
length of 'result' or -1 for error.

GetTextWidth int GetTextWidth
Returns the current Text Width value.

GetTime12() int GetTime12(int h, int m, int s, int pm)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 12-hour format. If the time is PM, 'pm' is set
to 1, else it is set to 0. Returns 1 for success or -1
for error.

GetTime24() int GetTime24(int h, int m, int s)
Gets the current time and fills 'h', 'm' and 's' with
hours, minutes and seconds, respectively. Hours will
be in 24-hour format. Returns 1 for success or -1 for
error.

GetWeekday() int GetWeekday(int y, int m, int d)
Returns the number of the weekday associated with
the date 'y', 'm', 'd'. Returns 1-7 for success or -1
for error.

Miscellaneous Topics 897

Copyright © 1991-2010 by Boxer Software

GetWeekdayName() int GetWeekdayName(string str, int n)
Fills 'str' with the full name of weekday number 'n'
(1-7). The string returned is sensitive to the local
language. Returns 1 for success or -1 for error.

GetWindowNumber() int GetWindowNumber(string fn)
Returns the window number that holds the file 'fn'.
Returns -1 for error, 0 if the named file is not open,
or a postive value if the file's window is located.

See also Filename(), SwitchToWindow().

GetWord() int GetWord(string str)
Fills 'str' with the word at the text cursor. Returns
the length of the word found or -1 for error.

See also SelectWord().

GetWordDelimiters() int GetWordDelimiters(string str)
Fills 'str' with a string that contains the characters
considered to be word delimiters for the current file.
Returns 1 for success or -1 for error.

GetYesNo() int GetYesNo(string title, string query)
Gets a Yes or No reply from the user. Displays a
message box with title 'title' and message 'query'.
Returns 1 if the user clicks Yes, 0 if the user clicks
No.

GoToByteOffset() int GoToByteOffset(int n OR string str)
Go to offset 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "+25" will cause the cursor
to be moved ahead 25 bytes. If a parameter is not
provided the Go to Byte Offset dialog will appear
when the macro is run.

GoToColumn() int GoToColumn(int n OR string str)
Go to column 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "-12" will cause the cursor
to be moved 12 columns to the left. If a parameter
is not provided the Go to Column dialog will appear
when the macro is run.

GoToLine() int GoToLine(int n or string str)
Go to line 'n' in the current file. Returns 1 for
success or -1 for error. A string parameter is also
accepted. For example: "+50" will cause the cursor
to be moved ahead 50 lines. If a parameter is not
provided the Go to Line dialog will appear when the
macro is run.

GoToParagraph() int GoToParagraph(int n)
Go to paragraph 'n' in the current file. Returns 1 for

Boxer Text Editor898

Copyright © 1991-2010 by Boxer Software

success or -1 for error. If a parameter is not
provided the Go to Paragraph dialog will appear
when the macro is run.

HardenLineEnders Issues the Harden Line Enders command.

HTMLImageTag() int HTMLImageTag(string fn)
Inserts an HTML 'IMG' tag for the image file 'fn'.
BMP, GIF and JPG images are supported. Returns 1
for success or -1 for error.

Increment() int Increment(int n)
Adds 'n' to the value at the text cursor and places
the result in the text file. Returns the result of the
operation or -1 for error. If 'n' is not supplied the
Increment dialog will appear when the macro is run.

IndentOneSpace Issues the Indent One Space command

IndentOneTabstop Issues the Indent One Tabstop command

IndentWithString() int IndentWithString(string str)
Indents the selected lines with 'str'. Returns 1 for
success or -1 for error. If 'str' is not supplied the
Indent with String dialog will appear when the
macro is run.

InsertCharacter() int InsertCharacter(char ch)
Inserts character 'ch' into the edited text. Returns
the ASCII value of 'ch' or -1 for error. (This
command is identical to PutChar.)

InsertFile() int InsertFile(string str)
Insert file 'str' into the current file. Returns 1 for
success or -1 for error. If 'str' is not provided the
Insert File dialog will appear when the macro is run.

InsertFilename Issues the Insert Filename command

InsertLineAbove Issues the Insert Line Above command

InsertLineBelow Issues the Insert Line Below command

InsertLongDate Issues the Insert Long Date command

InsertLongTime Issues the Insert Long Time command

InsertMode InsertMode
Switches the edit mode to Insert in the current file.

See also ToggleEditMode().

InsertShortDate Issues the Insert Short Date command

InsertShortTime Issues the Insert Short Time command

InvertLines Issues the Invert Lines command

isalnum() int isalnum(char c)

Miscellaneous Topics 899

Copyright © 1991-2010 by Boxer Software

Returns non-zero if character 'c' is alphanumeric.

isalpha() int isalpha(char c)
Returns non-zero if character 'c' is alphabetic.

isascii() int isascii(char c)
Returns non-zero if character 'c' is in the range
0-127.

IsBookmarked() int IsBookmarked(int n)
Returns 1 if line 'n' is bookmarked, 0 if not, or -1 for
error. If 'n' is not supplied, the current line is
assumed.

iscntrl() int iscntrl(char c)
Returns non-zero if character 'c' is a control
character (0-31 or 127).

isdigit() int isdigit(char c)
Returns non-zero if character 'c' is a digit.

islower() int islower(char c)
Returns non-zero if character 'c' is lowercase.

ispunct() int ispunct(char c)
Returns non-zero if character 'c' is punctuation.

isspace() int isspace(char c)
Returns non-zero if character 'c' is whitespace
(space, tab, newline, etc.).

isupper() int isupper(char c)
Returns non-zero if character 'c' is uppercase.

isxdigit() int isxdigit(char c)
Returns non-zero if character 'c' is a hex digit (A-F,
a-f, 0-9).

JustificationStyle() int JustificationStyle(int n)
Sets the current text justification style according to
'n': 1=Left, 2=Center, 3=Right, 4=Smooth. If 'n' is
not supplied the Justification Style dialog will appear
when the macro runs. Returns 1 for success or -1
for error.

LastCharacter() int LastCharacter(string str)
Returns the last character in 'str' or 0 if 'str' is an
empty string.

Left int Left(int n)
Issues the Left command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

LeftWindowEdge Issues the Left Window Edge command

LineContains() int LineContains(int n, string str)

Boxer Text Editor900

Copyright © 1991-2010 by Boxer Software

Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
sensitive. Regular expressions are not recognized.

LineContainsi() int LineContainsi(int n, string str)
Returns the number of occurrences of 'str' that
appear in line 'n'. The search performed is case
insensitive. Regular expressions are not recognized.

LineContainsRE() int LineContainsRE(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case sensitive.
Regular expressions ARE recognized.

LineContainsREi() int LineContainsREi(int n, string str)
Returns the number of matches to 'str' that appear
in line 'n'. The search performed is case insensitive.
Regular expressions ARE recognized.

LineCount int LineCount
Returns the number of lines in the current file.

LineDrawing() int LineDrawing(int style)
Initiates or terminates Line Drawing mode. If 'style'
is 1 to 11, a corresponding line style from the Line
Drawing dialog is activated. The Up, Down, Left and
Right commands can then be used to draw lines and
boxes. When 'style' is 0, Line Drawing mode is
terminated. If 'style' is not supplied the Line
Drawing dialog will appear when the macro runs.
Returns 1 for success or -1 for error.

LineIsEmpty() int LineIsEmpty(int n)
Returns TRUE if line 'n' is empty. Note: a line
containing only whitespace is considered empty.

LineLength() int LineLength(int n)
Returns the number of characters in line 'n'.

LineNumber int LineNumber
Returns the current line number in the current file
or -1 for error.

LineSpacing int LineSpacing(int mode)
Formats the range of selected lines, or the whole
file, according to 'mode'. 'mode' can be 1, 2 or 3,
which produces single, double or triple spacing,
respectively. Returns 1 for success or -1 for error.

log() float log(float x)
Returns the natural log of 'x'. 'x' must be a positive
value greater than 0.

log10() float log(float x)
Returns the base 10 log of 'x'. 'x' must be a positive
value greater than 0.

Miscellaneous Topics 901

Copyright © 1991-2010 by Boxer Software

MakeLineBottom Issues the Make Line Bottom command

MakeLineCenter Issues the Make Line Center command

MakeLineTop Issues the Make Line Top command

max() int max(int n1, int n2)
Returns the greater of 'n1' and 'n2'.

Maximize Maximize the current editing window.

MaximizeAll Issues the Maximize All command

Message() Message(string str, ...)
Displays a pop-up message box with title 'str' and a
message that is built from all arguments that follow.
Example:
Message("Results", n, " removed;", m, " remain.");

min() int min(int n1, int n2)
Returns the lesser of 'n1' and 'n2'.

Minimize Minimize the current editing window.

MinimizeAll Issues the Minimize All command

Modified int Modified
Returns 1 if the current file has been modified, else
0. Returns -1 for error.

See also SetModified().

MoveLineDown Issues the Move Line Down command

MoveLineUp Issues the Move Line Up command

Multiply() int Multiply(int n)
Multiplies the value at the text cursor by 'n' and
places the result in the text file. Returns the result
of the operation or -1 for error. If 'n' is not supplied
the Multiply dialog will appear when the macro is
run.

New Issues the New command

NextBookmark Issues the Next Bookmark command

NextFunction Issues the Next Function command

NextParagraph Issues the Next Paragraph command

OEMChart Issues the OEM Chart command

OEMtoANSI Issues the OEM to ANSI command

Open() int Open(string fn)
Opens the file 'fn' for editing. If 'fn' is already open
for editing, its window will become the current
window. Returns 1 for success or -1 for error.
Remember: \\ must be used to denote \ within 'fn'.

Boxer Text Editor902

Copyright © 1991-2010 by Boxer Software

OpenEmail() int OpenEmail(string str)
Initiates an email message to the address in 'str'
using the default email client. Returns 1 for success
or -1 for error.

See also OpenEmailAtCursor.

OpenEmailAtCursor Issues the Open Email at Cursor command

OpenFileInBrowser Issues the Open File in Browser command

OpenFilenameAtCursor Issues the Open Filename at Cursor command

OpenHeaderFile Issues the Open Header File command

OpenHex() int OpenHex(string fn)
Opens the file 'fn' for hex mode viewing and editing.
Returns 1 for success or -1 for error. Remember: \\
must be used to denote \ within 'fn'.

OpenProgramAtCursor Issues the Open Program at Cursor command

OpenRecentFile() OpenRecentFile(int n)
Opens recent file number 'n'. When a sufficient file
history exists, 'n' can range from 1 to 24.

OpenRecentProject() OpenRecentProject(int n)
Opens recent project number 'n'. When a sufficient
project history exists, 'n' can range from 1 to 16.

OpenSystemFiles Issues the Open System Files command

OpenURL() int OpenURL(string str)
Opens the URL described in 'str' in the default
internet browser. Returns 1 for succes or -1 for
error.

See also OpenURLAtCursor.

OpenURLAtCursor Issues the Open URL at Cursor command

PageDown Issues the Page Down command

PageLeft Issues the Page Left command

PageRight Issues the Page Right command

PageSetup Issues the Page Setup command

PageUp Issues the Page Up command

Paste Issues the Paste command

PasteAs Issues the Paste As command

PasteClipboard() PasteClipboard(int n)
Pastes the content of Clipboard 'n' into the current
file. The Windows Clipboard is number 0; private
clipboards are numbered 1 to 8.

Miscellaneous Topics 903

Copyright © 1991-2010 by Boxer Software

Pause Pause
Pauses macro execution by displaying a message
box and waiting for it to be closed.

pi float pi
Returns the value of pi, which is approximately
3.1415926536.

PlaySound() int PlaySound(string filepath)
Plays the .WAV file described in 'filepath'. Returns 1
for success or -1 for error.

pow() float pow(float x, float y)
Returns the value of 'x' raised to the power 'y'.

PressChar() int PressChar(string prompt, char c)
Displays the message 'prompt' on the status bar and
fills 'c' with the next character pressed by the user.
A popup dialog does NOT appear. A file must be
open in order for PressChar to operate. Returns 1
for success or -1 for error.

Note: PressChar will not wait for a character when
run in Debug mode.

See also GetChar().

PreviousBookmark Issues the Previous Bookmark command

PreviousFunction Issues the Previous Function command

PreviousParagraph Issues the Previous Paragraph command

Print Issues the Print command

PrintAll Issues the Print All command

PrintAllColor Issues the Print All Color command

PrintAllMonochrome Issues the Print All Monochrome command

PrintColor Issues the Print Color command

printf() int printf(string format, ...)
Processes 'format' and inserts a string into the
edited text, in accordance with the formatting
commands used in 'C'. Returns the number of
characters inserted. See the online help for more
information.

PrintMonochrome Issues the Print Monochrome command

PrintPreview Issues the Print Preview command

PrintPreviewColor Issues the Print Preview Color command

PrintPreviewMonochrome Issues the Print Preview Monochrome command

PrintSetup Issues the Print Setup command

Boxer Text Editor904

Copyright © 1991-2010 by Boxer Software

ProjectAddAll Issues the Project Add All command

ProjectAddOne Issues the Project Add One command

ProjectAutoUpdate() int ProjectAutoUpdate(int mode)
Toggles the Auto-Update feature on or off for the
active project according to 'mode'. Returns 1 for
success or -1 for error.

ProjectClose Issues the Project Close command

ProjectDelete() int ProjectDelete(string name)
Deletes the project file described by 'name'. A
confirmation prompt will be presented. Returns 1 for
success or -1 for error.

ProjectEditActive Issues the Project Edit Active command

ProjectEditOther() int ProjectEditOther(string name)
Opens the project file described by 'name' for
editing. If 'name' does not exist an empty file will be
opened. Returns 1 for success or -1 for error.

ProjectName() int ProjectName(string fn)
Fills 'fn' with the full path of the active project file.
Returns the length of the filepath or -1 for error.

ProjectNew Issues the Project New command

ProjectOpen() int ProjectOpen(string name)
Open the project file described by 'name'. Returns 1
for success or -1 for error.

ProjectRemove Issues the Project Remove command

ProjectUpdateAll Issues the Project Update All command

ProjectUpdateOne Issues the Project Update One command

PutChar() int PutChar(char ch)
Inserts character 'ch' into the edited text. Returns 1
for success or -1 for error.

PutClipboardText() int PutClipboardText(string str, int n)
Fills Clipboard 'n' with string 'str'. Returns the length
of the text installed or -1 for error. The Windows
Clipboard is number 0; private clipboards are
numbered 1 to 8.

See also AppendToClipboard().

PutFloat() int PutFloat(float x)
Inserts the value of 'x' into the edited text. Two
decimal places will be used. Returns 1 for success or
-1 for error. Use printf() if special formatting is
required.

PutInt()
int PutInt(int n)

Miscellaneous Topics 905

Copyright © 1991-2010 by Boxer Software

Inserts the value of 'n' into the edited text. Returns
1 for success or -1 for error.

PutLineText() int PutLineText(int n, string str)
Replaces the text of line 'n' with 'str'. Returns the
length of 'str' or -1 for error.

PutMany() int PutMany(...)
Inserts the supplied argument(s) into the edited
text. Example:
PutMany(5, " is a number", '\n');

PutSelection() int PutSelection(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error. PutSelection() is the
complement to GetSelection(), and it should be used
instead of PutString to ensure proper insertion of
column-selected text.

PutString() int PutString(string str)
Inserts string 'str' into the edited text. Returns the
length of 'str' or -1 for error.

PutWordDelimiters() int PutWordDelimiters(string str)
Sets the word delimiters for the current file to the
characters contained in 'str'. Returns 1 for success
or -1 for error.

QuoteAndReformat Issues the Quote and Reformat command

Random() int Random(int n)
Returns a random number between 0 and n-1 or -1
for error.

ReadValue() int ReadValue(string name, char/int/string/float val)
Reads a value from the macro variable storage area
named 'name' and places it into variable 'val'. The
type of 'val' must agree with the type used when the
value was written using WriteValue(). Returns 1 for
success or -1 for error.

See also WriteValue(), EraseValue(), ValueExists().

Redo Issues the Redo command

RedoAll Issues the Redo All command

Reference Issues the Reference command

Reformat Issues the Reformat command

ReloadFile Issues the Reload File command

RenameFile() int RenameFile(string oldname, string newname)
Renames the file or directory named 'oldname' to
'newname'. Files can be renamed across drives;
directories must be on the same drive. The target
'newname' must not exist. Returns 1 for success or

Boxer Text Editor906

Copyright © 1991-2010 by Boxer Software

-1 for error.

Replace() int Replace(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replace() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
ON.

See also Replacei().

ReplaceAgain Issues the Replace Again command

ReplaceAll() int ReplaceAll(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm
replacements. ReplaceAll() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the Match
Case option ON.

See also ReplaceAlli().

ReplaceAlli() int ReplaceAlli(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will NOT be prompted to confirm
replacements. ReplaceAlli() will use the current
settings on the Replace dialog, but it will force the
Perl Regular Expressions option OFF, and the the
Match Case option OFF.

See also ReplaceAll().

ReplaceAllRE() int ReplaceAllRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllREi().

ReplaceAllREi() int ReplaceAllREi(string str1, string str2)

Miscellaneous Topics 907

Copyright © 1991-2010 by Boxer Software

Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceAllREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also ReplaceAll(), ReplaceAlli and
ReplaceAllRE().

Replacei() int Replacei(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
Replacei() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option OFF, and the Match Case option
OFF.

See also Replace().

ReplaceLineEnders() int ReplaceLineEnders(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'. 'str1'
and 'str2' may use the sequence \n (if within a
quoted string) to represent a line ender. Returns the
number of replacements made or -1 for error. The
user will be NOT prompted to confirm replacements.
If 'str1' and 'str2' are not supplied the Replace Line
Enders dialog will appear when the macro is run.
ReplaceLineEnders() will use the current settings on
the Replace Line Enders dialog.

ReplaceRE() int ReplaceRE(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for
error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceRE() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option ON.

See also Replace(), Replacei() and ReplaceREi().

ReplaceREi() int ReplaceREi(string str1, string str2)
Searches for 'str1' and replaces it with 'str2'.
Returns the number of replacements made or -1 for

Boxer Text Editor908

Copyright © 1991-2010 by Boxer Software

error. The user will be prompted to confirm
replacements. If 'str1' and 'str2' are not supplied the
Replace dialog will appear when the macro is run.
ReplaceREi() will use the current settings on the
Replace dialog, but it will force the Perl Regular
Expressions option to ON, and the Match Case
option OFF.

See also Replace(), Replacei() and ReplaceRE().

Restore Restore the current window from a minimized or
maximized state.

RestoreAll Issues the Restore All command

RestoreSettings RestoreSettings
Restores a variety of editor settings which were
earlier noted using SaveSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
restored: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active
Clipboard and Word Delimiters.

Right int Right(int n)
Issues the Right command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

RightWindowEdge Issues the Right Window Edge command

ROT5 Applies a ROT5 (rotation 5) conversion to the
selected text

ROT13 Applies a ROT13 (rotation 13) conversion to the
selected text

ROT18 Applies a ROT18 (rotation 18) conversion to the
selected text

ROT47 Applies a ROT47 (rotation 47) conversion to the
selected text

Round() float Round(float x, int n)
Returns the value of 'x' rounded to 'n' decimal
places.

RunProgram() int RunProgram(string fn, string params, string
workdir, int wait)
Runs the named program, document or folder in 'fn'
by passing it to the ShellExecuteEx Windows API
call. Command line parameters can be passed in
'params'. The program's working directory can be
passed in 'workdir'. If 'wait' is 1, macro execution
will be suspended until the program has been

Miscellaneous Topics 909

Copyright © 1991-2010 by Boxer Software

closed. Returns the completion code of
ShellExecuteEx: non-zero for success, zero for error.

See also OpenProgramAtCursor().

Save Issues the Save command

SaveACopyAs() int SaveACopyAs(string fn)
Saves a copy of the current file to the file 'fn'. The
name of the current file is not changed. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveAll Issues the Save All command

SaveAs() int SaveAs(string fn)
Saves the current file to the file 'fn'. The name of
the current file is changed to 'fn'. Returns 1 for
success or -1 for error. Remember: \\ must be used
to denote \ within 'fn'.

SaveSelectionAs() int SaveSelectionAs(string fn)
Saves the current selection to the file 'fn'. Returns 1
for success or -1 for error. Remember: \\ must be
used to denote \ within 'fn'.

SaveSettings SaveSettings
Records a variety of editor settings for later
restoration using RestoreSettings(). These functions
can be used to ensure that a macro does not alter
the editor's settings. The following settings are
saved: Wordrwrap, Text Width, Justification Style,
Edit Mode, Tab Display Size, Selection Mode, Active
Clipboard and Word Delimiters.

ScrollDown Issues the Scroll Down command

ScrollLeft Issues the Scroll Left command

ScrollRight Issues the Scroll Right command

ScrollUp Issues the Scroll Up command

SelectAllText Issues the Select All Text command

SelectColumnar Issues the Select Columnar command

SelectDown Issues the Select Down command

SelectLeft Issues the Select Left command

SelectPageDown Issues the Select Page Down command

SelectPageLeft Issues the Select Page Left command

SelectPageRight Issues the Select Page Right command

SelectPageUp Issues the Select Page Up command

SelectRight Issues the Select Right command

Boxer Text Editor910

Copyright © 1991-2010 by Boxer Software

SelectStream Issues the Select Stream command

SelectToBottomOfPage Issues the Select to Bottom of Page command

SelectToEndOfFile Issues the Select to End of File command

SelectToEndOfLine Issues the Select to End of Line command

SelectToStartOfFile Issues the Select to Start of File command

SelectToStartOfLine Issues the Select to Start of Line command

SelectToTopOfPage Issues the Select to Top of Page command

SelectUp Issues the Select Up command

SelectWithoutShift Issues the Select without Shift command

SelectWord int SelectWord(string str)
Selects the word at the text cursor and places it in
'str'. Returns the length of the word selected or 0 if
no word could be found to select.

See also GetWord().

SelectWordLeft Issues the Select Word Left command

SelectWordRight Issues the Select Word Right command

SetClipboard() SetClipboard(int n)
Sets the active clipboard to Clipboard 'n'. The
Windows Clipboard is number 0; private clipboards
are numbered 1 to 8.

SetClipboardNext Issues the Set Clipboard Next command

SetClipboardPrevious Issues the Set Clipboard Previous command

SetCurrentDirectory int SetCurrentDirectory(string str)
Sets the current directory for the active process to
'str'. Returns 1 for success or -1 for error.

See also GetCurrentDirectory().

SetModified SetModified
Sets the modifed state of the current to true. This
might be used to force a Save operation even when
a file has not been modified. Returns 1 for success
or -1 for error.

See also Modified().

ShadedTabZones() int ShadedTabZones(int mode)
Enables or disables the Shaded Tab Zones display
mode according to 'mode'.

sin() float sin(float x)
Returns the sine of 'x'. The angle 'x' must be in
radians.

Miscellaneous Topics 911

Copyright © 1991-2010 by Boxer Software

sinh() float sinh(float x)
Returns the hyperbolic sine of 'x'. The angle 'x' must
be in radians.

SoftenLineEnders Issues the Soften Line Enders command.

SortFileTabsByExt() int SortFileTabsByExt(int mode)
Enables or disables the sorting of File Tabs by
extension according to 'mode'. If 'mode' is 1 the
feature is enabled. If 'mode' is 0 the feature is
disabled.

SortFileTabsByName() int SortFileTabsByName(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortFileTabsByUse() int SortFileTabsByUse(int mode)
Enables or disables the sorting of File Tabs by name
according to 'mode'. If 'mode' is 1 the feature is
enabled. If 'mode' is 0 the feature is disabled.

SortLines Issues the Sort Lines command

Space Issues the Space command. If a range of lines is
selected, the range will be indented.

SpacesToTabs Issues the Spaces to Tabs command

SpellChecker Issues the Spell Checker command

SplitHorizontal Issues the Split Horizontal command

SplitVertical Issues the Split Vertical command

sprintf() int sprintf(string str1, string format, ...)
Processes 'format' and builds an output string in
'str1', in accordance with the formatting commands
used in 'C'. Returns the length of 'str1' or -1 for
error. See the online help for more information.

sqrt() float sqrt(float x)
Returns the positive square root of 'x'.

StartOfFile Issues the Start of File command

StartOfLine Issues the Start of Line command

StatusMessage() StatusMessage(...)
Displays a message in the status bar that is built
from all arguments that follow. Example:
StatusMessage(n, " were removed;", m, " remain.");

strcat() int strcat(string str1, string str2)
Concatenates 'str2' to 'str1'. Returns the length of
'str1' or -1 for error.

strchr() int strchr(string str, char c)
Returns the offset at which the character 'c' appears

Boxer Text Editor912

Copyright © 1991-2010 by Boxer Software

in 'str' or -1 if 'c' does not appear.

See also strrchr().

strcmp() int strcmp(string str1, string str2)
Compares 'str1' to 'str2' with case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcmpi() int strcmpi(string str1, string str2)
Compares 'str1' to 'str2' without case sensitivity.
Returns 0 if the strings are equal. Returns < 0 if
'str1' is less than 'str2'. Returns > 0 if 'str1' is
greater than 'str2'.

strcpy() int strcpy(string str1, string str2)
Copies 'str2' to 'str1'. Returns the length of 'str1' or
-1 for error.

StripHTMLTags Issues the Strip HTML/XML Tags command

StripLeadingSpaces Issues the Strip Leading Spaces command

StripTrailingSpaces Issues the Strip Trailing Spaces command

strlen() int strlen(string str)
Returns the length of 'str'.

strlwr() int strlwr(string str)
Converts the string 'str' to lowercase. Returns the
length of 'str'.

strncat() int strncat(string str1, string str2, int n)
Concatenates up to 'n' characters from 'str2' to
'str1'. Returns the length of 'str1' or -1 for error. A
NULL byte is added after the characters added.

strncmp() int strncmp(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2' with
case sensitivity. Returns 0 if the strings are equal.
Returns < 0 if 'str1' is less than 'str2'. Returns > 0 if
'str1' is greater than 'str2'.

strncmpi() int strncmpi(string str1, string str2, int n)
Compares up to 'n' characters in 'str1' to 'str2'
without case sensitivity. Returns 0 if the strings are
equal. Returns < 0 if 'str1' is less than 'str2'.
Returns > 0 if 'str1' is greater than 'str2'.

strncpy() int strncpy(string str1, string str2, int n)
Copies up to 'n' characters from 'str2' to 'str1'.
Returns the length of 'str1' or -1 for error. A NULL
byte is added after the characters copied.

strrchr() int strrchr(string str, char c)
Returns the offset at which the character 'c' last

Miscellaneous Topics 913

Copyright © 1991-2010 by Boxer Software

appears in 'str' or -1 if 'c' does not appear.

See also strchr().

strrev() int strrev(string str)
Reverses the string 'str' in place. Example:
The string 'Boxer' would be converted to 'rexoB'.

strstr() int strstr(string str1, string str2)
Searches string 'str1' for the substring 'str2' with
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strstri() int strstri(string str1, string str2)
Searches string 'str1' for the substring 'str2' without
case sensitivity. Returns the offset at which 'str2' is
found or -1 if not found.

strupr() int strupr(string str)
Converts the string 'str' to uppercase. Returns the
length of 'str'.

SubString() int SubString(string str1, string str2, int index, int
len)
Fills 'str1' with up to 'len' characters from 'str2',
starting at offset 'index'. The first character in a
string is referred to by offset 0. Returns the new
length of 'str1' or -1 for error.

If 'index' is negative, and 'len' is positive, 'str1' will
be filled with 'len' characters starting 'index'
characters in from the end of 'str2'.

If 'len' is negative, the value of 'index' is ignored,
and 'str1' is filled with the rightmost 'len' characters
from 'str2'.

SwapLines Issues the Swap Lines command

SwapWords Issues the Swap Words command

SwitchToWindow() SwitchToWindow(int n)
Makes window 'n' active. Windows are numbered
from 1 to the number of open files.

See also FileCount.

See also GetWindowNumber().

SyntaxHighlightAs Issues the Syntax Highlight As command

Tab Issues the Tab command. If a range of lines is
selected, the range will be indented.

TabDisplaySize() int TabDisplaySize(string str)
Sets the Tab Display Size for the current file

Boxer Text Editor914

Copyright © 1991-2010 by Boxer Software

according to 'str'. If a single value appears in 'str',
tabs are set to fixed width with the value in 'str'. If a
series of comma-separated values are found in 'str',
variable width tab stops will be used. Returns TRUE
for success, -1 for error. If 'str' is not supplied the
Tab Display Size dialog will appear when the macro
is run.

TabsToSpaces Issues the Tabs to Spaces command

tan() float tan(float x)
Returns the tangent of 'x'. The angle 'x' must be in
radians.

tanh() float tanh(float x)
Returns the hyperbolic tangent of 'x'. The angle 'x'
must be in radians.

Templates Issues the Templates command

TextIsSelected int TextIsSelected
Returns 1 if a stream selection is present, 2 if a
columnar selection is present, or 0 if no selection is
present. Returns -1 for error.

TextWidth() int TextWidth(int n)
Sets the Text Width to 'n'. Returns TRUE for success
or -1 for error. If 'n' is not supplied the Text Width
dialog will appear when the macro is run.

TileAcross Issues the Tile Across command

TileDown Issues the Tile Down command

ToggleBookmark() int ToggleBookmark(int n, int state)
Sets bookmark 'n' according to 'state'. Returns TRUE
for success, -1 for error. If 'state' is ON, bookmark
'n' is placed on the current line. If 'state' is OFF
bookmark 'n' is cleared, where ever it is.

ToggleEditMode() ToggleEditMode(int state)
Toggles the edit mode according to 'state'. If 'state'
is 1, Insert mode is used. If 'state' is 0, Typeover
mode is used.

See also the functions InsertMode() and
TypeoverMode().

ToggleReadOnly() ToggleReadOnly(int state)
Toggle read-only mode according to 'state'. If 'state'
is 1, read-only mode is set. If 'state' is 0, read-only
mode is released.

tolower() int tolower(char c)
Returns the lowercase mate to character 'c'.

ToolbarBottom Issues the Toolbar Bottom command

Miscellaneous Topics 915

Copyright © 1991-2010 by Boxer Software

ToolbarLeft Issues the Toolbar Left command

ToolbarRight Issues the Toolbar Right command

ToolbarTop Issues the Toolbar Top command

TopLine int TopLine
Returns the line number of the first line in the editor
window. Returns -1 for error.

TopOfPage Issues the Top of Page command

TotalAndAverage Issues the Total and Average command

TouchFile() int TouchFile(string name)
Touch (ie, update the timestamp of) the file named
'name'. Returns 1 for success or -1 for error.

toupper() int toupper(char c)
Returns the uppercase mate to character 'c'.

Trim() int Trim(string str)
Removes leading and trailing blanks from 'str'.
Returns the new length of 'str'.

TrimLeft() int TrimLeft(string str)
Removes leading blanks from 'str'. Returns the new
length of 'str'.

TrimRight() int TrimRight(string str)
Removes trailing blanks from 'str'. Returns the new
length of 'str'.

Trunc() float Trunc(float x, int n)
Returns the value of 'x' truncated to 'n' decimal
places.

TypeoverMode TypeoverMode
Switches the edit mode to Typeover in the current
file.

See also ToggleEditMode().

Uncomment Issues the Uncomment command.

Undo Issues the Undo command.

UndoAll Issues the Undo All command.

UndoAllClosedTabs Issues the Undo All Closed Tabs command.

UndoClosedTab() UndoClosedTab(int n)
Reopens recently closed file tab number 'n'. When a
sufficient closed tab list exists, 'n' can range from 1
to 10.

UndoCloseTab Issues the Undo Close Tab command.

Unformat Issues the Unformat command.

Boxer Text Editor916

Copyright © 1991-2010 by Boxer Software

UnformatXML Issues the Unformat XML command.

UnhighlightMatches Issues the Unhighlight Matches command.

Unindent Issues the Unindent command.

Up int Up(int n)
Issues the Up command 'n' times. Returns the
number of commands performed or -1 for error. The
argument 'n' is optional; if it is not provided a single
command is performed.

UserList() UserList(int n)
Opens User List window 'n'.

UserTool() UserTool(int n)
Runs User Tool number 'n'.

UserToolWait() UserTool(int n)
Runs User Tool number 'n' and waits for it to
complete execution.

ValueAtCursor int ValueAtCursor
Returns the ASCII value of the character at the
cursor, or -1 if a character is not available at the
cursor.

ValueExists() int ValueExists(string name)
Looks for the variable 'name' in the macro variable
storage area. Returns 1 if it exists, 0 if it does not
exists, or -1 for error.

See also ReadValue(), WriteValue(), EraseValue().

ViewBookmarks() int ViewBookmarks(int mode)
Enables or disables the viewing of Bookmarks
according to 'mode'.

ViewFileTabs() int ViewFileTabs(int mode)
Enables or disables the viewing of File Tabs
according to 'mode'.

ViewHexMode() int ViewHexMode(int mode)
Enables or disables read-only hex mode viewing
according to 'mode'.

ViewHexRuler() int ViewHexRuler(int mode)
Enables or disables the viewing of the Hex Ruler
according to 'mode'.

ViewTextRuler() int ViewTextRuler(int mode)
Enables or disables the viewing of the Text Ruler
according to 'mode'.

ViewHScrollBar() int ViewHScrollBar(int mode)
Enables or disables the viewing of Horizontal Scroll
Bars according to 'mode'.

Miscellaneous Topics 917

Copyright © 1991-2010 by Boxer Software

ViewLineNumbers() int ViewLineNumbers(int mode)
Enables or disables the viewing of Line Numbers
according to 'mode'.

ViewRightMarginRule() int ViewRightMarginRule(int mode)
Enables or disables the viewing of the Right Margin
Rule according to 'mode'.

ViewStatusBar() int ViewStatusBar(int mode)
Enables or disables the viewing of the Status Bar
according to 'mode'.

ViewSyntaxHighlighting() int ViewSyntaxHighlighting(int mode)
Enables or disables the Syntax Highlighting feature
according to 'mode'.

ViewTextHighlighting() int ViewTextHighlighting(int mode)
Enables or disables the Text Highlighting feature
according to 'mode'.

ViewToolbar() int ViewToolbar(int mode)
Enables or disables the viewing of the Toolbar
according to 'mode'.

ViewVisibleSpaces() int ViewVisibleSpaces(int mode)
Enables or disables the viewing of Visible Spaces
according to 'mode'.

ViewVScrollBar() int ViewVScrollBar(int mode)
Enables or disables the viewing of Vertical Scroll
Bars according to 'mode'.

VisualWrap() int VisualWrap(int mode)
Enables or disables Visual Wrap according to 'mode'.

VisualWrapOptions Issues the Visual Wrap Options command.

Wait() int Wait(int n)
Delays macro execution for 'n' milliseconds. 1000
milliseconds equals 1 second. Returns 1 for success
or -1 for error.

WindowHeight int WindowHeight
Returns the number of lines that can be displayed in
the current window.

WindowLastVisited Issues the Window Last Visited command

WindowList Issues the Window List command

WindowNext Issues the Window Next command

WindowPrevious Issues the Window Previous command

WindowSkip int WindowSkip(int mode)
If 'mode' is 1, sets the skip status for the current
window to on. If mode is 0, skip status is turned off.
Returns 1 for success or -1 for error.

Boxer Text Editor918

Copyright © 1991-2010 by Boxer Software

WindowWidth int WindowWidth
Returns the number of columns that can be
displayed in the current window.

WordCount() int WordCount(int lines, int words, int chars)
Fills the supplied variables with the count of lines,
words and characters, respectively. Returns 1 for
success or -1 for error.

WordLeft int WordLeft(int n)
Issues the Word Left command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordRight int WordRight(int n)
Issues the Word Right command 'n' times. Returns
the number of commands performed or -1 for error.
The argument 'n' is optional; if it is not provided a
single command is performed.

WordWrap() int WordWrap(int mode)
Enables or disables Typing Wrap according to
'mode'. Deprecated: see TypingWrap().

WriteValue() int WriteValue(string name, char/int/string/float val)
Writes 'val' to the macro variable storage area
named 'name'. 'name' will be visible to other
macros, so be careful to choose a unique identifier.
Returns 1 for success or -1 for error.

See also ReadValue(), EraseValue(), ValueExists().

xtoi() int xtoi(string str)
Returns the integer value of the hexadecimal
number described by string 'str'. Returns -1 for
error.

6.17 Macro Language Reference

Data Types

Boxer's Macro Language supports the following data types:

string
char
int
float

A string can hold a series of characters up to 2,048 bytes in length. The end of a

string is marked with a Null character (ASCII 0). A string constant is enclosed within
double quotes.

Miscellaneous Topics 919

Copyright © 1991-2010 by Boxer Software

The char data type is an 8-bit, unsigned data type which can hold values in the

range 0 to 255. A character constant is enclosed within single quotes.

The int data type is a 32-bit, signed data type which can hold integer values in the

range -2,147,483,648 to 2,147,483,647.

The float data type is a double precision, signed data type that can hold values in the

range 2.2250738585072014e-308 to 1.7976931348623158e+308.

Keywords

The following words are reserved keywords and may not be used as variable names:

break int true
continue char false
do string yes
else float no
for void on
goto off
if
macro
return
while

The keywords listed above are case sensitive, and must be entered in lowercase. The
symbolic constants in the third column (true, false, yes, no, on, off) are an

exception: they can appear in lowercase, uppercase, or even in mixed case.

Arithmetic Operators

The following arithmetic operators are supported:

Operator Meaning

 + addition

 - subtraction

 * multiplication

 / division

 % modulus

 ++ increment

 -- decrement

The modulus operator (%) returns the remainder from an integer division operation. For

example, the expression n = 7 % 4 will result in n receiving the value 3, since 7 /
4 leaves a remainder of 3.

The increment and decrement operators can be used to increase or decrease an integer

Boxer Text Editor920

Copyright © 1991-2010 by Boxer Software

variable by 1. The expression:

i++;

is equivalent to:

i = i + 1;

The ++ and -- operators can be used in either prefix or postfix location. If i has an

initial value of 3, the statement:

n = i++;

will leave n with the value of 3, while i is incremented to 4. The incrementing of i
occurs after the assignment due to the postfix location.

Assuming i again starts with a value of 3, the statement:

n = --i;

will leave n with a value of 2 and i with a value of 2. The decrementing of i occurs

before the assignment due to the prefix location.

The addition (+) operator has been overloaded to support string concatenation. The

following statements:

string s1 = "Boxer ";
string s2 = "Text Editor";
string s3 = s1 + s2;

would result in s3 having the value: "Boxer Text Editor"

Assignment Operators

The following assignment operators are supported:

Operator Meaning

 = assignment

 += addition assignment

 -= subtraction assignment

 *= multiplication assignment

 /= division assignment

 %= modulus assignment

 &= bitwise AND assignment

 |= bitwise OR assignment

Miscellaneous Topics 921

Copyright © 1991-2010 by Boxer Software

 ^= bitwise XOR assignment

 <<= left shift assignment

 >>= right shift assignment

The assignment operator (=) should be familiar to all. The other operators which each

conclude with = all represent a shorthand notation. For example, the statement:

i += 5;

is equivalent to:

i = i + 5;

The += operator has been overloaded to support string concatenation. The following

statements:

string str = "Boxer ";
str += "Text Editor";

would result in str having the value: "Boxer Text Editor"

The last five operators listed above are bitwise assignment operators. Their function is
analogous to the += operator; see the Bitwise Operators section of this topic for some

additional detail.

Boolean Operators

The following Boolean operators are supported:

Operator Meaning

 == equal

 != not equal

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

 && logical AND

 || logical OR

 ! logical NOT (unary negation)

 ~= case insensitive string comparison

The operators ==, !=, <, >, <= and >= have been overloaded to allow operations

on strings. A string is considered greater than another string if it would appear higher

Boxer Text Editor922

Copyright © 1991-2010 by Boxer Software

in an alphabetic sort. In other words, the statement:

if ("apple" < "zebra")

evaluates to TRUE.

The first nine operators above are standard to most high-level languages. The last
operator is specific to Boxer's Macro Language, and permits strings to be compared
without case sensitivity. For example, the statement:

if ("MasterCard" ~= "mastercard")

would evaluate to TRUE.

Bitwise Operators

The following bitwise operators are supported:

Operator Meaning

 & bitwise AND

 | bitwise OR

 ^ bitwise XOR

 << left shift

 >> right shift

 ~ one's complement (unary)

A full discussion of bitwise arithmetic would be beyond the scope of this language
reference. For those who are interested, any introductory book on the C programming
language would be a suitable reference. The information below will be sufficient to
remind those with prior experience of the function of each operator:

& Sets a bit to 1 in the result if and only if both of the corresponding bits in its

operands are 1, and to 0 if the bits differ or both are 0. Example: 9 & 1 yields 1.

| Sets a bit to 1 in the result if one or both of the corresponding bits in its operands

are 1, and to 0 if both of the corresponding bits are 0. Example: 9 | 2 yields 11.

^ Sets a bit in the result to 1 when the corresponding bits in its operands are

different, and to 0 when they are the same. Example: 7 ^ 4 yields 3;

<< Shifts the first operand the number of bits to the left specified in the second

operand, filling with zeros from the right. Example: 2 << 3 yields 16.

>> Shifts the first operand the number of bits to the right specified in the second

operand, discarding the bits that 'fall off' at the right. Example: 34 >> 2 yields 8.

Miscellaneous Topics 923

Copyright © 1991-2010 by Boxer Software

~ Inverts each bit in the operand, changing all ones to zeros and all zeros to ones.

Example: ~0xFFFF0000 yields 0x0000FFFF.

The large majority of users will never find a need for bitwise arithmetic, but it has
been included in the interest of completeness.

Operator Precedence

The following table summarizes operator precedence and order of evaluation for the
various operators supported by Boxer's Macro Language. Operators with the
strongest/highest precedence are listed first:

Operator Evaluates

() [] left to right

! ~ ++ -- - right to left

* / % left to right

 + - left to right

 << >> left to right

 < <= > >= left to right

 == != ~= left to right

 | left to right

 & left to right

 ^ left to right

 && left to right

 || left to right

 ? : right to left

 = += -= etc. right to left

 , left to right

Parentheses can be used when required to ensure that the order of evaluation occurs as
desired. For example:

n1 = 3 * 5 + 4;

assigns 19 to n1, while:

n1 = 3 * (5 + 4);

assigns 27 to n1.

Because the assignment operator (=) is evaluated from right to left, a construction

such as the following is possible:

Boxer Text Editor924

Copyright © 1991-2010 by Boxer Software

int i, j, k;
i = j = k = 0;

 k is assigned the value 0, j is assigned the value of k, and i is assigned the value

of j.

Character Constants

Boxer's Macro Language recognizes the standard character constants which have been
popularized by the C programming language:

Sequence Meaning Decimal Value

'\b' Backspace 8

'\f' Formfeed 12

'\n' Newline 10

'\r' Carriage Return 13

'\t' Tab 9

'\\' Backslash 92

'\'' Single Quote 39

'\"' Double Quote 34

'\0' Null 0

In addition, Boxer will recognize a backslash (\) followed by three octal digits as the

character whose ASCII value is given by the digits used. For example, '\101' could

be used to represent a capital A, since its ASCII value, in octal, is 101.

Character constants can be used in any place that a char data type is expected, or

within a double-quoted string: "this is a string with a newline at the
end.\n"

Numeric Constants

Numeric int constants can be specified in either decimal or hexadecimal format:

int n1 = 32;
int n2 = 0x20;

Each of these assignments supplies the value 32 to n1 or n2.

Numeric float constants can be specified in any of the following forms:

float x1 = 500;
float x2 = 500.0;
float x3 = 5e2;

Miscellaneous Topics 925

Copyright © 1991-2010 by Boxer Software

float x4 = 5e02;
float x5 = 5.0e2;
float x6 = 5.0e02;
float x7 = 5.0e+2;
float x7 = 5.0e+02;

Each of these assignments results in the value 500 being assigned to the variable being

declared.

For floating point values less than 1, the minus sign can be used to designate

exponentiation. All of the following examples represent the number .05:

.05
0.05
5e-2
5e-02
5.0e-2
5.0e-02

Symbolic Constants

The following symbolic constants are recognized:

Name Value

TRUE 1

FALSE 0

YES 1

NO 0

ON 1

OFF 0

These constants can be used in place of the values 0 and 1 to make a macro more

readable. For example, you can write:

ViewBookmarks(ON);

instead of:

ViewBookmarks(1);

Declaring Variables

Variable names can be up to 32 characters in length and must not conflict with the

names of any keywords or internal functions. Variable names can use alphanumeric
characters and the underscore (_), but they must not start with a digit. All variables

must be declared before use. Initialization of variables can be done at declaration-time,
but this is not required. Uninitialized variables will be zero-filled automatically.

Boxer Text Editor926

Copyright © 1991-2010 by Boxer Software

Boxer's Macro Language supports a flexible syntax for declaring variables. All of the
following examples are legal declarations when they appear at the top of a macro,
before other executable statements:

string s1;
string s2 = "Boxer";
string s3, s4, s5;
string s6 = "abc", s7, s8 = "def";

char c1;
char c2 = 'A';
char c3, c4, c5;
char c6, c7 = 'x', c8;

int n1;
int n2 = 10;
int n3, n4, n5;
int n6, n7 = -4, n8;

float x1;
float x2 = 1.05;
float x3 = 1.2e04;
float x4, x5, x6;
float x7, x8 = 7.75, x9;

In the spirit of the C programming language, Boxer's macro language also allows a

string variable to be declared as an array of characters. The declaration:

char str[100];

is (for most purposes) functionally equivalent to the declaration:

string str;

for declaring a variable which can hold a short string of characters. See the String
Subscripting section below for details on when the former style might be required.

Conditional Statements

Boxer's Macro Language supports three different conditional statements: if, if-else
and the ternary statement. An if statement will be executed if the expression in

parentheses evaluates to a non-zero result. Below are examples of the three
conditional statements:

if (LineCount() > 10000)
{
longfile = true;
}

if (LineCount() > 10000)
{

Miscellaneous Topics 927

Copyright © 1991-2010 by Boxer Software

longfile = true;
}

else
{
longfile = false;
}

longfile = (LineCount() > 10000) ? true : false;

In the first example, the variable longfile is set TRUE if the return from the function

LineCount() is greater than 10000. In the second example, an if-else statement

is used to additionally set longfile to FALSE if the condition is not met.

The final example illustrates the ternary statement, and its effect is identical to the

if-else example immediately above it. If the condition within parentheses evaluates

to TRUE, the expression immediately following the ? is evaluated. If not, the

expression after the : is evaluated. A ternary statement is effectively a compact

if-else statement.

The ternary statement in Boxer's Macro Language is modeled after that of the C
programming language, with one exception. In Boxer macros, the parentheses
around the conditional expression are required, in C these parentheses are optional.

When a single statement is conditional upon an if or if-else statement, as is

shown in the examples above, the use of curly braces { } is not required. Curly

braces are required when two or more statements are to be conditionally executed,
or when those statements are the subject of a looping statement.

Looping Statements

Boxer's Macro Language supports three different looping statements: for, while and

 do-while. A loop statement will continue looping so long as the 'test' expression in

parentheses evaluates to a non-zero result. Below are examples of each of these
statements:

// find the longest line in the file
for (line = 1, longest = 0; line <= LineCount(); line++)

if ((n = LineLength(line)) > longest)
longest = n;

// find the longest line in the file
line = 1;
longest = 0;
while (line <= LineCount())

{
if ((n = LineLength(line)) > longest)

longest = n;

Boxer Text Editor928

Copyright © 1991-2010 by Boxer Software

line++;
}

// find the longest line in the file
line = 1;
longest = 0;
do

{
if ((n = LineLength(line)) > longest)

longest = n;

line++;
}

while (line < LineCount());

The three loops above are functionally equivalent to one another, with one exception
that will be discussed below.

The for loop is the most compact, since it permits the three elements of a loop's

control to be specified on a single line: the initialization, the test, and the increment.
These are found within the parentheses of the for loop and are separated by

semi-colons. When a for loop is first executed, the initialization section is performed,

and the test section is evaluated. If the test evaluates to a non-zero result, the
statement(s) in the body of the loop are processed. At the end of the loop, the
increment section is processed. Control then passes again to to the test section, to the
body, and so on.

Boxer's Macro Language supports a very flexible for loop structure. The

initialization, test and increment sections are each optional. Moreover, multiple
initializations can be performed by separating the statements with the comma
operator.

The while loop is a simpler loop, in that the only required control element that must

be supplied is the test. For illustration purposes, the while loop above was written to

be identical in function to the for loop above it. In fact, every for loop can be

written as a while loop, and every while loop can be written as a for loop. A

for loop is typically used when one needs to initialize and increment a loop index. A

while loop is typically used when a single condition is sufficient to control the flow of

the loop.

A do-while loop is essentially an upside-down while loop. A do-while loop

tests at the bottom, whereas a while loop tests at the top. A do-while loop

should be used in those cases where the loop is always to be be executed at least once.
That leads us to why the do-while example above is not exactly equivalent to the

for and while loops above it. If the current file is empty, the for and while
loops above will not be executed. The LineCount() function will return 0 and the

initial test will fail. In the do-while loop, the LineCount() call isn't made until the

bottom of the loop. In the case of an empty file, the body of the loop would be
processed and the LineLength() call would fail because the line parameter would

Miscellaneous Topics 929

Copyright © 1991-2010 by Boxer Software

be out of range.

Sometimes the need arises to construct a 'forever' loop; one which will run until
some condition within the body of the loop is satisfied and a break statement is

executed. Both the for and while loops can be used for this purpose. Here are

two examples:

// loop until the user enters the right answer
for (;;)

{
GetString("What's the capital of Arizona?", answer);

if (answer ~= "Phoenix")
break;

}

// loop until the user enters the right answer
while (TRUE)

{
GetString("What's the capital of New Hampshire?", answer);

if (answer ~= "Concord")
break;

}

Notice that these examples used the ~= operator to ensure that the user's

response was not rejected due to improper case.

Alert readers might notice that the above examples could be more neatly implemented
using a do-while loop, since this is a case where the loop always wants to be run

once, and the test can be more logically placed at the bottom of the loop:

do
GetString("What's the capital of California?", answer);

while (strcmpi(answer, "Sacramento") != 0);

This example uses the strcmpi() function to perform a case insensitive string

comparison, because the ~= operator does not have a companion

string-does-not-match operator.

The break Statement

The break statement can be used to exit from a loop prematurely. Control passes to

the next statement following the loop which has been exited. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

break;

Boxer Text Editor930

Copyright © 1991-2010 by Boxer Software

}

// control passes to here after break
New;

The continue Statement

The continue statement can be used to jump to the bottom of a loop prematurely.

Control passes to an imaginary label at the end of the loop. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

continue;

// ... other processing ...

// continue jumps to here
}

The goto Statement

The goto statement can be used to jump unconditionally to a label. Control passes to

the next statement after the label. For example:

// loop on all lines in the file
for (i = 1; i <= LineCount(); i++)

{
// exit the loop if a line is longer than 1000 characters
if (LineLength(i) > 1000)

goto toolong;

// ... other processing ...

toolong:
// goto jumps to here

// ... other processing ...
}

The return Statement

The return statement can be used to end a macro prematurely. If a return statement

is not encountered, a macro will run until the closing curly brace in the body of the
macro is encountered.

Function Calls

Boxer's Macro Language includes a wide variety of functions that provide access to the
editor's commands, configuration settings, and to string and math libraries. The

Miscellaneous Topics 931

Copyright © 1991-2010 by Boxer Software

function set is documented in the Macro Function Reference, as well as in the Macro
Dialog itself.

When making a function call, care should be taken to ensure that the parameters
supplied to the function match the declared type(s) that the function expects to receive.
Boxer is able to trap missing and/or mismatched parameters in most cases, but
unexpected results can occur when invalid parameters are supplied.

Function names are not case sensitive; Boxer will accept function names that do not
match the function name with regard to character case.

If a function does not require parameters, it is not necessary to supply parentheses at
the end of the function name. For example:

LineCount();

and

LineCount;

are functionally equivalent, because the LineCount function does not require any

parameters. That said, the practice of using () on all function calls can help to

distinguish function names from variable names.

Simple expressions can be supplied to in a function call without difficulty, and they will
be evaluated as expected before being sent to the function for processing. For
example:

max(3 * 45, 4 * 90);

is a legitimate construction that might be used in calling the max() function. If you find

that you are getting unexpected results in a case like this, introduce a temporary
variable to hold the value of the expression, and then supply the variable to the
function in place of the expression.

String Subscripting

Arrays are not supported in the classical sense; it's not possible to declare an array of

int or float variables, for example. But Boxer's Macro Language does recognize a

string variable to be an array of elements of type char, and allows those elements

to be accessed individually through the use of subscripts. The first character within a
string is located at index 0, the second character is at index 1, etc. In the following

example:

string str = "BOXER";
char c1;
c1 = str[2];

the character variable c1 would be assigned the value 'X'.

Likewise, a string variable can be modified by assigning individual elements within

Boxer Text Editor932

Copyright © 1991-2010 by Boxer Software

the string using subscripting:

string s1 = "water";
s1[0] = 'w';
s1[1] = 'i';
s1[2] = 'n';
s1[3] = 'e';
s1[4] = '\0';

This code fragment has the effect of changing the content of string variable s1 from

"water" to "wine". Notice that the null character ('\0') was used to shorten the

string from five characters to four.

String subscripting makes it possible to use a string variable in the way that an
array might be used. Here's an example that totals the number of occurrences of
each letter within an input string:

macro array_example()
{
int i;
string input = "now is the time for all good men to come to the

aid of their country.";
char tally[256]; // note that all elements are initially

set to zero

// loop to process all characters in the input string
for (i = 0; input[i] != '\0'; i++)

tally[input[i]]++;

// open a new, untitled file
New;

// report the results for lowercase letters
for (i = 'a'; i <= 'z'; i++)

printf("letter %c occurred %d time(s)\n", i, tally[i]);
}

Had the tally array been declared as a string type, Boxer's built-in range

checking would have prevented the string from being used in the way that was shown
above. By declaring the string as a character array of sufficient size, the macro
processor is forewarned that the code may later index into the string beyond the
terminating null character.

Due to the capacity of the char data type (0-255), the utility of the above

technique is limited to applications in which the maximum number of occurrences
would be less than 256.

Type Conversions

Boxer's Macro Language will automatically convert between data types whenever
possible in order to resolve an expression that involves mismatched data types. Here
are some examples:

Miscellaneous Topics 933

Copyright © 1991-2010 by Boxer Software

string s1 = 'A'; // result: s1 gets "A" (char to string)
string s2 = 65; // result: s2 gets "A" (int to string)
string s3 = 65.0; // result: s3 gets "A" (float to string)

char c1 = 65; // result: c1 gets 'A' (int to char)
char c2 = "A"; // result: c2 gets 'A' (string to char)
char c3 = 65.0; // result: c3 gets 'A' (float to char)

int n1 = 'A'; // result: n1 gets 65; (char to int)
int n2 = "123"; // result: n2 gets 123 (string to int)
int n3 = 123.45; // result: n3 gets 123 (float to int)

float x1 = 'A' // result: x1 gets 65.0 (char to float)
float x2 = 65; // result: x2 gets 65.0 (int to float)
float x3 = "123.45"; // result: x3 gets 123.45 (string to

float)

Comments

Comments can be placed throughout a macro to help document the code. Two types of
comments are supported, block comments and end-of-line comments:

/* this is a multi-line
 block comment */

int n1 = 7; // this is an end-of-line comment

6.18 Main Menu

With the exception of the Cursor Movement commands, Boxer's main menu provides
access to all of the editor's features and commands. Commands are grouped by
function into ten top-level menus: File, Edit, Block, Search, Paragraph, Tools, Configure,
View, Window and Help.

The main menu can be accessed with the mouse or by depressing Alt along with the
underlined hot letter for the desired menu. Once a menu has been dropped, pressing a
command's hot letter (with or without Alt) will execute the command.

Many commands also have shortcut keys, which provide a means to issue a command
without entering the main menu structure. A command's active shortcut key--when
available--is displayed to the right of that command's menu entry. The Configure
Keyboard command can be used to change shortcut keys or to add secondary key
assignments.

While navigating the main menu, issuing the Help command (which is assigned to F1 by
default) will display the help topic for the highlighted menu entry. This permits the
main menu to be used as an index into the help system.

By default, icons are displayed next to many main menu entries. Studies have found
that icons help many users to recognize and locate menu items and buttons more

Boxer Text Editor934

Copyright © 1991-2010 by Boxer Software

quickly. The display of main menu icons can be controlled on the Configure |
Preferences | Display options page. The option is titled Display icons in menus.

Several commands which are most likely to be used during editing are available on the
Context Menu. The context menu is activated by clicking the right mouse button within
an editing window.

6.19 Null Characters

The term text file is generally considered to refer to those files that do not contain null
characters (ie, the character whose ASCII value is zero), and which have periodic line
enders to delimit the ends of lines. Binary or Hex files are those files which do not
conform to these requirements.

When Boxer opens a text file, it does so using a conventional display format where each
character occupies one position on screen, and newline characters are interpreted to
cause a new line to be created. When Boxer opens a hex file, it uses a special display
format where each character is represented by a two-digit hexadecimal code.

There may be times when you would like to edit a hex file using a conventional text file
display. This situation may arise when a text file has become corrupt and now contains
unwanted null characters, or when you're trying to salvage text from a file whose data
format includes null characters, and you don't want to (or can't) open the file with its
native application.

For these situations, Boxer has a Null Character Handling dialog with options for how
null characters should be converted:

Miscellaneous Topics 935

Copyright © 1991-2010 by Boxer Software

An option appears on the Configure | Preferences | Editing 2 dialog page that allows
you to indicate whether files containing nulls should always be opened in hex editing
mode, or whether the Null Character Handling dialog should be displayed instead.

With this dialog you can control how null characters will be handled in the file you are
loading. How you decide to proceed will depend on the type of file you're editing. It
might be wise to first create a backup copy when editing files of this sort.

6.20 Portable Editing

Boxer can be run as a portable application: it runs seamlessly from removable media--
such as a USB stick or Secure Digital card--and no 'footprints' are left on the host
machine on which it is run. Boxer's installer provides an option to install to removable
media, without creating a program group, icons, file associations, etc. on the host
machine. By default, instead of writing its settings to the Windows registry, Boxer
saves them to a disk-based file (named BOXER.INI) which resides in its data directory.

Boxer Text Editor936

Copyright © 1991-2010 by Boxer Software

By using the -I command line option flag, an alternate INI file can be loaded. This
makes it possible to maintain a virtually unlimited number of distinctly configured
Boxer profiles.

An option to write to the Windows registry is available on the Configure |
Preferences | Other dialog page.

6.21 Power Columns

Boxer's Power Columns feature can be a big time saver when editing text that requires
identical changes to be made on each line. In Power Columns mode, the text you type
is applied to every line within the range of selected lines. When you cursor left or right,
the insertion point moves in all selected lines. If you press Delete, or Backspace, a
character is deleted in each line. You can even Paste a short text string into each line
with just a single Paste command. Power Columns can work on two lines, two thousand
lines... or even more.

Let's consider an example... Suppose you've got five variable declarations that need to
have the word 'static' applied to each of them. This is an editing task that arises in
programming, but you'll probably be able to imagine other uses as well. To enter Power
Columns mode, you simply need to create a Columnar Selection of zero width. Make
sure the selection mode is set to Columnar on the Block menu, and then press
Shift+Down four times. This will be the result:

The special red cursor bars indicate that Power Columns mode is active. When you
press the letter 's', the character is inserted on each line:

When you type 'tatic' the rest of the text is entered, and the job is done:

Miscellaneous Topics 937

Copyright © 1991-2010 by Boxer Software

(The word 'static' changed to red because 'static' is a reserved word.)

If you make a mistake while typing, the Delete and Backspace keys operate predictably
to correct your error. If additional changes are needed in another portion of the line,
the Left and Right arrow keys can be used to move the insertion point while still
remaining in Power Columns mode. To exit Power Columns mode, press Escape, or use
the Up or Down arrow.

6.22 printf and sprintf Formatting

Boxer's Macro Language has two functions that support formatted printing. printf
and sprintf are functions that allow output to be formatted before being sent to a

destination. For sprintf, the destination is a supplied string variable. For printf,

the destination is the currently edited text file.

The implementation of these functions is very similar to their implementation in the
C programming language. Just a few of the most esoteric formatting options have
been left unimplemented in Boxer's Macro Language. If you are already familiar
with the formatting offered by printf and sprintf, you will probably not need to

consult this reference section.

The formatting of the output is controlled by a format string. The format string is a
character string containing two types of objects: ordinary characters which are copied
directly to the destination, and conversion specifications, each of which is introduced
with the % symbol.

A conversion specification has the following form:

%[flags][width][.precision][type]

The fields of the conversion specification have the following meanings:

flags (optional)

-
Left-justifies the result, pads on the right with blanks. If not supplied, it right-justifies
the result, padding on the left with zeros or blanks.

+
Signed conversion results will always begin with a plus (+) or minus (-) sign.

Boxer Text Editor938

Copyright © 1991-2010 by Boxer Software

space
If the value is non-negative, the output begins with a space instead of a plus; negative
values begin with a minus.

width (optional)

n
At least n characters are printed. If the output value has fewer than n characters, the

output is padded with spaces.

0n
At least n characters are printed. If the output value has fewer than n characters, it is

filled on the left with zeros.

precision (optional)

(none) Precision set to default:
 1 for d, i, o, u, x, X types
 6 for e, E, f types
 all significant digits for g, G types
 print to first null character for s types
 No effect on c types

.0 For d, i, o, u, x types, precision is set to default
 For e, E, f types, no decimal point is printed.

.n n characters or n decimal places are printed.
 If the output value has more than n characters, the
output might be truncated
 or rounded. (Whether or not this happens depends on
the type character.)

No numeric characters will be output for a field (i.e., the field will be blank) if the
following conditions are all met:

· you specify an explicit precision of 0
· the format specifier for the field is one of the integer formats (d, i, o, u, or x)

· the value to be printed is 0

How precision affects the conversion performed for each type:

Type Effect of precision (.n) on conversion

 d Indicates that at least n digits are printed. If input
argument has fewer than
 i n digits, output value is left-padded x with zeros. If
input argument has more
 o than n digits, the output value is not truncated.
 u

Miscellaneous Topics 939

Copyright © 1991-2010 by Boxer Software

 x
 X

 e Specifies that n characters are printed after the
decimal point, and the last
 E digit printed is rounded.
 f

 g Specifies that at most n significant digits are
printed.
 G

 c Has no effect on the output.

 s Specifies that no more than n characters are printed.

type (required)
The type parameter specifies what kind of conversion printf or sprintf performs.

The following conversion characters are supported:

%
Prints the percent character (%).

c
Prints a single character.

s
Prints a string.

d
Prints a signed decimal integer.

i
Prints a signed decimal integer (same as d)

o
Prints a signed octal integer.

u
Prints an unsigned decimal integer.

x
Prints an unsigned hexadecimal integer using a-f as may be required.

X
Prints an unsigned hexadecimal integer using A-F as may be required.

f
Prints a floating point value of the form [-]9999.9999.

Boxer Text Editor940

Copyright © 1991-2010 by Boxer Software

e
Prints a floating point value of the form [-]9.9999e[+|-]999.

E
Prints a floating point value of the form [-]9.9999E[+|-]999.

g
Prints a signed value in either f or e form, based on the value and precision. Trailing

zeros and the decimal point are printed only if necessary.

G
Prints the same as g, but uses 'E' for the exponent if an exponent is needed.

Example Format Strings

format string output

"save 25%%" save 25%
"%-25s" outputs a string left justified in a
25-character wide field
"%8d" output a decimal value right justified in an
8-character wide field
"%10.2f" outputs a floating point value with 2
decimal places in a 10-character
 wide field
"%08X" output a hexadecimal value with leading
zeros in an 8-character wide
 field
"\"yes\"" "yes"

Example Macro

This macro illustrates the use of printf with a formatting string that includes the %c,

%d, %x and %o format specifiers. The decimalvalue (%d) will be right justified in a field

of three characters. The hexadecimal value (%x) will be printed in a field of three

characters with a leading zero. The octal value (%o) will be printed in a field of three
characters with leading zeros. Notice that the variable i is placed on the argument list

once for each format specifier that appears in the format string.

macro chart()
{
// open a temporary new file
New;

// loop from the space character to value 255
for (int i = ' '; i <= 255; i++)

printf("char: '%c' dec: %3d hex: %02X oct: %03o\n", i, i, i,
i);
}

Miscellaneous Topics 941

Copyright © 1991-2010 by Boxer Software

6.23 Regular Expressions

When searching for a text string using the Find, Replace, Replace Line Enders or Find
Text in Disk Files commands, Boxer supports the use of Regular Expressions, a pattern
matching grammar first popularized on the Unix operating system. Regular Expressions
make it possible to specify a search string which can match many different target
strings, or to restrict the ways in which a search string can be matched.

Boxer uses Perl-Compatible Regular Expressions as implemented by the increasingly
popular PCRE 5.0 library. See the end of this topic for further information and
acknowledgements.

A complete treatment of the topic of regular expressions could--and does--fill an entire
book. Mastering Regular Expressions, by Jeffrey Friedl is one such book, and a good
one at that. This help topic was written to acquaint the typical user with the most
common regular expression features, without getting too bogged down in fine details.
The advanced reader is encouraged to seek out additional information on the web, or
within the PCRE documentation itself. We have posted one such reference document on
our site for your convenience.

Regular Expressions are very powerful, and can be more easily understood by studying
several examples.

Matching a Single Character
The dot (.) will match any single character, except the newline character. Example:

p.t will match pat, pet, pit, pot, and put, and in fact any 3-character sequence

with p and t at its ends and a single character in the middle.

Matching with an Asterisk
The asterisk (*) will match zero or more occurrences of the preceding character.

Example: zo*m will match zm, zom, zoom and zooooooooom, among others. Note that

the character preceding the asterisk can be the dot, so zero or more occurrences of any
character will be matched when the construction .* is used. Example: Bo.*r will

match Boxer, Bowler, Bookmaker, Bookkeeper and Building Manager.

Matching with a Plus Sign
The plus sign (+) will match one or more occurrences of the preceding character.

Example: ho+p will match hop, hoop and hooooooop, among others. Note that the

character preceding the plus sign can be the dot, so that one or more occurrences of
any character will be matched when the construction .+ is used.

Patterns that use either * or + can often result in more than one possible matching

string. This concept is known as minimal or maximal matching. You can control
whether Boxer will return the shortest or longest matching string using the Maximal
matching checkbox on any dialog where regular expressions are permitted.

Matching at Start of Line
The caret (^) can be used to force a match to occur at the start of a line. Example:

^The will match any line beginning with The.

http://www.boxersoftware.com/pcrepattern.3.html

Boxer Text Editor942

Copyright © 1991-2010 by Boxer Software

You can also force a start-of-line match using the checkbox provided on the dialog.

Matching at End of Line
The dollar sign ($) can be used to force a match to occur at the end of a line. Example:

result$ will match any line ending with the word result.

You can also force an end-of-line match using the checkbox provided on the dialog.

Character Classes or Range Expressions
One or more characters can be placed within square brackets to designate the
characters which can match in that position. Example: p[aeiou]t will match pat,

pet, pit, pot and put. Note that digits are also characters, so an expression such as

201[1234] will match any of 2011, 2012, 2013 or 2014.

Characters can also be placed within square brackets with a dash between them to
designate a range of characters. Example: [b-d]ent will match bent, cent and dent
because the expression [b-d] is shorthand for all characters in that range. The

character range can be entered in ascending or descending order; both [A-Z] and

[Z-A] are allowed and are functionally equivalent.

The character set appearing within square brackets can be negated by using the caret (

^) as the first character within the opening square bracket. Example: [^cb]ent will

match tent, rent, sent, dent and others, but not cent or bent. The caret can also

be applied to negate a character range within square brackets: [^a-e] will match all

characters except a, b, c, d and e. If the caret appears anywhere else within the range

expression, its meaning reverts to that of matching the caret itself.

Matching Multiple Strings
The vertical rule (|) can be used to separate two or more regular expressions so that

any of the patterns will match. Example: red|green|blue|yellow will match any of

the color names that are separated by the vertical rules.

Subpatterns
Left and right parentheses can be used to start and end a subpattern. Example:

c(ar|en|oun)t will match cart, cent and count. In absence of the parentheses,

car|en|ount would match car, en or ount... a very different result.

Escape Character
The backslash can be used to remove significance from a pattern matching character.
Example: if you need to search for an asterisk, use *. To search for a dot, use \.. To

search for a plus sign, use \+. To search for the backslash itself, use \\.

You can also remove significance from pattern matching characters by placing them
inside a range expression. For example, [*+] could be used to match either an

asterisk or a plus sign.

Matching Whole Words
To force a pattern to find only those occurrences of a search string which appear as

Miscellaneous Topics 943

Copyright © 1991-2010 by Boxer Software

whole words, the pattern can be surrounded with a sequence that forces a match at a
word boundary. Example: to find the word sign, but not words such as assign,

signature or assignment, use \bsign\b.

You can also force a whole word match using the checkbox provided on the dialog.

Matching Special Characters
Several characters that are not readily typed from the keyboard can be matched using
special character sequences:

 \\ match a backslash character

 \a match a bell (alarm) character (ASCII 7)

 \b match a backspace character (ASCII 8) (only if used in a character
class)

 \cx match character Control-x (x = any character)

 \e match an escape character (ASCII 27)

 \f match a formfeed character (ASCII 12)

 \n match a newline character (ASCII 10)

 \r match a carriage return character (ASCII 13)

 \t match a tab character (ASCII 9)

 \ddd match octal character ddd (d = any digit 0-7)

 \xhh match hexadecimal character hh (h = any hex digit)

Generic Character Types
There are several convenient shorthand sequences for matching common character
classes:

 \d match a decimal digit (0-9), equivalent to: [0-9]

 \D match any character except a decimal digit, equivalent to: [^0-9]

 \s match any whitespace character, equivalent to: [\t\n\f\r]

 \S match any character except whitespace, equivalent to [^\t\n\f\r]

 \w match any word character, equivalent to: [_a-zA-Z]

 \W match any character except a word character, equivalent to:
[^_a-zA-Z]

A word character is considered to be any letter, digit or underscore. No
consideration is made for accented characters that reside above value 128 in the
character set. If you require such characters in a pattern, you'll need to name these
characters explicitly, perhaps in a range expression that also uses \w.

Boxer Text Editor944

Copyright © 1991-2010 by Boxer Software

Assertions
The following sequences can be used to force a match to occur only at a required
position:

 \b match at a word boundary

 \B match when not at a word boundary

 \A match at start of subject

 \Z match at end of subject or before newline

 \z match at end of subject

 \G match at first matching position in subject

Useful Constructions
The following examples illustrate some common constructions, and give examples of
the utility--and complexity--of some advanced regular expressions:

 .* match zero or more occurrences of
any character

 .+ match one or more occurrences of
any character

 ^$ match an empty line

 ^\s+$ match a line containing only
whitespace

 ^\s+ match leading whitespace

 \s+$ match trailing whitespace

 [a-zA-Z] match any alphabetic character

 this|that match 'this' or 'that'

 \b(\w+)\s+\1\b match repeated words (such as 'the
the')

\b[A-Z0-9._%-]+@[A-Z0-9._%-]+\.[A
-Z]{2,4}\b

match a valid email address

Min/Max Quantifiers
A min/max quantifier can be used to control how many instances of the preceding
entity are to be allowed within a match. The syntax for min/max quantifiers is
summarized in this table:

 { start a min/max quantifier

 } end a min/max quantifier

Miscellaneous Topics 945

Copyright © 1991-2010 by Boxer Software

 {3} match exactly 3 of the previous item

 {3,} match at least 3 of the previous item

 {3,5} match at least 3, but no more than 5 of the previous item

Example: the pattern [abc]{4,8} would match a sequence of characters consisting of

the letters a, b or c, so long as at least 4 characters are present, and no more than 8
appear. Potential matches: aaaa, accb, abcabc, bbbbcccc. Non matches: aaa,

abcd, abcabcabc.

Careful readers might observe that * is effectively shorthand for {0,} and + is

shorthand for {1,}.

Back References and Named Subpatterns
One of the more powerful features of Perl regular expressions is the ability to make
reference within a pattern to the string that matched a subpattern which occurred
earlier in the pattern. Subpatterns are created when a portion of a pattern is enclosed
in left and right parentheses. The first opening left parenthesis encountered starts a
subpattern whose number is 1. The second left parenthesis creates subpattern 2, and
so on. To make a back reference to a subpattern by number, this syntax is used:

\1 back reference to subpattern number 1

Referring to subpatterns by number can get confusing when a complex regular
expression is being created. For this reason, named subpatterns are also permitted. To
start a subpattern named 'foo', the following syntax would be used:

(?P<foo>start a subpattern named 'foo'

Later on in the pattern, the string that matched subpattern 'foo' could be referenced
using this syntax:

(?P=foo)back reference to the subpattern named 'foo'

The example presented above that matches repeated words used a back reference:

\b(\w+)\s+\1\b

The subpattern (\w+) matches any string that contains one or more word characters.

In order for the entire pattern to match, that same string must appear again (due to
the \1 reference) with one or more spaces (\s+) in between. Finally, the \b sequences

at each end ensure that the pattern matches only at a word boundary.

Named subpattern references can also be used in the replace string of the Replace
and Replace Line Enders commands, and with the ChangeStringRE() macro function.

Closing Example
Finally, it's worth mentioning that any or all of the expressions presented above can be
used within the same regular expression. This artificially complex example:

Boxer Text Editor946

Copyright © 1991-2010 by Boxer Software

^The\sq[^a]ic{1}k.*f[aeiou]x.*ov[a-e]r.*lazy\040dog\.$

would match the sentence:

The quick brown fox jumped over the lazy dog.

so long as it appeared on a single line.

PCRE 5.0 License

The Perl-Compatible Regular Expression (PCRE) package used by Boxer was written by
Philip Hazel, and is used in accordance with the PCRE license:

Copyright (c) 1997-2004 University of Cambridge
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

 * Neither the name of the University of Cambridge nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.24 Restoring an Edit Session

When Boxer is closed it records a wide variety of information about the current edit
session. This information includes:

· Names of open files

· Cursor position in each file

Miscellaneous Topics 947

Copyright © 1991-2010 by Boxer Software

· Bookmark locations

· Window positions, sizes and splits

· Text selection mode

· Visual Wrap mode

· Typing Wrap mode

· Read-only mode

· Hex mode

· Edit mode

If Boxer is later restarted without being given a filename to edit, it will automatically
restore the last edit session. All of the files from the previous session will be restored,
as well as the cursor position within each file.

Restoration of the previous session can be disabled with the Always start with a new
file (when no files are name) option, found on the Configure | Preferences | Other
dialog page.

If you would like to be able to open other file groups quickly, see the New Project
topic for information about that feature.

6.25 Send-To Menu

During installation, Boxer's setup program provided the option to have Boxer installed
on the Send-To menu. The Send-To menu appears as one of the entries in the context
menu when a file's icon is clicked with the right mouse button. The Send-To menu
provides a way to send a file to various programs (or devices) which are capable of
receiving it. Depending on your work style, you may find it useful to be able to launch
Boxer in this way. Note that if a copy of Boxer is already running, the new file(s) will
be added to the existing Boxer session.

6.26 Sizes and Limits

Below is a table of sizes and limits which apply to various features and operations:

maximum number of open files/windows no limit •

maximum number of lines in a file 2,147,483,648 (2
GB)

maximum number of characters per line 32,767 (32 K)

maximum number of characters in a file 2,147,483,648 (2
GB)

maximum number of characters in a hex mode file 512,831,915

maximum length of a filepath, with its D:\ designator prefix 259 characters ‚

maximum length of a filename, or filepath, less its D:\
designator

256 characters ‚

minimum undo buffer size 2,048 (2 KB)

Boxer Text Editor948

Copyright © 1991-2010 by Boxer Software

maximum undo buffer size 65,535 (64 KB)

minimum screen size 800 x 600

minimum recommended screen size 1024 x 768

minimum number of recent files on Recent Files submenu 0

maximum number of recent files on Recent Files submenu 24

maximum number of recent files on Recent Projects submenu 16

number of bookmarks 10

maximum length of a Fill String 512

number of internal clipboards 8

maximum size of an internal clipboard saved from session to
session

2,048 (2 KB)

number of User Lists 8

maximum length of an item in a User List 256

maximum length of a User List title 40

number of User Tools 24

maximum length of a User Tool name 32

maximum length of a search string 512

maximum number of search strings saved in history list 20

maximum number of replace strings saved in history list 20

maximum number of Syntax Highlighting languages 100

maximum length of Syntax Highlighting language name 20

maximum line length within the Syntax.ini file 16,384

maximum number of reserved words in a language 3,000 ƒ

maximum number of template sets 100

maximum number of templates in a template set 500

maximum length of text in a template 2,048 (2 KB)

maximum length of a template name 100

maximum length of a template set name 32

maximum number of variables in a macro 200

maximum length of the 'string' data type 2,048 (2 KB)

maximum length of a macro variable name 32

maximum length of the FTP username field 40

maximum length of the FTP password field 40

maximum number of FTP accounts 100

Miscellaneous Topics 949

Copyright © 1991-2010 by Boxer Software

• subject only to the virtual memory limits of the operating system

‚ these limits are imposed by the operating system

ƒ 3000 is approximate. The actual limit is governed by the maximum line length within

the Syntax.ini file. The combined length of a comma-separated list of all reserved words
within a given class (Reserved 1, Reserved 2, or Reserved 3) is limited to 16 KB.

6.27 Transferring Preferences

By default, Boxer records many of the editor's preferences and settings to a disk-based
configuration file named Boxer.ini. This file contains all of the options within the

multi-page Preferences dialog, as well as window sizes and positions, screen colors,
fonts, private clipboard content, recent files, search strings, user tools and much, much
more.

The rest of Boxer's settings are maintained in separate .INI and .TXT files in order to
make them more readily editable and to facilitate exchange with other Boxer users.
Here is a complete list of the on-disk configuration files and their content:

 Boxer.ini General preferences and settings
 Template.ini Template information
 Toolbar.ini Toolbar information
 Toolbar Icons*.* Custom toolbar icons
 Syntax.ini Color Syntax Highlighting information
 BoxerCalc.ini Calculator information
 BoxerFilePicker.ini File Picker information
 Macros.ini Macro variable storage
 *.kbd Keyboard layout files
 *.bkr Keystroke recording files
 User List ?.txt User List files
 userdict.txt User-defined dictionary entries
 AC_words.txt Auto-Complete dictionary

If it becomes necessary to transfer Boxer from one PC to another, and you'd like to
ensure that all of the old settings are maintained in the new installation, the above files
should be copied to the new installation folder. Take care to maintain the directory
structure; some of the files mentioned above reside in sub-folders within the data
folder.

The Explore Data Folder command can be used to quickly locate Boxer's data folder.

Windows Registry Option

Boxer Text Editor950

Copyright © 1991-2010 by Boxer Software

Boxer also provides an option to store its settings to the Windows Registry. This option
appears on the Configure | Preferences | Other dialog page. When this option is
selected, the settings which would have been written to Boxer.ini are instead written

to the Windows registry. Transferring preferences for this configuration then becomes a
two-part process:

1. move the disk-based files named above.
2. move the Windows Registry key containing the Boxer settings.

To move information from the Windows Registry, use one the following procedures:

Windows XP, Vista and Windows 7:

· Run REGEDIT.EXE
· Locate and highlight the registry key: HKEY_CURRENT_USER\Software\Boxer

Software\Boxer Text Editor 14
· From the File menu, select the Export command

· Save the registry key using a .REG file extension

· After copying the file to the destination PC use the Import command on the File

menu to load the settings or double-click on the .REG file from within Explorer.

Windows NT/2000:

· Run REGEDT32.EXE
· Locate and highlight the registry key: HKEY_CURRENT_USER\Software\Boxer

Software\Boxer Text Editor 14
· From the Registry menu, select the Save Key command

· Save the registry key using a .REG file extension

· After copying the file to the destination PC use the Restore command on the

Registry menu to load the settings or double-click on the .REG file from within

Explorer.

Windows 95/98/Me:

· Run REGEDIT.EXE
· Locate and highlight the registry key: HKEY_CURRENT_USER\Software\Boxer

Software\Boxer Text Editor 14
· From the Registry menu, select the Export command

· Export the selected branch to a .REG file

· After copying the file to the destination PC use the Import Registry File

command on the Registry menu to load the settings or double-click on the .REG
file from within Explorer.

In order to be sure the latest settings are stored in the Registry, make sure you exit
Boxer before exporting the Registry information.

On a networked PC, it may be necessary to login at a higher level to get access to
RegEdit. It may then be necessary to login under the normal user name so that the

Miscellaneous Topics 951

Copyright © 1991-2010 by Boxer Software

HKEY_CURRENT_USER entries will be visible.

Some versions of RegEdit have a bug. If RegEdit reports trouble reading back a

.REG file that it has created, one Boxer user has suggested saving the file as a

.HIVE file instead.

6.28 Unicode Files

Unicode is a standard for encoding text files so that all manner of international
characters and symbols can be unambiguously represented in a text file, regardless of
the file's source or destination computer system. There are several different Unicode
file formats that are in popular use. Boxer can open and edit files which have been
stored in the following formats: UTF-8, UTF-16 little endian, and UTF-16 big endian.

Once a Unicode file has been opened for editing, it will be treated like any other text
file, and all editing operations are available for use on the file. If you would like to
change the file encoding of a Unicode file -- or change an ASCII format file to Unicode
format -- you can do so by visiting the File Properties dialog. It contains options that
control what format will be used when the current file is saved to disk:

Boxer Text Editor952

Copyright © 1991-2010 by Boxer Software

Due to its roots as an 8-bit ASCII text editor, Boxer's does not store Unicode files
internally in 16-bit format. Rather, it converts Unicode files to ANSI format as they are
opened by mapping characters onto the active Code Page. This enables Boxer to edit
all Unicode files that contain text that is 7-bit in nature (such as .REG registry files,
some XML files, Microsoft SQL files, etc.), as well as those UTF-8 and UTF-16 files with
multi-byte content that resides within a single Windows code page. Boxer cannot be
used to reliably edit Unicode files with content that is drawn from several code pages
(for example, a file which contains text from many languages), or with content not
present in the active Code Page. When a file cannot be converted to ANSI using the
active Code Page, a dialog will appear to alert you to this, and will provide alternate
options:

Miscellaneous Topics 953

Copyright © 1991-2010 by Boxer Software

The active Code Page can be viewed using the System Info option on Boxer's About
dialog.

When a Unicode file cannot be opened for editing in text mode, it can still be opened
in Hex Mode.

6.29 Uninstalling Boxer

At the time of installation, Boxer's Setup program recorded information to enable the
Uninstall utility to remove Boxer at a later time. There are two ways to run the
Uninstall utility:

· From the Start menu select All Programs and the Boxer Text Editor. Within Boxer's
submenu is an entry for the Uninstall utility.

· From the Start menu, select Settings and then Control Panel. Within the Control
Panel group is an icon for Add/Remove Programs. Boxer will have an entry in the list
of programs which can be removed.

7 Glossary

7.1 Glossary A-Z

A

Boxer Text Editor954

Copyright © 1991-2010 by Boxer Software

acronym

B

binary
binary file

C

client area
context menu

D

decimal
data folder

F

file filter
fixed width
focus
footer

H

header
header file
hexadecimal
hot letter

L

landscape
long filename

M

maximal matching
modal and non-modal

O

octal

P

portrait
private clipboard format
program folder
proportionally spaced

Glossary 955

Copyright © 1991-2010 by Boxer Software

S

short filename
shortcut key

T

task bar
thumb and scroll box
tool tip

U

URL

W

whitespace
WYSIWYG

7.2 acronym

An acronym is created by taking the first letter from each of a series of words and using
these to create a new term. For example, URL is an acronym for Universal Resource
Locator.

7.3 binary

A binary value is a number represented in base 2. The digits 0 and 1 are used when
expressing binary values.

7.4 binary file

The term binary file refers to a file which contains Null characters. Binary files cannot
be edited by Boxer.

7.5 client area

The client area is the area within a program's window which is used for the display of
user documents.

7.6 code page

A code page is a character encoding table maintained by the operating system. A code
page assigns numeric values ranging from 0 to 255 to a set of characters. In Windows,
a code page typically contains common alphabetic characters and symbols in the lower
half of the table (0-127), while the upper half of the table (128-255) contains a
collection of accented or special characters used to represent non-English languages.

7.7 context menu

A context menu is a popup menu which is accessed by clicking on an object with the
right mouse button. The context menu contains entries which are specific to the object

Boxer Text Editor956

Copyright © 1991-2010 by Boxer Software

which was clicked upon.

7.8 data folder

Boxer's data folder is the folder/directory in which Boxer stores its configuration files.
On Windows XP and previous versions, this is the same as the program folder. On
Windows Vista and later, a special area is used for application data files.

7.9 decimal

A decimal value is a number represented in base 10.

7.10 file filter

A file filter is an expression which matches a class of files. For example, the file filter

*.txt matches all files with a .txt extension. File filters can be used within dialog

boxes to limit the file display to those which match a selected class of files.

7.11 fixed width

A fixed width font is one in which all characters in the font have the same width. For
example, the letter 'i' will occupy just as much space as the letter 'w'.

7.12 focus

A control (or program) is said to have focus when it is the control which is receiving
input from the keyboard.

7.13 footer

A footer is a line of text which appears at the bottom of a page, below the body text of
the page. A footer might contain a page number, or the name of a chapter or section.

7.14 header

A header is a line of text which appears at the top of a page, above the body text of the
page. A header might contain a chapter name, or the time and date that the document
was printed.

7.15 header file

A header file is a file used by programmers to hold various declarations and definitions.
Each source code file typically has an associated header file which contains the
definitions relevant to that file. In the C++ programming language, the file

project.cpp would use a file named project.h or project.hpp as its header file.

7.16 hexadecimal

A hexadecimal value is a number represented in base 16. The digits 0-9, and the
letters A-F are used when expressing hexadecimal values.

Glossary 957

Copyright © 1991-2010 by Boxer Software

7.17 hot letter

A hot letter is an underlined character which can be used to execute a menu item or
control. Press Alt plus the hot letter to execute the item or control. If the hot letter
appears in a menu which is already dropped, simply press the hot letter itself.

7.18 landscape

The term landscape refers to a paper orientation in which the long edge of the paper is
placed horizontally.

7.19 long filename

A long filename is one which makes use of the more flexible file naming standards
available under the 32-bit Windows operating systems. Filenames can be up to 256
characters in length, and may contain one or more embedded spaces.

7.20 maximal matching

The term maximal matching refers to a type of searching and reporting used by regular
expression search routines. When maximal matching is performed, the longest
matching string for a given regular expression will be reported as the matched string for
a given line. In the lines below, the bold sections show the minimal match and the
maximal match when the regular expression o.*m is applied to the sample text:

The quick brown fox jumped over the lazy programmer.

The quick brown fox jumped over the lazy programmer.

7.21 modal and non-modal

A modal window or dialog box is one which retains focus until it is dismissed. A

non-modal window or dialog box is one which can share focus with other open windows.

7.22 octal

An octal value is a number represented in base 8. The digits 0-7 are used when
expressing octal values.

7.23 portrait

The term portrait refers to a paper orientation in which the long edge of the paper is
placed vertically.

7.24 private clipboard format

A private clipboard format is a data format defined by an application program for storing
information on the Windows clipboard. Using a private clipboard format permits an
application to store complex data objects on the clipboard for later retrieval by that
program. Because the format is private, other applications will not be able to access
the clipboard data in the usual way. By contrast, when ordinary text is placed on the
Windows clipboard, it is typically placed in a format which can be retrieved by all
programs.

Boxer Text Editor958

Copyright © 1991-2010 by Boxer Software

7.25 program folder

Boxer's program folder is the folder/directory in which Boxer is installed. By default, this
is c:\Program Files\Boxer Text Editor, unless another directory was used at

installation time.

7.26 proportionally spaced

A proportionally spaced font is one in which the display width varies according to the
width of the character. For example, the letter 'i' will occupy less space than the letter
'w'.

7.27 short filename

A short filename is one which conforms to the naming conventions first popularized
under MS-DOS. The filename portion can be up to 8 characters long, and the file
extension can be up to 3 characters long. Spaces are not permitted anywhere within
the filename or extension.

7.28 shortcut key

The term shortcut key refers to a key sequence which can be used to activate a menu
command. For example, Ctrl+V is a shortcut key for the Paste command.

7.29 task bar

The term task bar refers to the area on the Windows desktop where active and inactive
applications are displayed in icon form. Clicking on a button in the task bar will bring
that application to the foreground.

7.30 thumb and scroll box

The terms thumb and scroll box refer to the draggable rectangle within a scroll bar
which can be used to move through a document.

7.31 tool tip

The term tool tip refers to text which appears in a small popup window when the mouse
is allowed to hover on top of a control.

7.32 URL

The term URL is an acronym which stands for Universal Resource Locator. An Internet
address such as http://www.boxersoftware.com is a URL, as is

ftp://somedomain.com/somefile.zip.

7.33 whitespace

Whitespace is a term used to refer collectively to the Space, Tab and Newline
characters. While these characters do influence the look of a document, they are not
normally visible on-screen.

Glossary 959

Copyright © 1991-2010 by Boxer Software

7.34 Windows Registry

The Registry is a database maintained by Windows for its benefit and for the benefit of
application programs. The Registry contains a wide variety of configuration information
organized in a hierarchical structure of 'keys' and 'values'.

7.35 WYSIWYG

WYSIWYG is an acronym for What You See Is What You Get. It refers to a screen
display which attempts to show a document as it will appear once printed.

8 Ordering Boxer

8.1 Order Boxer

Menu: Help > Order Boxer

Default Shortcut Key: none

Boxer has an in-software order form to make ordering fast and easy. The order form is
available by selecting the Order Boxer option from the Help menu, or by clicking the
dollar bill icon on the toolbar of the evaluation version.

Boxer Text Editor960

Copyright © 1991-2010 by Boxer Software

This order form can be used to submit your order by email, or to print an order form
which can later be faxed or mailed along with payment. In all cases you can be assured
that your order will receive prompt attention, and that we will safeguard your personal
information. Boxer Software does not share its customers' mailing addresses, or email
addresses, with any third parties.

If you prefer to print an order form from within this help file, and then mail or fax it
to us, use this order form.

The Order Form will compute your total automatically as you complete your order. If a
Multi-User License is being ordered, click the appropriate option and enter the quantity
desired. The total will be updated automatically to reflect the quantity ordered.
Likewise, shipping is computed according to the destination country, and depending on
whether delivery will be made by email or postal mail (delivery by email is free). If you
elect to have the software sent via email, an http link will be sent from which you can
download the software; the software is not sent by email attachment.

Ordering by Email

Complete the form, and then click Copy to Clipboard to copy the information entered to
the Windows clipboard. Click Send via Email to launch your email program. The To

Ordering Boxer 961

Copyright © 1991-2010 by Boxer Software

field of your email program should auto-fill with sales@boxersoftware.com. Paste the
order information from the clipboard into the message body and send the message in
the usual way. Note that your credit card information will be encoded using a
proprietary encoding algorithm for added security. We will decode the information after
your order arrives.

If your email program does not launch after clicking Send via Email, simply start it
in the usual way and paste the content on the clipboard into the body of a new
message. Send the message to sales@boxersoftware.com.

Ordering at our Website

Visit www.boxersoftware.com to order from our secure order page. Full ordering details
are provided at the site.

Ordering by Phone

Call toll-free within the U.S. and Canada at 1-800-98-BOXER (1-800-982-6937) to

order. Have your credit card ready; our sales representative will prompt you for the
required information. From outside the U.S. and Canada call +1-602-485-1635.

Business hours are Monday through Friday, 9 AM to 5 PM MST.

Ordering by Fax

Complete the form, and then click Print. Fax the order form to Boxer Software at

+1-602-485-1636. Note that your credit card information will be encoded with a

proprietary encoding algorithm for added security. We will decode the information after
your order arrives. Our fax line is available 24 hours a day.

Ordering by Mail

Complete the form, and then click Print. Mail the order form to Boxer Software, PO
Box 14545, Scottsdale, AZ 85267-4545. Note that your credit card information

will be encoded with a proprietary encoding algorithm for added security. We will
decode the information when your order arrives.

Ordering from Overseas

International Agents are available for those who might prefer to place their order with

a local agent. Our agents accept payment in local currency and ship product from
stock. Technical support services are also available.

Payment

Payment can be made in a variety of ways:

Credit Card
Visa, MasterCard, Discover or American Express

U.S. Check or Money Order
Made payable to 'Boxer Software'

mailto:sales@boxersoftware.com
mailto:sales@boxersoftware.com
http://www.boxersoftware.com

Boxer Text Editor962

Copyright © 1991-2010 by Boxer Software

Purchase Order
Purchase Orders can be mailed or faxed. Please make sure the Purchase Order includes
both the shipping and invoicing addresses. Our payment terms are Net 30 days.

Western Union
Wire funds to 'David Hamel' and tell us the Control Number for the transaction, as well
as the sender's name and the exact amount sent. Western Union also allows wire
transfers to be made from their website: www.westernunion.com

U.S. Cash
Sent by certified or registered mail

PayPal
Send funds to 'sales@boxersoftware.com'. Don't have PayPal yet? Click here to sign
up: www.paypal.com

International Money Order
Available at most banks. Money order should be drawn on a U.S. bank, in U.S. Funds,
payable to 'Boxer Software'

International Postal Money Order
Available at the Post Office. Money order should be drawn in U.S. Funds, payable to
'Boxer Software'

Bank Wire Transfer
Please contact us for current bank transfer information. A $5.00 surcharge must be
added to help offset the wire transfer fees we are assessed by our bank.
(Note: U.S. banks are not nearly as efficient as European banks with regard to bank
wire transfers. Incoming transfers are slow, and receiving fees can be as high as
$20.00. For this reason, we strongly encourage using another method of payment.)

8.2 Multi-User Licenses

A Multi-User License provides an inexpensive way for businesses, schools, universities
or other work groups to supply their personnel with computer software in both a legal
and cost efficient manner. By licensing Boxer for use on multiple computers you can
standardize on a single editing tool that will serve the needs of all people within the
group. In so doing, support and maintenance costs can be reduced, and users can
benefit from having ready access to others who are using the same software. Multi-user
licensing is also more economical than making individual purchases, because there is no
need for us to supply extra disks, reference literature, etc. for all users within the
group.

The organization purchasing the license designates a single individual to be the contact
for shipping, technical support, upgrades, etc. We provide a single copy of the software
package. You are then allowed to install Boxer onto as many CPUs as have been
licensed.

The following chart details the cost of various Multi-User Licenses based on the number
of CPUs. For example, if you purchase a license for 20 CPUs your cost would be

http://www.westernunion.com
https://www.paypal.com

Ordering Boxer 963

Copyright © 1991-2010 by Boxer Software

$425.40, which saves you 63.9% ($754.60) versus the cost of 20 individual purchases.
The more copies licensed, the greater the percentage savings.

Note: Boxer Software's site licensing policy is based on 'individual use', not 'concurrent
use.' When determining the number of licenses required, the computation should be
made according to the number of CPUs on which Boxer will be installed or used, and not
according to the maximum theoretical concurrent use that might occur. (An exception
to this policy is made for individual, non-commercial users who may wish to install
Boxer onto multiple CPUs which are owned by them, and of which they are the sole
user.) Also, please note that the installation of Boxer onto a network server which is
accessible by many users does not constitute use on a single CPU: the license quantity
must be determined by the number of workstations that will use the software.

Number of Users License Price Discount Percentage
 2 $100.30 15.0%
 3 138.00 22.0
 4 169.90 28.0
 5 197.90 32.9
 10 276.70 53.1
 15 352.90 60.1
 20 425.40 63.9
 25 494.80 66.5
 50 814.40 72.3
 100 1383.60 76.5

If you later wish to add additional CPUs to the license, you can build upon the number
of copies already licensed to achieve a better price. For example, the cost to grow a
20-CPU license to 25 CPUs is $69.40, which is the difference in cost between a 25-CPU
and a 20-CPU license (494.80 - 425.40). In this way your license can be grown
economically, as your needs change.

When it's time to upgrade to a new version of Boxer, the savings continue. The unit
cost of a software upgrade will always be significantly reduced to our existing
customers. Multi-User License upgrades are even further discounted by applying the
original discount earned to the unit price of the upgrade, and then multiplying by the
number of licensed CPUs. For example, if the unit price of an upgrade is $24.00, the
price to upgrade a 10-CPU license would be: (100% - 53.1%) x $24 x 10 = $112.56.

The order form within Boxer will automatically compute Multi-User License pricing for
quantities not shown in the chart above. That form can be found by selecting Order
Boxer from the Help menu. If you have additional questions, or need pricing for 10,000
CPUs or more, please contact us.

8.3 Upgrade Information

Your purchase of Boxer entitles you to free bug fixes and minor enhancements as they
become available, based on the version number at the time of your purchase. For
example, if you first purchased version 14.0.x your base version is 14.0, and you are
entitled to all updates which may be issued up to and including version 14.9.

Boxer Text Editor964

Copyright © 1991-2010 by Boxer Software

When significant enhancements have been made to Boxer, the release level will become
version 15.0.0, and the upgrade will be made available for a modest fee. Upgrade
pricing will be established at the time of the upgrade, but in the past it has always been
less than half of the original price of the software. Having purchased that upgrade, you
would again become eligible for free upgrades up to version 15.9.

When upgrades are obtained by downloading from the Internet there is no shipping
charge. When the customer asks that media be sent by postal mail, a shipping and
handling charge will apply.

See also Ordering Boxer and Multi-User Licenses.

The Check for Latest Version command makes it easy to see if your version of Boxer
is current.

8.4 Licensed User Benefits

There are many benefits that accompany the purchase of a fully licensed copy of Boxer.

Extended License
The evaluation version of Boxer can be used for up to 20 days to determine whether the
software is suited to your needs. Please note that Boxer counts unique days of use--not
simply elapsed calendar days--in an effort to provide a fair trial period. The purchase of
a fully licensed copy of Boxer permits you to use the program indefinitely, in accordance
with the software license.

Removal of Reminders
The evaluation version of Boxer uses various methods to remind the user of the need to
order, and to encourage him to do so. The following reminders are removed in the fully
licensed version:

· the popup dialog on program entry

· the message panel below the toolbar

· the watermark message at the bottom of printed pages

· the 'Trial Copy' message in the window title bar

· the 'Trial Copy' message in the minimized task button

· the dollar sign icon on the toolbar

Free Upgrades
Your purchase of Boxer entitles you to free bug fixes and minor enhancements as they
become available, based on the version number at the time of your purchase. See
Upgrade Information for full details.

Discounted Upgrades
For software upgrades which fall outside the version number range of free upgrades,
Boxer Software will extend discounted pricing to its customers. Upgrade pricing will be
established at the time of the upgrade, but in the past it has always been just a fraction
of the original software price. Boxer Software will always extend preferred pricing to its
customers on both new products, and on product upgrades.

Ordering Boxer 965

Copyright © 1991-2010 by Boxer Software

Technical Support
Your purchase of Boxer entitles you to free technical support for one year from the date
of purchase. See the Technical Support topic for information about the various ways in
which support can be obtained.

8.5 International Agents

If you find it easier to do so, you may wish to order from one of our International
Agents. Our agents accept payment in local currency and ship product from stock.
Technical support services are also available.

The Netherlands, Belgium and Germany (and elsewhere in Europe)

Users in the Netherlands, Belgium, Germany and other European countries can buy
Boxer licenses and upgrades from our local agent
since 1992, CopyCats S&S in the Netherlands, who also provide technical support
during European office hours.

For current pricing and other information, please call or mail:

CopyCats Software & Services
P.O. Box 1088
1700BB Heerhugowaard
Netherlands

Phone: +31 (0)72 5745993
Fax : +31 (0)72 5726559
Email: info@copycats.nl

Boxer Text Editor966

Copyright © 1991-2010 by Boxer Software

9 Technical Support and Other Info

9.1 Technical Support

Menu: Help > Technical Support

Default Shortcut Key: none

There are several ways to receive technical support for Boxer. The first and most
obvious resource is the online Help. Online help contains detailed information on the
configuration and use of Boxer, and for all of its commands. If you are having
problems, please consult the relevant section of help before contacting us for support.
You may also be able to find answers to some common questions on our website:

www.boxersoftware.com

Email
You can send electronic mail to us via the Internet. We prefer this method of support
since it allows us to fully research a problem before responding. Also, we can
sometimes reuse an earlier reply for a problem which has been experienced by more
than one person. We typically check email several times a day:

support@boxersoftware.com

Telephone
You can also reach us by telephone Monday through Friday, 10:00 AM to 4:00 PM,
Mountain Standard Time.

Voice: +1-602-485-1635

Postal Mail or Fax
Finally, you can mail or fax your inquiry to us. If you choose one of these methods,
please be sure to describe your problem fully and include any information which may
help us to diagnose the problem. Whenever possible, please provide an email address
so that we can make return contact quickly and easily.

Fax: +1-602-485-1636

Boxer Software
PO Box 14545

Scottsdale, AZ
85267-4545 U.S.A.

9.2 Software License - Evaluation Copies

Boxer Text Editor - Software License Agreement

http://www.boxersoftware.com
mailto:support@boxersoftware.com

Technical Support and Other Info 967

Copyright © 1991-2010 by Boxer Software

COPYRIGHT:
The Boxer Text Editor, Boxer Help text and all supporting utilities are Copyright
1991-2010 by Boxer Software, All Rights Reserved Worldwide.

Please read carefully the following terms and conditions. Installation and/or use of this
product constitutes your acceptance of these terms and conditions, and your agreement
to abide by them.

BY INSTALLING AND/OR USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE
READ THE LICENSE AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE
COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN THE PARTIES AND
THAT IT SUPERSEDES ALL PROPOSALS OR PRIOR AGREEMENTS, ORAL OR WRITTEN,
AND ANY OTHER COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE
SUBJECT MATTER OF THE SOFTWARE AND DOCUMENTATION.

GRANT OF LICENSE:
BOXER SOFTWARE GRANTS YOU, THE END USER, A NON-EXCLUSIVE PERSONAL
LICENSE TO USE THIS SOFTWARE FOR A PERIOD OF UP TO 20 DAYS IN ORDER TO
EVALUATE ITS SUITABILITY TO YOUR NEEDS. AFTER THE EVALUATION PERIOD YOU
MUST EITHER PURCHASE A FULLY LICENSED COPY FROM BOXER SOFTWARE OR CEASE
USING THE SOFTWARE. YOU MAY USE THE SOFTWARE ON A SINGLE PERSONAL
COMPUTER SYSTEM AND MAKE AS MANY COPIES AS NEEDED FOR BACKUP AND
ARCHIVAL. YOU MAY ALSO DISTRIBUTE THE SOFTWARE, UNMODIFIED AND IN ITS
ENTIRETY, TO OTHERS WHO ARE INTERESTED IN EVALUATING THE SOFTWARE. YOU
MAY NOT MODIFY, ALTER, TRANSLATE, DISASSEMBLE, DECOMPILE, RENT, OR LEASE
THE SOFTWARE OR THE REFERENCE INFORMATION. THIS LICENSE IS EFFECTIVE
UNTIL TERMINATED. YOU MAY TERMINATE IT AT ANY TIME BY DESTROYING THE
SOFTWARE. IT WILL ALSO TERMINATE IF YOU FAIL TO COMPLY WITH ANY TERM OR
CONDITION OF THIS AGREEMENT. YOU AGREE UPON SUCH TERMINATION TO
DESTROY THE SOFTWARE.

WARRANTY:
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BOXER SOFTWARE AND
ITS SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES RELATING TO THIS SOFTWARE
AND ITS DOCUMENTATION, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT, WITH REGARD TO THE
SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES.

LIMITATION OF LIABILITY:
IN NO EVENT SHALL BOXER SOFTWARE OR ITS SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE PRODUCT OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES, EVEN IF BOXER SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN ANY CASE, BOXER SOFTWARE'S ENTIRE LIABILITY UNDER ANY
PROVISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED TO THE GREATER OF
THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR U.S. $25.00.
BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR

Boxer Text Editor968

Copyright © 1991-2010 by Boxer Software

LIMITATION OF LIABILITY, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

HIGH RISK ACTIVITIES:
The Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of the Software could lead directly to death, personal
injury, or severe physical or environmental damage ("High Risk Activities"). Boxer
Software and its suppliers specifically disclaim any express or implied warranty of
fitness for High Risk Activities.

U.S. GOVERNMENT RESTRICTED RIGHTS:
The Software and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Boxer
Software, P.O. Box 14545, Scottsdale, AZ 85267-4545.

Unpublished-rights reserved under the copyright laws of the United States. Boxer
Software, P.O. Box 14545, Scottsdale, AZ 85267-4545.

TRADEMARKS:
'Boxer' is a trademark of Boxer Software. Microsoft is a registered trademark of
Microsoft Corporation. Other brand and product names are trademarks or registered
trademarks of their respective holders.

9.3 Software License - Licensed Copies

Boxer Text Editor - Software License Agreement

COPYRIGHT:
The Boxer Text Editor, Boxer Help text and all supporting utilities are Copyright
1991-2010 by Boxer Software, All Rights Reserved Worldwide.

Please read carefully the following terms and conditions. Installation and/or use of this
product constitutes your acceptance of these terms and conditions, and your agreement
to abide by them.

BY INSTALLING AND/OR USING THIS SOFTWARE YOU ACKNOWLEDGE THAT YOU HAVE
READ THE LICENSE AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS
TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE
COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN THE PARTIES AND
THAT IT SUPERSEDES ALL PROPOSALS OR PRIOR AGREEMENTS, ORAL OR WRITTEN,
AND ANY OTHER COMMUNICATIONS BETWEEN THE PARTIES RELATING TO THE
SUBJECT MATTER OF THE SOFTWARE AND DOCUMENTATION.

GRANT OF LICENSE:

Technical Support and Other Info 969

Copyright © 1991-2010 by Boxer Software

BOXER SOFTWARE GRANTS YOU, THE ORIGINAL PURCHASER, A NON-EXCLUSIVE
PERSONAL LICENSE TO USE THIS SOFTWARE UNDER THE TERMS STATED IN THIS
AGREEMENT. YOU MAY USE THE SOFTWARE ON A SINGLE PERSONAL COMPUTER
SYSTEM AND MAKE AS MANY COPIES AS NEEDED FOR BACKUP AND ARCHIVAL. YOU
MAY ASSIGN YOUR RIGHTS UNDER THIS AGREEMENT TO A THIRD PARTY PROVIDED
THE THIRD PARTY AGREES IN WRITING TO BE BOUND BY THE TERMS OF THIS
AGREEMENT AND YOU TRANSFER ALL COPIES OF THE SOFTWARE TO THE THIRD
PARTY, OR DESTROY ANY COPIES NOT TRANSFERRED. YOU MAY NOT COPY, MODIFY,
ALTER, TRANSLATE, DISASSEMBLE, DECOMPILE, RENT, LEASE, OR ELECTRONICALLY
TRANSFER THE SOFTWARE OR THE REFERENCE MANUAL. THE LICENSE IS EFFECTIVE
UNTIL TERMINATED. YOU MAY TERMINATE IT AT ANY TIME BY DESTROYING THE
SOFTWARE. IT WILL ALSO TERMINATE IF YOU FAIL TO COMPLY WITH ANY TERM OR
CONDITION OF THIS AGREEMENT. YOU AGREE UPON SUCH TERMINATION TO
DESTROY THE SOFTWARE.

LIMITED WARRANTY:
Boxer Software warrants that the Software, as updated and when properly used, will
perform substantially in accordance with the accompanying documentation, and the
Software media will be free from defects in materials and workmanship, for a period of
ninety (90) days from the date of receipt. Any implied warranties on the Software are
limited to ninety (90) days. Some states/jurisdictions do not allow limitations on
duration of an implied warranty, so the above limitation may not apply to you.

Boxer Software's and its suppliers' entire liability and your exclusive remedy shall be, at
Boxer Software's option, either (a) return of the price paid, or (b) repair or replacement
of the Software that does not meet Boxer Software's Limited Warranty and which is
returned to Boxer Software with a copy of your receipt. This Limited Warranty is void if
failure of the Software has resulted from accident, abuse, or misapplication. Any
replacement Software will be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer. Outside the United States, neither of
these remedies are available without proof of purchase from an authorized non-U.S.
source.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BOXER SOFTWARE AND
ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM
STATE/JURISDICTION TO STATE/JURISDICTION.

LIMITATION OF LIABILITY:
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
BOXER SOFTWARE OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION
OF OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF BOXER SOFTWARE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, BOXER
SOFTWARE'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT

Boxer Text Editor970

Copyright © 1991-2010 by Boxer Software

SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR
THE SOFTWARE PRODUCT OR U.S. $25.00. BECAUSE SOME STATES AND
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

HIGH RISK ACTIVITIES:
The Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of the Software could lead directly to death, personal
injury, or severe physical or environmental damage ("High Risk Activities"). Boxer
Software and its suppliers specifically disclaim any express or implied warranty of
fitness for High Risk Activities.

U.S. GOVERNMENT RESTRICTED RIGHTS:
The Software and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Boxer
Software, P.O. Box 14545, Scottsdale, AZ 85267-4545.

Unpublished-rights reserved under the copyright laws of the United States. Boxer
Software, P.O. Box 14545, Scottsdale, AZ 85267-4545.

TRADEMARKS:
'Boxer' is a trademark of Boxer Software. Microsoft is a registered trademark of
Microsoft Corporation. Other brand and product names are trademarks or registered
trademarks of their respective holders.

9.4 Frequently Asked Questions

Menu: Help > FAQs

Default Shortcut Key: none

Frequently Asked Questions

After I order, will I get a password or key to convert the evaluation version of
Boxer into a licensed version?
No. New software will be sent which is easily installed atop the evaluation version. All
of your settings will be maintained. Software keys are frequently distributed on 'pirate'
Internet sites, thus reducing sales and driving up the cost of software for paying
customers.

Why can't other programs see the text I copied to the clipboard in Boxer?
You are almost certainly using an internal clipboard, rather than the Windows clipboard.
Other programs can't see text that is placed on Boxer's internal clipboards. See the Set

Technical Support and Other Info 971

Copyright © 1991-2010 by Boxer Software

Clipboard command for details.

Why am I having trouble opening filenames from Explorer when they contain
embedded spaces?
This is due to a bug in Explorer. It doesn't enclose a filename in double quotes before
sending it off to the associated application. In the file associations set up by Boxer's
installer, double quotes have been added around "%1", so you'll find these associations
(.TXT, .BAT, etc) work fine. But for any file associations you create yourself, or if you
elected not to allow Boxer's installer to create the associations, you'll need to manually
edit the association to have double quotes around "%1". You'll find that Boxer's help
topic entitled 'File Associations' has additional useful information about this subject.

Why can't I see all my Windows fonts in the Screen Font dialog?
Boxer requires that fixed width fonts (monospace fonts) be used, so the Screen Font
dialog box does not display proportionally spaced fonts. This is required, in part, to
ensure that columnar selections can be highlighted neatly in rectangular blocks, and so
that the Column Ruler can be used. These features would not be possible if the use of
proportionally spaced fonts was permitted.

Will there be a German version of Boxer for Windows, as there was for earlier
Boxer products?
It appears unlikely. We learned from our earlier products that the effort to release a
program in a new language is quite substantial. It appears that our resources can be
better spent enhancing our current products, or developing new ones.

Will there ever be a Linux version of Boxer?
That's uncertain at this time. We're keeping an eye on the Linux market, and will
continue to do so.

How long did it take to develop Boxer for Windows?
The initial development took almost two years. Boxer for Windows was a ground-up
effort, with almost none of the code from our earlier products being used in its
development.

What language was Boxer written in? How many lines of code? What
development tool was used?
Boxer currently consists of over 110,000 lines of C++ code. Borland's C++ Builder was
used for development.

Where did the name 'Boxer' come from?

In the mid 1980's, one of the most popular editors for the PC was a product called
BRIEF, which was then marketed by a company called UnderWare. In fact, the very first
lines of Boxer/DOS were written using Brief, until Boxer was able to edit its own code.
The name Boxer was simply a play on words: another style of men's underwear!

9.5 Credits

Special thanks are due to the following people for their patience, assistance and

Boxer Text Editor972

Copyright © 1991-2010 by Boxer Software

friendship during the development of Boxer: Allen Day, Benjamin Whitehead, Glenn
Rogerson, Mike Callahan, Roger Kimball, Mark Beiley, Daan van Rooijen, Ben Hamel,
Adam LaChant, Bob Ellison, Carlos Tré and Dan Stratton.

Thank You!

	Contents
	Introduction
	New Features in Boxer 14
	Command Reference (in menu order)
	File Menu
	New
	Picker
	Open
	Open Hex
	FTP Open
	Open Other -> Header File
	Open Other -> Filename at Cursor
	Open Other -> System Files
	Open Other -> File in Browser
	Open Other -> Email at Cursor
	Open Other -> URL at Cursor
	Open Other -> Program at Cursor
	Close
	Close All
	Insert
	Reload
	Save
	Save All
	Save As
	FTP Save As
	Save a Copy As
	File Properties
	Toggle Read-Only
	Page Setup
	Print Setup
	Print Preview
	Print
	Print All
	Recent Files
	Clear Recent Files List
	Exit

	Edit Menu
	Undo
	Undo All
	Redo
	Redo All
	Clear Undo
	Cut
	Copy
	Append
	Cut Append
	Paste
	Paste As
	Delete
	Select All Text
	Copy Filename
	Paste Clipboard
	Set Clipboard
	Set Clipboard -> Previous
	Set Clipboard -> Next
	Edit Clipboard
	Clear Clipboard
	Clear Clipboard -> All Clipboards
	Insert -> Character(s)
	Insert -> Formfeed
	Insert -> Tab
	Insert -> Filename
	Insert -> HTML Image Tag
	Insert -> Line Below
	Insert -> Line Above
	Insert -> Short Date
	Insert -> Long Date
	Insert -> Short Time
	Insert -> Long Time
	Delete -> Previous Word
	Delete -> Next Word
	Delete -> Current Line
	Delete -> to End of Line
	Delete -> to Start of Line
	Delete -> Lines that Begin with
	Delete -> Lines that End with
	Delete -> Lines that Contain
	Delete -> Lines that do not Begin with
	Delete -> Lines that do not End with
	Delete -> Lines that do not Contain
	Delete -> Blank Lines
	Delete -> Duplicate Lines
	Delete -> Bookmarked Lines
	Line -> Duplicate Line
	Line -> Duplicate and Increment
	Line -> Move Line Up
	Line -> Move Line Down
	Math -> Increment
	Math -> Decrement
	Math -> Multiply
	Math -> Divide
	Swap Words
	Swap Lines
	Flip Case

	Block Menu
	Select Stream
	Select Columnar
	Select without Shift
	Indent One Space
	Indent One Tabstop
	Indent with String
	Unindent
	Convert Case -> Upper
	Convert Case -> Lower
	Convert Case -> Invert
	Convert Case -> Words
	Convert Case -> Sentences
	Convert Case -> Title
	Convert Other -> Tabs to Spaces
	Convert Other -> Spaces to Tabs
	Convert Other -> OEM to ANSI
	Convert Other -> ANSI to OEM
	Convert Other -> EBCDIC to ASCII
	Convert Other -> ASCII to EBCDIC
	Convert Other -> ROT5
	Convert Other -> ROT13
	Convert Other -> ROT18
	Convert Other -> ROT47
	Comment
	Uncomment
	Auto-Number
	Fill with String
	Invert Lines
	Line Spacing
	Save Selection As
	Sort Lines
	Strip HTML/XML Tags
	Strip Leading Spaces
	Strip Trailing Spaces
	Total and Average
	Word Count

	Search Menu
	Find
	Find (Hex)
	Find Next
	Find Previous
	Find Fast
	Unhighlight Matches
	Replace
	Replace (Hex)
	Replace Again
	Replace Line Enders
	Find Mate
	Find and Count
	Find a Disk File
	Find Text in Disk Files
	Find Duplicate Lines
	Find Unique Lines
	Find Distinct Lines
	Find Differing Lines

	Jump Menu
	Go to Line
	Go to Column
	Go to Byte Offset
	Next Bookmark
	Previous Bookmark
	Toggle Bookmark
	Bookmark Manager
	Next Paragraph
	Previous Paragraph
	Go to Paragraph
	Next Function
	Previous Function
	Declaration
	Reference
	Ctags Function Index
	Make Line Top
	Make Line Center
	Make Line Bottom
	Left Window Edge
	Right Window Edge
	Backtab

	Paragraph Menu
	Visual Wrap
	Visual Wrap Options
	Harden Line Enders
	Soften Line Enders
	Reformat
	Unformat
	Text Width
	Justification Style
	Typing Wrap
	Quote and Reformat
	Align Left
	Align Center
	Align Right
	Align Smooth

	Tools Menu
	Macros
	Macro Language Reference
	Macro Function Reference
	Macro Examples
	Record Keys
	Pause Recording
	Playback Keys
	Save Key Recording
	Load Key Recording
	Auto-Complete
	Auto-Complete List
	Command Multiplier
	Repeat Last Command
	Format XML / XHTML
	Unformat XML / XHTML
	Spell Checker
	Check Word
	Calculator
	Calendar
	User Tools
	User Lists
	User Lists -> Bring User Lists to Top
	Reference Charts -> ANSI Chart
	Reference Charts -> OEM Chart
	Reference Charts -> Value at Cursor
	Reference Charts -> Error Chart
	Reference Charts -> HTML Color Chart
	Templates
	Line Drawing
	Fast Frame

	Project Menu
	New
	Open
	Close
	Delete
	Add One
	Add All
	Remove
	Update One
	Update All
	Auto-Update
	Edit Active
	Edit Other
	Recent Projects
	Clear Recent Projects List

	Configure Menu
	Preferences - Display
	Preferences - Cursor
	Preferences - Editing 1
	Preferences - Editing 2
	Preferences -Tabs
	Preferences - File I/O
	Preferences - Backups
	Preferences - Messages
	Preferences - Other
	Colors
	Screen Font
	Printer Font
	Keyboard
	Auto-Complete - Settings
	Auto-Complete - Popup List
	Auto-Complete - User-Defined
	Auto-Complete - Harvested
	Auto-Complete - Dictionary
	Auto-Complete - Excluded
	Toolbar
	Syntax Highlighting
	Text Highlighting
	Ctags Function Indexing
	Templates
	User Tools
	Explore Data Folder
	Explore Program Folder

	View Menu
	Toolbar -> View Toolbar
	File Tabs -> View File Tabs
	File Tabs -> Sort by Name
	File Tabs -> Sort by Extension
	File Tabs -> Sort by Use
	File Tabs -> Top
	File Tabs -> Bottom
	File Tabs -> Skip File
	File Tabs -> Skip All
	File Tabs -> Unskip All
	File Tabs -> Undo Close Tab
	File Tabs -> Undo All Closed Tabs
	Status Bar
	Vertical Scroll Bar
	Horizontal Scroll Bar
	Bookmarks
	Line Numbers
	Text Ruler
	Hex Ruler
	Right Margin Rule
	Visible Spaces
	Active Spell Checking
	Text Highlighting
	Apply Highlighting
	Syntax Highlighting
	Syntax Highlight As
	Hex Mode
	Scroll Up
	Scroll Down
	Scroll Left
	Scroll Right
	Synchronized Scroll
	Shaded Tab Zones
	Tab Display Size

	Window Menu
	Tile Across
	Tile Down
	Cascade
	Cascade Vertical
	Cascade Horizontal
	Arrange Icons
	Split Vertical
	Split Horizontal
	Next
	Previous
	Skip
	Last Visited
	Minimize All
	Restore All
	Maximize All
	Close All
	Close All but Active
	Window List

	Help Menu
	Boxer Help
	Help On
	FAQs
	Boxer Shorts
	Technical Support
	Order Boxer
	Boxer Software Order Form
	Check for Latest Version
	Contact Information
	Email Boxer Software
	Boxer Software Website
	About Boxer
	About Boxer

	Command Reference (alphabetically)
	About Boxer
	Add All
	Align Center
	Align Right
	ANSI Chart
	Append
	Arrange Icons
	Auto-Complete
	Auto-Complete - Settings
	Auto-Complete - User-Defined
	Auto-Complete - Dictionary
	Auto-Number
	Backtab
	Bookmarks
	Boxer Software Order Form
	Bring User Lists to Top
	Calendar
	Cascade Vertical
	Check for Latest Version
	Clear All Clipboards
	Clear Closed Tabs List
	Clear Recent Projects List
	Close (File)
	Close All
	Closed Tabs List
	Command Multiplier
	Contact Information
	Convert Case - Lower
	Convert Case - Title
	Convert Case - Words
	Copy Filename
	Ctags Function Indexing
	Cut Append
	Decrement
	Delete (Project)
	Delete Bookmarked Lines
	Delete Duplicate Lines
	Delete Lines that Contain
	Delete Lines that do not Contain
	Delete Lines that End with
	Delete Previous Word
	Delete to Start of Line
	Duplicate and Increment
	EBCDIC to ASCII
	Edit Clipboard
	Email Boxer Software
	Exit
	Explore Program Folder
	Fast Frame
	File Picker
	File Tabs
	File Tabs - Top
	Find
	Find and Count
	Find Distinct Lines
	Find Fast
	Find Next
	Find Text in Disk Files
	Flip Case
	FTP Open
	Go to Byte Offset
	Go to Line
	Harden Line Enders
	Help On
	Hex Ruler
	HTML Color Chart
	Indent one Space
	Indent with String
	Insert Filename
	Insert HTML Image Tag
	Insert Line Below
	Insert Long Time
	Insert Short Time
	Invert Lines
	Keyboard
	Line Drawing
	Line Spacing
	Macros
	Macro Function Reference
	Make Line Bottom
	Make Line Top
	Minimize All
	Move Line Up
	New (File)
	Next Bookmark
	Next Paragraph
	OEM to ANSI
	Open (Project)
	Open File in Browser
	Open Header File
	Open Program at Cursor
	Open URL at Cursor
	Page Setup
	Paste As
	Pause Recording
	Power Columns
	Preferences - Cursor
	Preferences - Editing 2
	Preferences - File I/O
	Preferences - Messages
	Previous Bookmark
	Previous Paragraph
	Print All
	Print Setup
	Quote and Reformat
	Recent Projects
	Redo
	Reference
	Regular Expressions
	Remove
	Replace
	Replace Line Enders
	Right Margin Rule
	ROT5
	ROT18
	Save
	Save All
	Save Key Recording
	Screen Font
	Scroll Left
	Scroll Up
	Select Columnar
	Select without Shift
	Set Clipboard Previous
	Shaded Tab Zones
	Skip All
	Sort File Tabs by Extension
	Sort File Tabs by Use
	Spaces to Tabs
	Split Horizontal
	Status Bar
	Strip Leading Spaces
	Swap Lines
	Synchronized Scroll
	Syntax Highlighting (Configure)
	Tab Display Size
	Technical Support
	Templates (Insert)
	Text Highlighting (View)
	Text Width
	Tile Down
	Toggle Read-Only
	Toolbar (View)
	Typing Wrap
	Undo
	Undo All Closed Tabs
	Unformat
	Unhighlight Matches
	Unskip All
	Update One
	User Tools (Configure)
	Vertical Scroll Bar
	Visual Wrap
	Window Close All
	Window List
	Window Previous
	Word Count

	Active Spell Checking
	Add One
	Align Left
	Align Smooth
	ANSI to OEM
	Apply Highlighting
	ASCII to EBCDIC
	Auto-Complete List
	Auto-Complete - Popup List
	Auto-Complete - Harvested
	Auto-Complete - Excluded
	Auto-Update
	Bookmark Manager
	Boxer Shorts
	Boxer Software Website
	Calculator
	Cascade
	Cascade Horizontal
	Check Word
	Clear Clipboard
	Clear Recent Files List
	Clear Undo
	Close (Project)
	Close All but Active
	Colors
	Comment
	Convert Case - Invert
	Convert Case - Sentences
	Convert Case - Upper
	Copy
	Ctags Function Index
	Cut
	Declaration
	Delete (Text)
	Delete Blank Lines
	Delete Current Line
	Delete Lines that Begin with
	Delete Lines that do not Begin with
	Delete Lines that do not End with
	Delete Next Word
	Delete to End of Line
	Divide
	Duplicate Line
	Edit Active
	Edit Other
	Error Chart
	Explore Data Folder
	FAQs
	File Insert
	File Properties
	File Tabs - Bottom
	Fill with String
	Find a Disk File
	Find Differing Lines
	Find Duplicate lines
	Find Mate
	Find Previous
	Find Unique Lines
	Format XML / XHTML
	FTP Save As
	Go to Column
	Go to Paragraph
	Help
	Hex Mode
	Horizontal Scroll Bar
	Increment
	Indent one Tabstop
	Insert Character
	Insert Formfeed
	Insert Line Above
	Insert Long Date
	Insert Short Date
	Insert Tab
	Justification Style
	Left Window Edge
	Line Numbers
	Load Key Recording
	Macro Examples
	Macro Language Reference
	Make Line Center
	Maximize All
	Move Line Down
	Multiply
	New (Project)
	Next Function
	OEM Chart
	Open (File)
	Open Email at Cursor
	Open Filename at Cursor
	Open Hex
	Open System Files
	Order Boxer
	Paste
	Paste Clipboard
	Playback Keys
	Preferences - Display
	Preferences - Editing 1
	Preferences - Tabs
	Preferences - Backups
	Preferences - Other
	Previous Function
	Print
	Print Preview
	Printer Font
	Recent Files
	Record Keys
	Redo All
	Reformat
	Reload
	Repeat Last Command
	Replace Again
	Restore All
	Right Window Edge
	ROT13
	ROT47
	Save a Copy As
	Save As
	Save Selection As
	Scroll Down
	Scroll Right
	Select All Text
	Select Stream
	Set Clipboard
	Set Clipboard Next
	Skip
	Soften Line Enders
	Sort File Tabs by Name
	Sort Lines
	Spell Checker
	Split Vertical
	Strip HTML/XML Tags
	Strip Trailing Spaces
	Swap Words
	Syntax Highlight As
	Syntax Highlighting (View)
	Tabs to Spaces
	Templates (Configure)
	Text Highlighting (Configure)
	Text Ruler
	Tile Across
	Toggle Bookmark
	Toolbar (Configure)
	Total and Average
	Uncomment
	Undo All
	Undo Closed Tab
	Unformat XML / XHTML
	Unindent
	Update All
	User Lists
	Value at Cursor
	Visible Spaces
	Visual Wrap Options
	Window Last Visited
	Window Next
	Window Skip
	Miscellaneous Topics
	Command Line Options
	Context Menu
	Default Key Assignments (command order)
	Dropping Text Files onto Boxer
	File Associations
	Insert Symbols
	Installing or Reinstalling Boxer
	Macro Examples
	Macro Language Reference
	Null Characters
	Power Columns
	Regular Expressions
	Send-To Menu
	Transferring Preferences
	Uninstalling Boxer

	Converting CSV Data to Fixed Width Format
	Cursor Movement Commands
	Default Key Assignments (key order)
	Dropping Image Files onto Boxer
	HTML Color Code Popup Hints
	Inserting Special Characters
	Intellimouse Support
	Macro Function Reference
	Main Menu
	Portable Editing
	printf and sprintf Formatting
	Restoring an Edit Session
	Sizes and Limits
	Unicode Files
	Glossary
	 Glossary A-Z
	binary
	client area
	context menu
	decimal
	fixed width
	footer
	header file
	hot letter
	long filename
	modal and non-modal
	portrait
	program folder
	short filename
	task bar
	tool tip
	whitespace
	WYSIWYG

	acronym
	binary file
	code page
	data folder
	file filter
	focus
	header
	hexadecimal
	landscape
	maximal matching
	octal
	private clipboard format
	proportionally spaced
	shortcut key
	thumb and scroll box
	URL
	Windows Registry
	Ordering Boxer
	Order Boxer
	Upgrade Information
	International Agents

	Multi-User Licenses
	Licensed User Benefits
	Technical Support and Other Info
	Technical Support
	Software License - Licensed Copies
	Credits

	Software License - Evaluation Copies
	Frequently Asked Questions

